
Comput Mech (2012) 50:1–18
DOI 10.1007/s00466-011-0665-7

ORIGINAL PAPER

A two-level mesh repartitioning scheme
for the displacement-based lower-order finite element
methods in volumetric locking-free analyses

C. T. Wu · W. Hu

Received: 9 May 2011 / Accepted: 16 November 2011 / Published online: 14 December 2011
© Springer-Verlag 2011

Abstract We present an approach for repartitioning exist-
ing lower-order finite element mesh based on quadrilateral
or triangular elements for the linear and nonlinear volu-
metric locking-free analysis. This approach contains two
levels of mesh repartitioning. The first-level mesh re-par-
titioning is an h-adaptive mesh refinement for the generation
of a refined mesh needed in the second-level mesh coarsen-
ing. The second-level mesh coarsening involves a gradient
smoothing scheme performed on each pair of adjacent ele-
ments selected based on the first-level refined mesh. With the
repartitioned mesh and smoothed gradient, the equivalence
between the mixed finite element formulation and the dis-
placement-based finite element formulation is established.
The extension to nonlinear finite element formulation is also
considered. Several linear and non-linear numerical bench-
marks are solved and numerical inf-sup tests are conducted
to demonstrate the accuracy and stability of the proposed
formulation in the nearly incompressible applications.

Keywords Finite element · Penalty method · Locking-free ·
Nonlinear · Gradient smoothing

1 Introduction

The volumetric locking in displacement-based lower-order
finite element methods has been studied extensively and
many special numerical techniques have been proposed to
resolve this difficulty. Representative approaches are mixed
method [45], reduced/selective integration [21], reduced
integration and hourglass control/stabilization method
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[9,26], equal-order interpolation with stabilization method
[2,22], assumed strain method [28,35], discontinuous Galer-
kin methods [4,19] average nodal pressure element [10] and
methods based on gradient or pressure smoothing [20,41]
via macro-element technique [36]. The Q1 − P0 mixed ele-
ment, continuous piecewise bilinear for displacement and
piecewise constant for pressure on quadrilateral element, is
probably the simplest element used to overcome the volumet-
ric locking problem. However the stability of this element
is strongly mesh-dependent. Namely, the inf-sup condition
established in [7,11] holds on some meshes but fails on the
others. As a result the solutions may display acceptable dis-
placement but spurious pressure. Several pressure smoothing
procedures [21] were developed to perform the necessary fil-
tering as a byproduct. Despite this inconvenience, Q1 − P0

mixed element remains one of the popular elements used in
the finite element method for nearly-incompressible analy-
sis. Hughes’s reduced/selective integration has a close link
[29] with the mixed formulation where the displacement and
implicit pressure interpolant spaces are still subjected to an
inf-sup condition for the stability requirement. A mean to cir-
cumvent the inf-sup condition in the mixed equal-order finite
element formulation is to add a residual of the momentum
equation as a stabilization term [22]. Attention also has been
paid to the solving of the volumetric locking problem by dis-
continuous Galerkin (DG) method [19]. DG method can be
considered as a class of interior penalty method where jump
discontinuities are allowed in the neighboring elements and a
consistent interface formulation is derived by refraining from
the use of penalty method. DG method is closely related to
the classical nonconforming Crouzeix–Raviart (CR) element
[15] which is known to be unstable for the traction prob-
lem in linear elasticity. Hansbo and Larson [19] introduced
the CR element approximation in DG method and obtained
a stable version of the CR element in the mixed form of
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elasticity equations for near-incompressible problem. A gen-
eral analysis of DG methods for elliptic problems can
be found in [4]. Recently a pressure gradient stabiliza-
tion method was proposed by Areias et al. [2] to stabilize
the unstable displacement/pressure pairs without residuals.
In reduced integration and stabilization method [26], an
assumed strain field [35] is obtained by the Taylor expansion
of displacement gradient matrix and the resulting discrete
equation can be expressed explicitly by one-point quadra-
ture terms and their stabilization. Since the pioneering work
by Bonet et al. [10] various average nodal pressure formu-
lations have been developed (cf. e.g. [1,24]) to overcome
incompressible locking. A priori error estimate [25] using
primal and dual meshes reveals that original average nodal
pressure formulation does not satisfy a uniform inf-sup con-
dition. In order to have a stable formulation, the linear dis-
placement space needs to be enriched with bubble functions
as in the mini-element [3]. This analysis leads to a consistent
variational framework for the stabilized nodally integrated
tetrahedral presented by Puso et al. [33]. A parallel idea of
averaging nodal pressure is to average the pressure or defor-
mation gradient fields [20,41] over the macro-element. A
carefully chosen displacement space on sub-elements and
pressure space on macro-element with a view to satisfying
the inf-sup condition leads to the uniform convergence in the
nearly incompressible case.

Several non-conventional volumetric locking-free meth-
ods also have been developed as alternative to solve the
near-incompressible problem. A pseudo-divergence-free
interpolation for Element-free Galerkin method [8] was pro-
posed by Vidal et al. [39] to diffuse the divergence-free con-
straint which can be imposed a priori in a displacement-based
Galerkin meshfree formulation. A locking-free Reproduc-
ing Kernel Particle formulation [27] was presented by Chen
et al. [13] for the nonlinear analysis of rubber-like materials.
Subsequently, various meshfree approaches have also been
developed to alleviate the volumetric locking [16,17,31] in
the framework of B-bar or mixed formulations. Recently, the
iso-geometric discretization based on Non-Uniform Rational
B-Splines (NURBS) [19] has presented an interesting alter-
native to solve the incompressible or near-incompressible
problems. The high continuity of the NURBS interpolation
allows us to solve the incompressible elasticity as an elliptic
fourth-order problem in terms of a scalar stream function [5].
A nonlinear F-bar projection method [18] using the higher-
order NURBS interpolation was also proposed for solving
the nonlinear near-incompressible elasticity problem. More
recently, a displacement-based meshfree-enriched finite ele-
ment method (ME-FEM) was proposed by Wu and Hu [42]
to overcome the volumetric locking in linear triangular and
tetrahedral elements for near-incompressible elasticity prob-
lem. The approximation in ME-FEM element is established
by introducing a first-order convex meshfree approximation

[32,43,44] into a linear finite element with an enriched mesh-
free node. An area-weighted strain smoothing technique [42]
is developed to acquire the discrete divergence-free approx-
imations in ME-FEM elements for the volumetric locking-
free analysis. An equivalent mixed formulation was derived
in [42] and numerical inf-sup test [6] was studied. Their
results suggest that the pair of spaces of displacement and
pressure fields in meshfree-enriched finite element method
is inf-sup stable.

The two-level mesh repartitioning scheme presented in
this paper is motivated by the idea of element-wise meshfree
enrichments and area-weighted strain smoothing technique
from the meshfree-enriched finite element method [42] for
the volumetric locking-free analysis. The reminder of the
paper is outlined as follows: In the next Section, we pro-
vide an overview on the fundamental equations and stabil-
ity requirements of mixed finite element method for nearly
incompressible elasticity problems. In Sect. 3, we present
the two-level mesh repartitioning scheme for finite element
method based on quadrilateral and triangular elements. A
constraint count for the new partitioned mesh is studied. In
addition, a connection between mixed finite element formu-
lation and displacement-based finite element formulation is
established under the new partitioned mesh using the strain
smoothing technique. In Sect. 4, a Total Lagrangian for-
mulation using the two-level mesh repartitioning scheme
is presented for the nonlinear hyper-elasticity problem.
A mixed three-field Hu–Washizu–de Veubeke variational
principle [40] is employed to formulate the problem and
a displacement-based discrete equation is derived. Several
numerical examples are presented in Sect. 5 to demonstrate
the accuracy and stability of the proposed method for the
linear and nonlinear volumetric locking-free analyses. Final
remarks are given in Sect. 6.

2 Review of fundamental equations

Consider a plane-homogeneous isotropic linear elastic body
which occupies a bounded polygonal domain � in R

2 with
boundary � = ∂� and is under the action of external and
internal forces. The strong form of the boundary-value prob-
lem for nearly incompressible cases can be stated by the
following [21]:{

σi j, j + bi = 0 in �

ui,i + p/λ = 0 in �
(1)

with the boundary conditions

ui = gi on �g (2)

σi j n j = hi on �h (3)

where σi j is the Cauchy stress tensor, bi is the components
of body forces, ui is the displacement components, p is the
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pressure parameter which is viewed as an independent
unknown, gi is the prescribed boundary displacements, ni

is the unit outward normal vector, and traction hi is distrib-
uted over the Neumann boundary �h with � = �g ∪ �h and
�g ∩ �h = 0. With the fourth-order elasticity tensor denoted
by C, the constitutive equation is given by

σ = Cε = 2με + λ (trε) I in � (4)

where I is the identity tensor. Symbols μ and λ are Lamé
constants which are related to the Young’s modulus E and
Poisson ratio v by

μ = E

2 (1 + v)
, λ = vE

(1 + v) (1 − 2v)
(5)

The infinitesimal strain tensor ε is defined as a function of
the displacement u by

ε (u) = 1

2

[
∇u + (∇u)T

]
(6)

For simplicity we consider the pure Dirichlet bound-
ary condition (�g = �) with �g = 0. With the notation

H1 (�) = (
H1 (�)

)2
, the appropriate displacement space for

a variational formulation is the Sobolev space H1
0

(
�,�g

) :={
v ∈ H1 (�) : v = 0 on �g

}
. In addition to the displacement

space, a space of pressure P is needed. The functions
in P are required to be square-integrable (i.e.,
L2-function). We also define a space L2

0 (Ω) to be the
subspace of functions in L2 with zero mean; that is
L2

0 (Ω) = {
q ∈ L2 (Ω) ,

∫
�

qdΩ = 0
}

under the pure
Dirichlet boundary condition assumption. A standard lower-
order finite element discretization of domain Ω is based on
the conforming space Vh of continuous piecewise linear
approximation on the triangular T h or bilinear approximation
on the quadrilateral Qh . The corresponding discrete mixed
variational problem consists in finding uh ∈ Vh ⊂ H1

0 and
ph ∈ Ph ⊂ L2

0 such that

(Mh)

{
a
(
uh, vh

)+ b
(

ph, vh
) = l

(
vh
) ∀ vh ∈ Vh

b
(
qh, uh

)− 1
λ

c
(

ph, qh
) = 0 ∀ qh ∈ Ph (7)

where

a
(

uh, vh
)

= 2μ

∫
�

ε
(

uh
)

: ε
(

vh
)

d�

b (r, s) =
∫
�

r div(s)d�

c
(

ph, qh
)

=
∫
�

phqhd�

l
(

vh
)

=
∫
�

bT vhd� (8)

Note that the problem (Mh) is similar to the penalized finite
element Stokes problem in [30]. From the Brezzi theorem
[11], if the following three conditions are met:

(i) the symmetric bilinear form a (·, ·) is coercive on kernel
space of b (·, ·):

∃ a constant α > 0 such that

a
(

vh, vh
)

≥ α

∥∥∥vh
∥∥∥2

1
for all vh ∈ K er Bh

=
{

vh ∈ Vh : b
(

qh, vh
)

= 0 ∀qh ∈ Ph
}

(9)

(ii) the bilinear form b (·, ·) satisfies the Inf-sup or LBB
(Ladyzenskya–Babuška–Brezzi) condition:

∃ a constant β > 0 independent of mesh size h such that

inf
qh∈Ph

sup
vh∈Vh

b
(
qh, vh

)
∥∥vh

∥∥
1

∥∥qh
∥∥

0

= βh ≥ β (10)

(iii) the symmetric bilinear form c (·, ·) is continuous and
positive semi-definite:

c
(

qh, qh
)

≥ 0 ∀qh ∈ Ph, (11)

then the problem (Mh) admits a unique solution for(
uh, ph

)
∈Vh × Ph which is stable and optimally convergent, i.e.,
there exists a positive constant Cαβ depending on α and β

but independent of mesh size h such that
∥∥∥u − uh

∥∥∥
1
+
∥∥∥p − ph

∥∥∥
0

≤ Cαβ in f
vh∈Vh ,qh∈Ph

(∥∥∥u − vh
∥∥∥

1
+
∥∥∥p − qh

∥∥∥
0

)
(12)

where the symbol ‖·‖m denotes the Sobolev norm of order m
as defined in a standard way. It is trivial to see that bilinear
form c (·, ·) is positive semi-definite. The inf-sup condition
however is difficult to prove for practical situations in par-
ticular when the element mesh is distorted. For this reason a
numerical inf-sup test proposed by Chapelle and Bathe [6]
turns to be a very useful tool to predicate the stability of a
mixed formulation in engineering practice. Given a finite ele-
ment discretization, the inf-sup condition in inequality (10)
can be re-expressed in matrix form

inf
Ph

sup
V h

PhT
GhVh√

VhT
ShVh

√
PhT

GhPh
= βh ≥ β (13)

where

∥∥∥vh
∥∥∥2

1
= VhT

ShVh (14)
∥∥∥qh

∥∥∥2

0
= PhT

GhPh (15)

Vh and Ph are vectors of the nodal displacement values cor-
responding to vh and qh , and Sh, Gh are matrices defined
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(a) 

 
(b) 

Fig. 1 Crisscross-refinements of quadrilateral elements. a Refinement
on one quadrilateral element. b Refinement on multiple quadrilateral
elements

 

(a) 

 
(b) 

Fig. 2 Hsieh–Clough–Tocher refinements of triangular elements.
a Refinement on one triangular element. b Refinement on multiple
triangular elements

according to the Eqs. 14 and 15. If λk is the smallest
eigenvalue of the following eigenvalue problem

Ghϕ = λShϕ, (16)

then the value
√

λk is equal to the inf-sup value βh in Eq. 13
(see, e.g, Bathe [6] for details).

When the domain is discretized using quadrilateral ele-
ments Mh = ∪e Qh , we can eliminate the pressure on the
element level by static condensation and obtain a displace-
ment-based formulation as

(a) (b) 

esn

esn

Fig. 3 Standard mesh for constraint ratio counts in the first-level mesh
re-partitioning. a Crisscross-refined mesh. b Hsieh–Clough–Tocher-
refined mesh

 
(a) 

 
(b) 

Fig. 4 Multiple strain smoothing domains (in thick lines) in a Criss-
cross-refined mesh b Hsieh–Clough–Tocher-refined mesh

(Dh)

∫
�

2με
(

uh
)

: ε
(

vh
)

d�

+
∫
�

λΠPh div uhΠPh div vhd�

= l
(

vh
)

∀ vh ∈ Vh (17)

where ΠPh denotes a L2-pojection onto pressure space Ph .
Let Pn

(
Qh
)

denote the polynomials with degree less than
or equal to n defined on the quadrilateral element. It is
well-known that the chosen pressure space of �Ph Ph ={
q ∈ L2

0 (�) q|Qh ∈ P0
(
Qh
)
, Qh ∈ Mh

}
in Q1−P0 mixed

element, which corresponds to the reduced/selective integra-
tion in bilinear element [29], does not yield a uniform inf-sup
condition. For example, the inf-sup value of a uniform mesh
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with rectangular elements is of order h2 : βh = O
(
h2
)

[30] under homogeneous Dirichlet boundary condition and
checkerboard modes in the pressure field might be observed.
On the other hand, although P1− P0 mixed element (continu-
ous piecewise linear for displacement and piecewise constant
for pressure) does provide “consistent” approximations (the
range of the divergence is a piecewise constant space as same
as the pressure space) for displacement and pressure fields,
this element is a locking element. P1 − P0 mixed element in
general does not satisfy the inf-sup condition and therefore
is not applicable in practice.

3 A two-level mesh repartitioning scheme in linear
analysis of nearly incompressible problem

In this section, we present a stable two-level mesh rep-
artitioning scheme for the mixed lower-order finite ele-
ment method originally discretized either by Q1 − P0 or
P1 − P0 mixed elements in the solving of nearly incom-
pressible problems. The central idea behind the two-level
mesh repartitioning scheme is motivated by the element-wise
meshfree enrichments and area-weighted strain smoothing
technique in the meshfree-enriched finite element method
[42]. In order to define a strain smoothing zone in the finite
element method, we first require a refined mesh which is
constructed using an h-adaptive mesh refinement scheme in
the first-level mesh repartitioning. In the second-level mesh
repartitioning, we apply the area-weighted strain smooth-
ing technique [42] leading to a mesh coarsening effect on
the first-level refined mesh. Finally, a degeneration of the
mixed finite element formulation to a displacement-based
finite element formulation based on the repartitioned mesh is
presented. Extensions of this approach to nonlinear problems
are presented in Sect. 4

3.1 First-level mesh repartitioning: an h-adaptive mesh
refinement scheme

Given a quadrilateral partition of a polygonal domain Ω

denoted by Mh = ∪e Qh , an h-adaptive refinement of
Mh is defined by Mh/2 where each quadrilateral Qh ∈
Mh is refined by a crisscross-refinement to form four
congruent sub-triangles. For convenience, we denote each
sub-triangle by T h/2. The triangular subdivision of one

quadrilateral element Qh = 4∪ T h/2 is shown in Fig. 1a.
Figure 1b shows the triangular subdivision on multiple quad-
rilateral elements. In mixed formulation, the corresponding
element T h/2 on triangular subdivision is approximated by
the P1 − P0 mixed element where the approximation spaces
are defined by

(a) (b) 

esn

esn

Fig. 5 Standard mesh for constraint ratio counts in the second-level
mesh repartitioning with strain smoothing domain (in thick lines). a
Crisscross-refined mesh. b Hsieh–Clough–Tocher-refined mesh

Vh =
{

vh ∈ H1
0 (�) vh

∣∣∣
T h

∈ P1

(
T h/2

)
∀ T h/2 ∈ Mh/2

}
(18)

Ph =
{

q ∈ L2
0 (�) q|T h ∈ P0

(
T h/2

)
,∀ T h/2 ∈ Mh/2

}
(19)

The h-adaptive mesh refinement in quadrilateral discreti-
zation can be applied to triangular discretization Mh = ∪eT h

leading to a mesh partition similar to the Hsieh–Clough–
Tocher [11] mesh. The mesh refinements in single triangu-
lar element and multiple elements are depicted in Fig. 2a,
b respectively. Since the partitioned sub-triangular elements
are also P1 − P0 mixed elements, their mixed finite element
spaces can be defined as in Eqs. 18 and 19.

The resulting mesh from the h-adaptive mesh refinement is
composed of P1 − P0 mixed elements and remains conform-
ing in the displacement approximation. As the divergence
of displacement field in P1 − P0 mixed element is piece-
wise constant, it leads to a divergence-free finite element
space

Zh =
{

vh ∈ Vh
∣∣∣div vh = 0

}
(20)

Although the P1 − P0 mixed element provides a discrete
divergence-free approximation, it is known that P1 − P0

mixed element does not work well for a general mesh since
the dimension of the discrete displacement space is always
less than that of the pressure space, i.e.

dim Vh < dim Ph, (21)

and a volumetric locking is likely to occur. In the incom-
pressible limit, the worst case leads to the discrete diver-
gence-free function to become vh ∈ K er Bh = {0}. The
over-constrained displacement dimension and thus volumet-
ric locking can be predicted by a heuristic constraint ratio
approach introduced by Hughes [21]. Note that the constraint
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ratio approach is not served as a stability criterion for the
proposed method. The stability of the proposed method will
be examined thereinafter by three conditions in inequalities
(9–11). The constraint ratio of P1 − P0 mixed element in a
standard crisscross-refined mesh with a number of elements
per side nes as shown in Fig. 3a is

r = neq

nc
= 1 (22)

where neq represent the total number of displacement
equations after boundary conditions have been imposed
and nc represent the total number of incompressibility
constraints.

The constraint ratio in the Hsieh–Clough–Tocher refined
mesh shown in Fig. 3b is the same as the one in the criss-
cross-refined mesh and the ratio does not change when the
mesh is refined. Note that the optimal value of constraint
ratio r for the volumetric locking-free mesh is two as nes

approaches infinity in two-dimensional case. In this study, we
increase the constraint ratio of P1 − P0 mixed elements gen-
erated in the first-level refined mesh by spanning the pressure
space over the adjacent element. This is done by a second-
level mesh coarsening scheme through a strain smoothing
technique.

3.2 Second-level mesh repartitioning: a strain smoothing
scheme

We recall Mh is an admissible subdivision of computational
domain Ω into non-overlapping quadrilateral or triangular
element domains. In other words, two elements from Mh

either have no intersection, or have a common vertex, or a
common edge. Let the symbol l denotes a common edge of
adjacent elements Qh

l, j , j = 1, 2 in the original discretiza-

tion Mh . The edge l is also a common edge of adjacent ele-
ments T h/2

l, j , j = 1, 2 in the refined mesh Mh/2. The smooth-
ing domain Ωl corresponding to the edge l for the pair of
adjacent elements T h/2

l, j , j = 1, 2 in Mh/2 is defined as Ωl =
2∪

T h/2∈T h/2
l

T h/2 and the smoothed strain [14,42] is defined

by

εh = Πh

(
ε
(

uh
))

= 1

Al

∫
Ωl

ε
(

uh
)
Φl (X) dΩ (23)

where Πh denotes the smoothing operator. Al is the area
of the smoothing domain Ωl . Φl (X) is the characteristic or
smoothing function of the smoothing domain Ωl defined by

Φl (X) =
{

1, if X ∈ Ωl

0, else
(24)

Subsequently, in the second-level mesh re-partitioning we
can define a new subdivision of computational domain by

M
h/2 = ∪lΩl + ∪bT h/2

b where T h/2
b denotes the first-level

sub-triangle T h/2 whose element edge m contains a piece-
wise b of global boundary ∂Ω = ∪bmb. Since T h/2

b does not
share common edge l defined in the original discretization
Mh with any adjacent T h , strain smoothing is not performed
on those elements. An exemplary sketch of strain smoothing
in the second-level repartitioned mesh is given in Fig. 4a, b
for Crisscross refinements and Hsieh–Clough–Tocher refine-
ments respectively.

Subsequently, a smoothed strain gradient matrix BI is
defined through the following equation

εh =
N P∑
I=1

BI uh
I (25)

and

uh (X) =
3∑

I=1

ΨI (X) uI (26)

where N P = 4 is the number of nodes involving in each
smoothing domain Ωl . ΨI is the linear finite element shape
function of node I . The smoothed gradient matrix under plain
strain assumption is given by

BI = 1

Al

⎡
⎢⎢⎢⎢⎣

∫
Ωm

(
∂ΨI
∂ X1

)
Φl (X)dΩ 0

0
∫
Ωm

(
∂ΨI
∂ X2

)
Φl (X)dΩ∫

Ωm

(
∂ΨI
∂ X2

)
Φl (X)dΩ 0

0
∫
Ωm

(
∂ΨI
∂ X1

)
Φl (X)dΩ

⎤
⎥⎥⎥⎥⎦

(27)

For the simple expression of the equations, we also denote
the strain εh in each T h/2

b to be εh due to the fact that strain
smoothing plays no role for a single linear element, i.e.,

(a) 

(b) 

(c)

x 
y 

L=10 
D=2 P=-1

Fig. 6 Cantilever beam
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(a) (b) 

Fig. 7 Stress results along the cross-section x = 4.875. a σxx Component. b τxy Component

(a) (b)

Fig. 8 Deformation plot in nearly-incompressible case (scaled by 5 times): initial (dash lines); analytical (thick red lines); numerical (thick blue
lines). a CRM. b HCTRM. (Color figure online)

(a) (b) 

Fig. 9 Convergence of error norms. a L2 Error norm. b Energy error norm

εh
(

uh
)

= Πh

(
ε
(

uh
))

= 1

Ab

∫

T h/2
b

ε
(

uh
)
Φl (X) dΩ

= 1

Al

∫
Ωl

ε
(

uh
)
Φl (X) dΩ = ε

(
uh
)

(28)

where Ab is element area of T h/2
b . Now we further denote

M
h/2 = ∪lΩl .
With the new partitioned mesh and smoothed strain, we

can rewrite the discrete problem (Mh) in Eqs. 7 and 8 to be:
finding uh ∈ Vh ⊂ H1

0 and ph ∈ Ph ⊂ L2
0 such that

(Mh)

{
a
(
uh, vh

)+ b
(

ph, vh
) = l

(
vh
) ∀ vh ∈ Vh

b
(
qh, uh

)− 1
λ

c
(

ph, qh
) = 0 ∀ qh ∈ Ph (29)

where

a
(

uh, vh
)

= 2μ

∫
�

ε
(

uh
)

: ε
(

vh
)

d�

b (r, s) =
∫
�

r div(s)d�

div(s) = trΠh (ε (s))
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1cm 

4cm 

CRM 

HCTRM 

Fig. 10 Geometry, boundary condition and discretization in punch
problem

c
(

ph, qh
)

=
∫
�

phqhd�

l
(

vh
)

=
∫
�

bT vhd� (30)

and pressure space Ph is defined by

Ph =
{

q ∈ L2
0 (Ω) q|Ωl

∈ P0 (Ωl) ,∀ Ωl ∈ M
h/2
}

(31)

which contains piecewise constant in each smoothing
domain. The discrete problem

(
Mh

)
remains subjected to the

stability requirements similar to the ones in Eqs. 9 and 10.
Now we are interested in the values of constraint ratio r

in the second-level re-partitioned mesh as the number of ele-
ments per side, nes , approaches infinity. Figure 5a shows the
crisscross-refined mesh after strain smoothing whereas the
constraint ratio r becomes

r = lim
nes→∞

(2nes)
2

2n2
es + 2nes

= 2 (32)

Similarly, the constrain ratio in the Hsieh–Clough–Tocher-
refined mesh shown in Fig. 5b can be obtained by

r = lim
nes→∞

6n2
es

3n2
es + 2nes

= 2 (33)

In both cases the constraint ratio has been improved to the
optimal value. As a result optimal behavior is indicated
and volumetric locking-free result is anticipated in the two
dimensional nearly incompressible problems.

3.3 A degeneration to displacement-based finite element
formulation

Since the pressure ph is piecewise constant in each smooth-
ing domain �l , we have the first equation in problem

(
Mh

)
to be rewritten as

2μ

∫
�

ε
(

uh
)

: ε
(

vh
)

d� +
∫
�

ph
(

div vh
)

d�

=
∫
�

bT vhd� = 2μ

∫
�

ε
(

uh
)

: ε
(

vh
)

d�

+
nl∑

l=1

⎛
⎜⎝ 1

Al

∫
�l

phd�

∫
�l

div vhd�

⎞
⎟⎠ ∀vh ∈ Vh (34)

where the index nl in Eq. 34 denotes the total number of

smoothing domain �l in M
h/2

(M
h/2 = nl∪l�l). The second

equation in problem
(
Mh

)
reads

∫
�

qh
(

div uh
)

d� − 1

λ

∫
�

phqhd� = 0 ∀qh ∈ Ph (35)

Correspondingly, we have

λ

∫
�l

(
div uh

)
d� −

∫
�l

phd� = 0 ∀�l ∈ � (36)

Q1-SR 

CRM 

HCTRM 

Fig. 11 Pressure distribution of punch problem

123



Comput Mech (2012) 50:1–18 9

Table 1 Convergence of forces on the flat rigid punch in 2D

Elements Q1-SR CRM HCTRM

Q1 Tri

8×2 32 2146.5615 1862.0769 1679.8587

16×4 128 1637.0067 1507.5453 1473.8086

24×6 288 1521.8001 1439.7286 1423.4289

32×8 512 1472.0337 1412.5224 1401.8695

The combination of Eqs. 34 and 36 yields to

2μ

∫
�

ε
(

uh
)

: ε
(

vh
)

d� +
∫
�

ph
(

div vh
)

d� =
∫
�

bT vhd�

= 2μ

∫
�

ε
(

uh
)

: ε
(

vh
)

d� +
nl∑

l=1

⎛
⎜⎝ 1

Al

∫
�l

phd�

∫
�l

div vhd�

⎞
⎟⎠

= 2μ

∫
�

ε
(

uh
)

: ε
(

vh
)

d� +
nl∑

l=1

⎛
⎜⎝ λ

Al

∫
�l

div uhd�

∫
�l

div vhd�

⎞
⎟⎠

= 2μ

∫
�

ε
(

uh
)

: ε
(

vh
)

d� + λ

∫
�

div uh div vhd� ∀ vh ∈ Vh

(37)

We can rewrite Eq. 37 using the definition of Πh in
Eq. 28 leading to the following reduced problem: finding
uh ∈ Vh ⊂ H1

0 such that

(
Dh
)

A
(

uh, vh
)

= l
(

vh
)

∀ vh ∈ Vh (38)

where

A
(

uh, vh
)

=
∫
�

Πhε
(

uh
)

: CΠhε
(

vh
)

d� (39)

Now the reduced problem
(
Dh
)

is corresponding to a dis-
cretization of the primal problem (pure displacement) in
Vh with a L2 -orthogonal projection on strains defined in
Eq. 28. Although the total number of degrees of freedom
is increased after the two-level mesh-repartitioning, the pro-
posed finite element scheme does not need to solve the pres-
sure unknowns. This is because the pressure does not appear
explicitly in the formulation, and therefore a static condensa-
tion procedure that used in the standard mixed formulation in
order to eliminate the pressure unknown is not needed in the
current formulation. Although the pressure does not appear
explicitly in the displacement-based finite element formula-
tion, the well-posedness of the reduced problem

(
Dh
)

in near-
incompressible regime is still subject to a stability condition,
i.e., the discrete inf-sup conditions between the displacement
space Vh and an implicit pressure space Ph induced by the
following equation

ph = −λ trΠh

(
ε
(

uh
))

= −λ div
(
uh
)

in Ph (40)

Fig. 12 Numerical inf-sup test result for the punch problem

Same displacement-based finite element formulation can
be obtained following from the derivation provided in [42]
based on the Hu–Washizu variational principle [40]. The
coercivity of bilinear form A (, ·,) on Vh × Vh in prob-
lem

(
Dh
)

as well as a (, ·,) in problem
(
Mh

)
can also be

shown following from the proof in [42, Theorem 4.3]. Since
the consistency between the smoothed divergence space and
pressure space in Eq. 40 does not guarantee a stable pair of
approximations in displacement and pressure fields, the sta-
bility of the proposed finite element scheme is verified in
Sect. 5 through the numerical inf-sup test [6] as described in
Sect. 2.

4 Nonlinear hyper-elasticity problem

The major interest of the proposed method is in the large
deformation analysis of hyper-elastic materials. In this sec-
tion, we focus on the development of nonlinear version
of the proposed method for hyper-elastic materials where
the smoothing scheme described in Sect.3.2 is performed
on the deformation gradient. In order to introduce the
smoothed deformation gradient into Galerkin approximation
for the finite strain analysis, the following mixed three-field
Hu–Washizu–de Veubeke energy functional [40] is consid-
ered for the derivation of nonlinear finite element formulation
for hyperelastic materials.

UH W
(
u, F, τ

) =
∫
�

W
(
F
)
d� +

∫
�

τ : (∇0u − F
)
d�

− Wext (u) (41)

where the displacements u, smoothed deformation gradient
F and smoothed first Piola–Kirchhoff stresses τ are indepen-
dently varied. The symbol ∇0 denotes the gradient operator
with respect to the original configuration. W = W

(
F
)

is the
assumed strain energy density function. The term Wext desig-
nates the external work. The smoothed first Piola–Kirchhoff
stresses τ is related to the smoothed deformation gradient
F by

123



10 Comput Mech (2012) 50:1–18

Fig. 13 Driven cavity problem.
a Geometry and boundary
condition. b Uniform
discretization. c Non-uniform
discretization

(a) (b)

(c)

u0

Fig. 14 Pressure distribution of
driven cavity problem.
a Uniform mesh.
b Non-uniform mesh

Q1-SR CRM HCTRM

(a)

(b)

τ = ∂W

∂F
(42)

The energy functional in Eq. 41 is taken as a basis for the
numerical discretization. The discretization of domain �

using the two-level mesh repartitioning scheme and stan-
dard linear finite element give the following discretized total
energy functional:

U h
H W : Vh × Ξh × Θh → R

U h
H W

(
uh, F

h
, τ h

)
=
∫
�

W
(

F
h
)

d�

+
∫
�

τ h :
(
∇0uh − F

h
)

d� − Wext

(
uh
)

(43)

where the discrete smoothed deformation gradient F
h

is
defined by
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F
h = Πh

(
F
(

uh
))

= 1

Al

∫
�l

F
(

uh
)
Φl (X) d� (44)

Here, we use the same the notation of smoothing opera-
tor “Πh” for the smoothing of deformation gradient as we
did for the smoothing of strain in linear elasticity problem.
Al denotes the area of the smoothing domain Ωl . Φl (X) is
defined in Eq. 24. The components of the discrete smoothed
deformation gradient is further expressed as

F
h
i j = 1

Al

∫
�l

(
∂uh

i

∂ X j
+ δi j

)
Φl (X) d�

= 1

Al

∫
�l

(
∂uh

i

∂ X j

)
Φl (X) d� + δi j

= 1

Al

∫
�l

4∑
I=1

(
∂�i

∂ X j
ui I

)
Φl (X) d� + δi j ≡ gh

i j + δi j

(45)

where

gh
i j = 1

Al

∫
Ωm

4∑
I=1

(
∂ΨI

∂ X j
ui I

)
Φl (X) d� (46)

Since the discrete smoothed deformation gradient is defined
locally on each smoothing domain �l and no continuity con-
ditions are applied at the boundaries of �l , the approximation
space of smoothed deformation gradient can be defined by

Ξ h (�)

=
{

F
h :Fh∈L2 (�) , F

h
contains piecewise constants ∀ �l∈Mh/2

}

(47)

where the space Θh ∈ L2 of smoothed first Piola–Kirchhoff
stresses also contain piecewise constants in �. The second
term on the RHS of Eq. 41 can be further expressed using
Eq. 44 to yield

∫
�

τ hT
(
∇0uh − F

h
)

d� =
nl∑

l=1

τ hT
∫
�l

(
∇0uh − F

h
)

d�

=
nl∑

l=1

τ hT

⎛
⎜⎝
∫
�l

∇0uhd� − F
h

Al

⎞
⎟⎠

=
nl∑

l=1

τ hT

⎛
⎜⎝
∫
�l

∇0uhd� −
∫
�l

∇0uhd�

⎞
⎟⎠ = 0 (48)

Equation 48 implies an orthogonal condition between the
discrete stress field τ h and the difference of the discrete
deformation gradient ∇0uh field and the discrete smoothed

Fig. 15 Pressure distribution at y = 0.5

Fig. 16 Numerical inf-sup test result for the cavity problem

deformation gradient field F
h
. This is equivalent to the

assumed strain variation principle of Simo and Hughes [34].
After eliminating the stress components from Eq. 41 using

Eq. 48, the following modified Hu–Washizu functional is
obtained depending only on displacement and smoothed
deformation fields:

U h
H W mod

(
uh, F

h
)

=
∫
�

W
(

F
h
)

d� − Wext

(
uh
)

(49)

The two-field variational problem can be condensed to fol-
lowing primal problem by the definition of Eq. 44:

U
h
H W mod

(
uh
)

=
∫
�

W
(

F
h
(

uh
))

d� − Wext

(
uh
)

=
∫
�

W
(
ΠhFh

(
uh
))

d� − Wext

(
uh
)

(50)

Since two variational equations are identical in this study,
we choose to work on the two-field variational form for the
ease of the following derivation. The approximation solution
of the hyper-elasticity problem can be found by finding the
stationary points of the two-field variational formulation of
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Fig. 17 Cook’s membrane
problem. a Geometry and
boundary conditions. b Regular
discretization. c Non-uniform
discretization

(a) (b)

(c)

48 

16 

44 

f=6.25 

Fig. 18 Tip deflection results for Cook’s membrane

Eq. 49 with respect to the variations δuh and δF
h
. Since the

material frame indifference restricts the dependence of strain
energy density function W on smoothed deformation gradi-
ent F, it is advantageous to express the variational equation
in terms of the Total Lagrangian formulation. Variation of
potential energy in Eq. 49 leads to the following variational
equation:

δU h
H W mod

(
uh, F

h
)

=
∫
�

δF
h
i j

∂W
(

F
h
)

∂Fi j
d� − δWext

(
uh
)

=
∫
�

δgh
i jτ i j

(
F

h
)

d� − δWext

(
uh
)

(51)

where gh
i j is defined in Eq. 46.

Now introduce the approximations of displacement in
Eq. 26 and smoothed deformation gradient in Eq. 45 into
linearization of Eq. 51 together with the numerical integra-
tion to yield the following incremental matrix equation for
the nonlinear quasi-static analysis

δ {U}T K
v

n+1 (� {U})v+1
n+1 = −δ {U}T Rv

n+1 (52)

where {U} is the displacement vector. The tangent stiffness
matrix Kv

n+1 (� {U})v+1
n+1 contains the material and geomet-

ric stiffness matrices that evaluated at the vth iteration during
the (n + 1) time incremental step. Rv

n+1 is the residual nodal
force vector. They are given by

K I J =
nl∑

l=1

N P∑
I=1

B
T
I

[
C
(

F
h
)

+ S
(

F
h
)]

BJ Al (53)

−R = f ext − f int (54)

f int
I =

nl∑
l=1

N P∑
I=1

B
T
I τ
(

F
h
)

Al (55)

f ext
I =

∫
�

ΨI b0d� +
∫
�h

ΨI h0d� (56)

where smoothed gradient matrix BI is given in Eq. 27, C and
S are the matrices corresponding to material and geometric
nonlinearities. Because the smoothed gradient matrix BI is
defined in the original configuration, the smoothing proce-
dure described in Sect. 3.2 only needs to be performed at
once. The smoothed first Piola–Kirchhoff stresses τ is given
in Eq. 42 and is expressed in vector form with its components
given by
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τ = {τ 11, τ 22, τ 12, τ 21}T (57)

Note that the proposed two-level mesh re-partitioning
scheme does not involve a new discretization on the bound-
ary, and therefore the boundary, contact and constraint con-
ditions remain the same as in the original setting. To this end,
we have presented the above nonlinear formulation in a way
that it can be integrated in a standard displacement-based
finite element framework.

5 Numerical examples

In this section, we analyze two-dimensional benchmark
examples to study the performance of the two-level repar-
titioning scheme with both Crisscross-refined mesh (CRM)
and Hsieh–Clough–Tocher-refined mesh (HCTRM) for
nearly incompressible material in linear and nonlinear analy-
sis. As comparison, we also provide the results using (1) the
4-noded Q1 bilinear element with the selected reduced inte-
gration (Q1-SR) (2) the standard 3-noded triangular element
with 1-point Gauss integration (T3-GI). Unless otherwise
specified, the following material constants are used for all
linear benchmark examples: Young’s modulus E = 1000,
Poisson ratio v = 0.4999999. The following L2 and energy
error norms are used for the investigation of convergence
rates:

eh
uL2 =

√√√√
∫
�

[(
uh

x − ux
)2 + (

uh
x − ux

)2]
d�

eh
uE =

√√√√
∫
�

[(
ε
(
uh
)− ε (u)

) : C : (ε (uh
)− ε (u)

)]
d�

(58)

5.1 Cantilever beam

Consider a cantilever beam problem, as shown in Fig. 6a,
in near-incompressible cases. Analytical displacement field
is prescribed along x = 0, and parabolic vertical traction P
is applied along x = 10. The analytical displacement and
stress solutions are given as [38]:

ux = − Py

6Ẽ I

[
(6L−3x) x+ (2+ṽ)

(
y2− D2

4

)]

uy = P

6Ẽ I

[
3vy2 (L−x) + (4+5v)

D2x

4
+ (3L−x) x2

]
,

σxx = − P (L−x) y

I
, σyy = 0, σxy = P

2I

(
D2

4
−y2

)

(59)

Fig. 20 Numerical inf-sup test result for the Cook’s membrane prob-
lem

where Ẽ = E/
(
1 − v2

)
, ṽ = v/ (1 − v) under plane strain

assumption and I = D3/12 is the moment of the iner-
tia of the beam. The computational domain is discretized
uniformly with either Crisscross-refined mesh (CRM) or
Hsieh–Clough–Tocher-refined mesh (HCTRM) as shown in
Fig. 6b, c.

Figure 7a, b depict stress component results of integration
points along the cross-section x = 4.875 using CRM and
HCTRM generated from 40 × 8 uniform quadrilateral mesh,
where the numerical results agree with analytical solution
very well.

Superior performance of the proposed two-level mesh
repartition scheme is presented in deformation plot (Fig. 8)
and convergence of the L2-norm and energy-norm errors
(Fig. 9). The L2-norm errors of CRM and HCTRM solu-
tions are close to the theoretical asymptotic rate of O(h2)

as shown in Fig. 9a. Higher rate in the energy error norm
HCTRM as shown in Fig. 9b. On the other hand, the T3-Gi
solution is observed in both CRM and generates a poor rate
of O(h0) in the L2-norm errors that corresponds to its lock-
ing behavior in the near-incompressible analysis. Q1-SR,
CRM and HCTRM all pass the numerical inf-sup test in this
example.

5.2 Punch problem

The model consists of a block of nearly incompressible
material punched by a rigid, frictionless and flat plate with
a prescribed displacement. The model geometry and the dis-
cretization are shown in Fig. 10. For each numerical method,
two uniform meshes are first tested to study the pressure dis-
tribution and possible pressure oscillation due to the mesh
size effect. The resulting pressure distribution is plotted on
the deformed domain and shown in Fig. 11. Although the
Q1-SR does not exhibit volumetric locking behavior, visible
checkerboard patterns are observed in the pressure field. The
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mesh refinement in Q1-SR does not improve the oscillation
in the pressure field. Smooth pressure distribution of both
CRM and HCTRM shown in Fig. 11 clearly demonstrates
their superior performance over Q1-SR. Table 1 summarizes
the convergence behavior of the punch force in three meth-
ods as mesh is refined. Consistent convergence results are
obtained in all three methods.

The numerical inf-sup test is conducted with continuous
mesh refinement for the stability study. CRM and HCTRM
pass the numerical inf-sup test in which the inf-sup value
is independent of the mesh size as shown in Fig. 12. By
way of contrast, the inf-sup value computed in Q1-SR dif-
fers markedly as it varies and approaches to zero when mesh
is continuously refined.

5.3 Driven cavity problem

We consider the problem of a unit square subjected to a
unit horizontal displacement along the upper boundary as
shown in Fig. 13a. This boundary condition results in cor-
ner singularities for the solution for which the exact solution
is not known. The aim here is to demonstrate numerically
the smoothed pressure solution can be achieved by the pro-
posed approach. The discretizations of CRM and HCTRM
are shown in Fig. 13b. Non-uniform discretizations of CRM
and HCTRM are also considered in the analysis and are
shown in Fig. 13c.

Pressure distributions are plotted on the deformed config-
uration and shown in Fig. 14. Spurious pressure modes are

Fig. 19 Pressure distribution of
Cook’s membrane problem.
a 8 × 8 Mesh. b 16 × 16 Mesh.
c Non-uniform mesh

Q1-SR CRM HCTRM 

(a)

(b)

(c)
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Fig. 21 Rubber bushing:
a problem description; b half
model discretized by HCTRM

(a) (b) 

Rubber
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2.5cm

1.0cm
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=
=
=
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1a
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Fig. 22 Load–displacement curves of rubber bushing problem

obtained using Q1-SR as shown in Fig. 14a when uniform
mesh is adopted. The checkerboard patterns are less pro-
nounced but still visible in a non-uniform mesh of Q1-SR
as displayed in Fig. 14b. In comparison with Q1-SR, CRM
and HCTRM are entirely free from spurious checkerboard-
ing. CRM and HCTRM generate similar pressure solution in
both uniform and non-uniform meshes.

In Fig. 15, the pressure distributions at y = 0.5 obtained
by Q1-SR does not even reproduce the sinusoidal-like pres-
sure characteristic of the problem. In contrast, both CRM and
HCTRM generate much better pressure distributions than
Q1-SR, as shown in Fig. 15. Figure 16 shows two-level par-
tition schemes pass the numerical inf-sup test in this problem
whereas Q1-SR fails to satisfy the inf-sup test.

5.4 Cook’s membrane problem

Cook’s membrane model is a classical benchmark problem
used to examine whether the numerical method is likely to
provide a locking-free and non-oscillating solution in nearly
incompressible material under combined shear and bend-
ing deformation. The geometry and boundary condition are
shown in Fig. 17a. The left side boundary is fully constrained,

and the right side boundary is subjected to a uniform distrib-
uted vertical traction. A typical discretization of CRM and
HCTRM is plotted in Fig. 17b. Non-uniform meshes of CRM
and HCTRM are also considered in this example. They are
shown in Fig. 17c.

Figure 18 compares the variation of the vertical displace-
ment of the upper right corner as mesh is refined. Both
HCTRM and Q1-SR converge to the same solution as mesh
is refined. On the other hand, CRM appears to be stiffer than
HCTRM and Q1-SR. Although CRM performs well in the
previous three examples, it does exhibit volumetric locking
in this example.

Figure 19 show the pressure distribution using 8×8,

16×16 semi-uniform meshes, and non-uniform mesh. As
we can see, Q1-SR and CRM results exhibit severe pressure
oscillation. Among the three, HCTRM obtains the most desir-
able pressure field. Numerical inf-sup test, shown in Fig. 20,
indicates that HCTRM is stable as mesh is refined. Although
Q1-SR is free of locking, it does suffer from pressure oscilla-
tion as it fails to meet the inf-sup stability condition. On the
other hand, the failure to pass inf-sup test in CRM reflects its
inability to produce locking and oscillation-free solution in
this example.

5.5 Radial bushing of rubber cylinder

In this example, the nonlinear performance of the proposed
two-level partition schemes is evaluated. The hyper-elastic
characteristic of rubber material is described by the Mooney–
Rivlin strain energy density function with material constants
[12] given by

A10 = 0.2599 MPa

A01 = 0.1608 MPa (60)

The bulk modulus is taken to be 1.0×105 MPa which is cor-
responding to the Poisson ratio υ = 0.4999958 in the linear
elasticity problem.
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Fig. 23 Deformation of rubber
insertion. a CRM. b HCTRM

0.30cmd = 0.45cmd = 0.60cmd =
(a)

0.30cmd = 0.45cmd = 0.60cmd =

(b)

The radial bushing problem, as shown in Fig. 21a, is ana-
lyzed, where the outer surface is fixed, and the inner surface
of rubber cylinder sticks with an un-deformed core moving
along vertical direction. Under the plane strain assumption,
the linear relationship between radial force F and displace-
ment d has been studied by Stevenson [37] as follows

F = 8π (A10 + A01)
(
β2 + 1

)
Ld(

β2 + 1
)

ln β − (
β2 − 1

) (61)

where β = a1/a2, a1 = 2.5 cm and a2 = 1.0 cm are the

outer and inner radius of the un-deformed cylinder, and L
is the shape factor, as shown in Fig. 21a. Considering the

symmetry of the problem, we model half of the 2D cross-
section. The discretization of HCTRM is plotted in Fig. 21b.

The load–displacement curves generated by two partition
schemes are shown in Fig. 22. HCTRM result shows a lin-
ear load–displacement growth within the bushing operating
range, which agrees well with analytical solution. Compared
to HCTRM, CRM obtains slightly stiffer response in the
nonlinear range. Nonlinear response in both results occurs
as the top inner surface is pushed very close to the outer
surface.

Figure 23 provides the deformation history of CRM and
HCTRM. It is observed that both methods obtain smooth
displacement field. The hydrostatic pressure contour plots
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Fig. 24 Hydrostatic pressure
contour for rubber bushing
problem. a CRM. b HCTRM

(a) (b)

shown in Fig. 24 confirm that CRM and HCTRM are simulta-
neously free of locking and checkerboarding in this nonlinear
problem.

6 Conclusion

A novel approach for repartitioning existing lower-order
finite element mesh for the linear and nonlinear volumetric
locking-free analysis has been presented. Two types of finite
element mesh originally discretized by quadrilateral and tri-
angular elements are investigated in this study. The reparti-
tioned mesh is composed of linear sub-triangular elements
with non-overlapping strain/gradient smoothing performed
on the pairs of adjacent elements. Several numerical exam-
ples have been studied to evaluate their applicability to the
volumetric locking-free analysis. The stability of the result-
ing mixed finite element scheme has been examined through
the numerical inf-sup test.

Our numerical results have shown that the repartitioned
mesh based on triangular elements has successfully deliv-
ered volumetric locking-free solution and passed the numer-
ical inf-sup test in all four linear benchmarks. The approach
also appears to be quite robust in dealing with large defor-
mation in the nonlinear analysis. In contrast, although the
repartitioned mesh based on quadrilateral elements achieves
comparable accuracy in most cases, it does exhibit volumetric
locking and pressure oscillation in Cook’s membrane prob-
lem. The volumetric locking and pressure oscillation solu-
tion of repartitioned mesh based on quadrilateral elements
is consistent with its failure to pass the numerical inf-sup
test in same example. This result suggests that the reparti-
tioned mesh based on quadrilateral elements does not yield a

uniform inf-sup condition and therefore the optimal perfor-
mance is not guaranteed.

The main advantage of the proposed approach lies in its
simplicity to be fitted into the conventional displacement-
based finite element code and solved by the standard direct
solver. Additionally, since the mesh repartitioning scheme
does not involve a new discretization on the boundary, the
boundary, contact and constraint conditions remain the same
as in the original setting. Those unique features make the
proposed approach as an attractive alternative to the finite
element analysis of near-incompressible problems in the
industrial applications. The mesh repartitioning scheme in
three-dimensional case and its application to the nonlinear
analysis of rubber compounds will be the subject of a forth-
coming paper. The approach could also be a promising alter-
native for use in adaptive finite element method involving
near-incompressible path-dependent materials. Application
such as the r-adaptive finite element method using tetrahe-
dral elements in the metal forging and extrusion simulations
will be studied in the near future. The improvements of rep-
artitioning scheme based on quadrilateral elements will also
be considered in the future.
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