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Abstract Novel numerical methods, known as Meshless
Methods or Meshfree Methods and, in a wider perspective,
Partition of Unity Methods, promise to overcome most of
disadvantages of the traditional finite element techniques.
The absence of a mesh makes meshfree methods very attrac-
tive for those problems involving large deformations, mov-
ing boundaries and crack propagation. However, meshfree
methods still have significant limitations that prevent their
acceptance among researchers and engineers, namely the
computational costs. This paper presents an in-depth analy-
sis of computational techniques to speed-up the computation
of the shape functions in the Reproducing Kernel Particle
Method and Moving Least Squares, with particular focus
on their bottlenecks, like the neighbour search, the inver-
sion of the moment matrix and the assembly of the stiffness
matrix. The paper presents numerous computational solu-
tions aimed at a considerable reduction of the computational
times: the use of kd-trees for the neighbour search, sparse
indexing of the nodes-points connectivity and, most impor-
tantly, the explicit and vectorized inversion of the moment
matrix without using loops and numerical routines.
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1 Introduction

Numerical methods are crucial for an accurate simulation
of physical problems, as the partial differential equations
describing them usually require approximation schemes for
their solution. Approximation is necessary either for the com-
plexity of the equations and/or for the complexity of the
geometry of definition of these equations.

Among all the available numerical schemes, mesh-based
methods have become the most popular tools for engineer-
ing analysis over the last decades in academic and industrial
applications. The most conventional mesh-based numerical
method is the Finite Element Method (FEM) well-known as
the most thoroughly developed method in engineering. FEM
is nowadays widely used by engineers in all fields and several
well-assessed commercial codes are available.

However, in FEM it is very complicated to model the
breakage into a large number of fragments as FEM is intrinsi-
cally based on continuum mechanics, where elements cannot
be broken. The elements thus have to be either totally eroded
or stay as a whole piece, but this leads to a misrepresentation
of the fracture path; serious errors can also occur because the
nature of the problem is non-linear.

To overcome these problems related with the existence
of a mesh, a numerical scheme that relies only on nodes
would be highly beneficial. These methods are called mesh-
free or meshless, since they do not need a mesh to con-
struct the approximation of the solution of a given differential
equation.

The very first meshless method was the Smoothed Par-
ticle Hydrodynamics (SPH), introduced for the study of
unbounded astrophysical phenomena such as exploding stars
and dust clouds [36]. Later Monaghan in [38–40] provided
a more mathematical basis through the means of kernel esti-
mates. Even though SPH was initially conceived for solving
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astrophysics problem, in [28] SPH is applied for the first time
in solid mechanics and to study dynamic material response
under impact [29]. While SPH and their corrected versions
are based on a strong form of the governing equations,
other methods, developed in the 1990s, are based on a weak
form.

One of the first methods based on a (global) weak form
and was invented by Belytschko and his co-workers [5], who
exploited the Moving Least Squares (MLS) approximation
[25]. The MLS has its origins in the computer graphics to
smooth and interpolate scattered data, thus it seems reason-
able to apply this method when only scattered nodes are avail-
able because of a discretization. Belytschko et al. [5] refined
and modified the work of Nayroles and called their method
Element Free Galerkin (EFG), which is currently one of the
most used meshless methods. This class of methods is con-
sistent, up to nth degree depending on the polynomials used
in the basis function, and quite stable although substantially
more expensive than SPH.

In parallel, Liu et al. [32] developed the Reproducing Ker-
nel Particle Method (RKPM), which, contrarily to MLS, uses
wavelets theory. Surprisingly, the imposition of the reproduc-
ibility conditions led to shape functions almost identical to
MLS. RKPM is the discrete counterpart of the Reproduc-
ing Kernel Method (RKM) [33]. In RKM, the key point is
to restore the consistency condition for the kernel. It can be
demonstrated that using a modified kernel [33] by the means
of a moment matrix, the reproducibility condition up to order
n is restored. This moment matrix has entries that are the
kernel estimates of polynomial functions up to degree 2n.
These kernel estimates are convolution integrals; their dis-
cretization, where integrals are replaced with summations, is
based on particles. However, an explicit computation of the
integrals involved in RKM without discrete summations has
been proposed in [1], though only for tensor-product kernels.

In [33,34] the wavelets character of RKPM allowed the
extension of the method to multiple length scales. In [33] is
proposed an approach to unify all the RKM under one large
family and an extension to include time and spatial shifting.
In the latter [34] the approach is particularized for its particle
version RKPM. The Fourier analysis is used to address error
estimation and convergence properties.

The similarities between the two methods became more
evident in the Moving Least-Square Reproducing Kernel
Methods (MLSRKM), where a general framework is intro-
duced [26,35]. From the MLSRKM, both RKPM and MLS
are derived, where the sum of the square errors can be inter-
preted in a continuous way if an inner product based on inte-
grals is considered. These integrals are the same convolution
integrals introduced in the moment matrix.

Applications of both RKPM and EFG have been quite suc-
cessful in the recent years, especially in problems with dis-
continuities and singularities and a large number of papers

can be found which dealt with these questions [2–4,9,5–
7,12,13].

A good number of review papers and books on meshfree
methods have been published in the recent years. The first
review appeared in [17] almost at the beginning of the mesh-
free era, shortly followed by the more general overview [9].
While [17] is more focused on the mathematical properties of
these methods, [9] is more suitable for an engineering audi-
ence, since it contains many details on the implementation
of EFG, especially for crack problems.

The review [44] instead emphasizes the applications for
large deformation problems and reviews with particular
attention multiscale and particle methods. A subclass of par-
ticle methods is the molecular dynamics, widely employed
in computational chemistry. This paper is the background of
the book [27]. Updated reviews on meshfree methods can be
found in [20,42].

Even though meshfree methods have attractive features,
they possess a number of drawbacks, which still prevents
as large acceptance by the community of engineers and
researchers as FEM.

This paper discusses these challenges and provides numer-
ous expedients for an efficient programming of RKPM, with
the aim of improving the computational time of meshfree
methods. Often the researcher willing to enter this field must
spend precious time in understanding the method and devel-
oping its own meshfree software. Despite the wide literature
on meshfree methods, little literature [16,24,42] is available
on practical implementation of these methods. This paper
therefore attempts to fill this gap. The object-oriented envi-
ronment within Matlab provides ease of implementation and
allows to focus on the challenging aspects; indeed the code
described in this paper could be the basis of further devel-
opment in compiled object-oriented programming languages
such as C++.

The paper is structured as follows: Sect. 2 provides a
detailed description of the RKPM, 3 shows the major chal-
lenges in RKPM/MLS and proposed practical programming
solutions, while Sect. 4 compares the computational times
of such solutions for a three-dimensional test case. Conclu-
sions and proposals for future improvements are discussed
in Sect. 5.

2 Description of the RKPM

The RKPM is the discrete counterpart of the RKM, which has
its origins in the wavelets theory. In the RKM, the approx-
imation uh(x) of a generic field variable u(x) defined on a
domain � ⊂ R

3 is given by

uh(x) =
∫

�

C(x, x − x′)w(x − x′)u(x′)d�′ (1)
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where C(x) is a correction to the kernel w(x) that restores
the reproducibility conditions. By reproducibility is intended
the ability of uh(x) to reproduce a set of basis functions, once
introduced in u(x) in Eq. 1. For instance, for a polynomial
basis of degree n and d = dim(�)

p(x) =
{

xα :
d∑

i=1

αi ≤ n

}
(2)

the reproducibility conditions are, substituting p(x) in u(x)

in Eq. 1
∫

�

C(x, x − x′)w(x − x′)p(x′)d�′ = p(x) (3)

It can be shown that, for polynomial basis (2) Eq. 1 is

uh(x) = pT (x)M(x)−1
∫

�

p(x)w(x − x′)u(x′)d�′ (4)

where

M(x) =
∫

�

p(x)pT (x)w(x − x′)d�′ (5)

is called the moments matrix.
Immediate proof follows by substituting pT (x) in u(x)

in Eq. 4, obtaining uh(x) = pT (x), which means that the
approximation can reproduce exactly all the polynomials in
the basis function.

Sometimes it is preferred a scaled and translated version of
Eq. 4, to alleviate the ill-conditioning of the moment matrix.

uh(x)=pT (0)M(x)−1
∫

�

p
(

x′−x
ρ

)
w

(
x′−x

ρ

)
u(x′)d�′

(6)

where ρ is the size of the support of the kernel and

M(x) =
∫

�

p
(

x′ − x
ρ

)
pT
(

x′ − x
ρ

)
w

(
x′ − x

ρ

)
d�′. (7)

In [1], integrals in RKM have been resolved for a general
domain of a complex shape. RKPM is the discretized version
of RKM, in fact considering Eqs. 6 and 7 and substituting
integrals with summation

uh(x)=pT (0)M(x)−1
N∑

I=1

p
(

xI−x
ρ

)
w

(
xI−x

ρ

)
�VI UI ,

(8)

�VI is a measure (length, area or volume) of the discretized
subdomain associated with particle I and UI is the I th nodal
field variable (not to be confused with the actual value of the
field variable at node I )

M(x)=
N∑

I=1

p
(

xI − x
ρ

)
pT
(

xI−x
ρ

)
w

(
xI − x

ρ

)
�VI .

(9)

Therefore the shape function for node I for RKPM is given
by

φI (x) = CI (x)w

(
xI − x

ρ

)
�VI , (10)

CI (x)︸ ︷︷ ︸
1x1

= pT (0)︸ ︷︷ ︸
1xk

M(x)−1︸ ︷︷ ︸
kxk

p
(

xI − x
ρ

)
︸ ︷︷ ︸

kx1

, (11)

where k is the number of functions in the basis.
Derivatives for the shape functions (10) are given by

∂φI

∂x
= ∂CI (x)

∂x
w(x)+ CI (x)

∂w(x)

∂x
, (12)

where

∂CI

∂x
= pT (0)

[
∂M(x)−1

∂x
p+M(x)−1 ∂p

∂x

]
(13)

and

∂M(x)−1

∂x
= −M−1 ∂M

∂x
M−1. (14)

The calculation of the derivatives of the inverse of the
moment matrix can be accelerated with the means of LU
factorization [8].

The computational burden of MLS/RKPM shape func-
tions is showed in Eq. 8: neighbour search, computation of
the moment matrix and its inversion. In the next sections, a
solution to these and other issues is proposed. In fact, it is pos-
sible to accelerate remarkably the inversion of the moment
matrix and its derivatives without using any numerical rou-
tines (such as Gauss elimination, LU factorization, etc…)
and, most importantly, it is possible to avoid such routines at
each point of evaluation.

2.1 The kernel function

The Eq. 10 states that CI (x) is a corrective term for the single
weight (or kernel ) function centered in xI .

The radius of this support is given by a parameter called
dilatation parameter or smoothing length which can be indi-
cated as ρI or dI or aI to avoid confusion with the mass
density. According to the norm considered, the shape of the
support may vary, for example it could be a circle but also a
rectangle (Fig. 1b).

The dilatation parameter is crucial for the accuracy, the
stability of the algorithm and plays the role of the element
size in the FE, although its effects on all these aspects have
not been rigorously demonstrated yet. Moreover, when var-
iable dilatation parameters are used, particular care must be
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(a) (b)

Fig. 1 Examples of compact support. a Circular support. b Rectangu-
lar support

taken in the choice of these quantities. As a rule of thumb,
with a background element mesh, it is practical to choose

ρI = α max
e

leI (15)

where α1 is a scaling factor depending on the degree of the
polynomial basis and leI is the length of the eth edge of the
all the elements having xI as a node.

For a non-uniform nodal discretization, (15) assigns dif-
ferent dilatation parameters to each particle. This is the case
of discretization with significant change in node density (e.g.
to capture stress concentration, or in adaptivity). As a draw-
back, the resulting approximation (regardless the differential
equation) is poor, since MLS approximants [43] degrade in
the presence of sudden change in the support size. A rem-
edy is presented in [43]: for example, smoothing lengths can
be averaged over the domain. Nonetheless, the role of the
dilatation parameters is still not well understood and it rep-
resents an obscure area in MLS and RKPM, which requires
further mathematical work. A deeper look in the field of the
approximation theory will hopefully clarify the role of the
smoothing lengths and provide a more rigorous rule for their
choice.

The compactness of the kernel guarantees the sparsity and
the bandedness of the stiffness matrix in a Galerkin formula-
tion, which is particularly useful for the computer algorithms
of matrix inversion. The final characteristic of weight func-
tions is its functional form [20].

Assuming

s = ‖x − xI ‖
a

(16)

the properties of kernel functions are

w(s) ≥ 0 s ∈ [0, 1], (17a)

w(1) = 0, (17b)

1 To avoid singularity of the moment matrix, α should be at least 2−2.2
for quadratic basis in two dimensions, at least 2.4 for cubic polynomials
and so on.

Fig. 2 Window function (19) for different values of k

1∫

0

w(s)ds = 1

2
, (17c)

lim
a→0

w(s) = δ(s), (17d)

w(s) is monotonically decreasing with s. (17e)

Properties (17a) and (17b) guarantee that the kernel has com-
pact support, while (17c) is a normalization property. Prop-
erty (17d) assures that at the limit the kernel becomes a Dirac
function. Some functional expressions of the kernel could be
for example the 3rd order spline

w(s) =

⎧⎪⎨
⎪⎩

2
3 − 4s2 + 4s3 0 ≤ s ≤ 1

2
4
3 − 4s + 4s2 − 4

3 s3 1
2 < s ≤ 1

0 s > 1

(18)

which is C2(�)2 or more generally the 2kth order spline
(Fig. 2)

w(s) =
{

(1− s2)k 0 ≤ s ≤ 1

0 s > 1
(19)

which is Ck−1(�) with k > 1.
The order of continuity of a kernel function is important

because it influences the order of continuity of the shape
functions. First partial derivatives of the kernel with respect
to the variable xk can be evaluated using chain rule

∂w

∂xk
= ∂w

∂s

∂s

∂xk
. (20)

3 Issues and practical programming solutions

The major factors hindering the spreading of the meshfree
methods are of practical nature. Indeed, for Eq. 8, it is nec-
essary to invert a matrix M, called the moment matrix, for
each point of interest. If the number of these points is large,

2 The notation Ck(�) indicates a function which is continuous on the
domain � along with its derivatives up to order k.
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Fig. 3 Flowchart of the classic algorithm in meshfree methods

then this operation must be repeated several times, raising
the computational cost.

Another issue regards the search for points located within
the support radius. In fact, for Eq. 16, meshfree shape func-
tions are compact support functions, which means that shape
functions are zero outside a ball of radius ρI centered in the
I th node. Therefore, in Eq. 8, the summation can be limited to
the nodes that have x in their support. Hence, to evaluate the
shape functions, the following operations must be performed
at every point x (Fig. 3) [20,24]:

– search for neighbors within the set of nodes
– calculate the moment matrix

M(x)=
N∑

I=1

p
(

xI−x
ρ

)
pT
(

xI−x
ρ

)
w

(
xI−x

ρ

)
�VI . (21)

– invert the moment matrix
– apply the corrective term to the weight function

φI (x) = CI (x)w

(
xI − x

ρ

)
�VI , (22)

CI (x) = pT (0)M(x)−1p
(

xI − x
ρ

)
. (23)

Also, derivatives are usually of interest in Galerkin formu-
lations, since it is necessary to calculate the strain-displace-
ment linear operator as in Eq. 123.

Fig. 4 Sparsity pattern for
meshfree shape functions on a
segment

These operations are carried out within a loop over the
Gaussian points and therefore the overall code is consider-
ably slowed down.

In this section some remedies to these implementation
issues in RKPM/MLS will be presented.

As a general guideline, the double-looping over the nodes
and the Gaussian points should be avoided as much as pos-
sible. This is true for every programming language but it is
more evident for Matlab, where significant speeds-up can
be achieved with loop vectorization. Moreover, the Gaussian
points are usually more numerous than the nodes, therefore
instead of looping over the Gaussian points and looking for
the nodes, it is more convenient to focus on nodes and search
for the Gaussian points included in the support.

In the following sections the typewriter character Awill be
used to indicate the computer variable, while A will indicate
the mathematical entity (vector, matrix, etc…).

3.1 The neighbour search: kd-trees

Meshfree shape functions are compact support functions, as
stated in Eq. 16 and properties (17a) and (17b).

The purpose of the compactness is to discretize the
domain, as in FE, i.e. to give a local character to the approx-
imation. As a result, stiffness matrix is sparse, i.e. with most
entries equal to zero. The compactness of the shape func-
tions can be exploited to better store the matrix entries and to
efficiently evaluate the integrals in Galerkin formulations. In
fact, Fig. 4 shows the sparsity pattern arising from a typical
meshfree discretization over a line segment. If ng is the num-
ber of evaluation points (rows) and ns the number of nodes,

123



586 Comput Mech (2012) 49:581–602

the meshfree shape functions resulting from a discretization
can be stored in a ng × ns matrix PHI.

For example, for a fixed column3 PHI contains the values
of the j th shape function on all the points that belong to the
support of the j th node.

PHI(:,j) j = 1, . . . , ns . (24)

Since on the same evaluation point there should be enough
nodes for the meshfree approximation,4 analogously, for a
fixed row PHI contains the values of the shape functions
of the nodes that have the i th evaluation point within their
support.

PHI(i, :) i = 1, . . . , ng. (25)

The sparsity diagram showed in Fig. 4 is a representation
of the non-zero values of PHI, where a blue dot corresponds
to a non-null entry. Firstly, it can be noted that the number of
evaluation points is usually much larger than the number of
nodes. These evaluation points are usually Gaussian points,
if a variational weak form is used.

Secondly, it can be clearly seen that the vast majority of
entries is zero, because for each node, only the nearest Gauss-
ian points are considered. Thus, it seems reasonable to store
the shape functions matrix as a sparse matrix rather than as
a full matrix. The only values stored are then the row-index,
the column-index and the non-zero entry. A full matrix would
have had all the values, even the zero ones, arranged in a
table-like manner.

As an example of the amount of memory saved, a factor
called density d is normally calculated for sparse matrices.
It is the ratio of the number of non-zero values nnz and the
total number of elements of the matrix, i.e. the product of the
total number of rows r for the total number of columns c. For
meshfree shape functions, this factor could be a few percent-
ages or even less, depending on the dilatation parameter.

d = nnz

rc
. (26)

In order to obtain this sparse matrix, it is crucial to use an
algorithm capable of searching the evaluation points within
a certain radius (Fig. 5).

Given a set of ns approximation nodes (variable
GRIDSET)

S1 = {xJ : J = 1, . . . , ns} ⊂ R
k k = 1, 2, 3 (27)

and a second set of ng evaluation points (variable GGRID5)

S2 = {xI : I = 1, . . . , ng} ⊂ R
k k = 1, 2, 3 (28)

3 It is used the Matlab notation where the colon : in a matrix means
variation over that dimension.
4 To avoid ill-conditioning of the moment matrix [20,42].
5 In principle different from GRIDSET, but not necessarily.

Fig. 5 Neighbour search: red crosses evaluation points inside the sup-
port; blue crosses evaluation points outside the support. (Color figure
online)

Fig. 6 Neighbour search: example of the mapping in Eq. 31

the complete distance matrix S would be a matrix ng × ns

where

SI J = |xI − xJ |
ρJ

, (29)

where ρJ is the dilatation parameter for the Jth node.
After S matrix is constructed, for Eq. 16 only the values

less than or equal to one must be considered. Let us call nnz

the number of elements in S satisfying

s = {I ∈ 1, . . . ng, J ∈ 1, . . . ns : SI J ≤ 1} (30)

then, the output of such procedure would eventually be 3
vectors of length nnz , ig, js and s such that (Fig. 6)

Sig i ,jsi
= si i = 1, . . . , nnz . (31)

This is a well-known problem in the field of computational
geometry, called neighbour search or range query.

A naive implementation would loop over the Gaussian
points S2, loop again over the nodes S1, compare the distance
with the dilatation parameter and then decide if that Gaussian
point belongs to the nodal support. Because of this double
loop, this brute force algorithm (also known as exhaustive
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search or sequential search) has a computational cost O(N 2),
with N the number of search points. If N is a large number,
then the computational cost becomes prohibitive. Yet, this
algorithm for its simplicity is widely used in the meshfree
community as affirmed in [22] and reported in several papers
[9,16,24,42].

The brute force algorithm is nonetheless inefficient when
the number of nodes grows considerably. It is then not
recommended especially for large scale simulations. The
neighbour search is indeed recognized as one of the major
bottlenecks for the meshfree technology. For a more efficient
code, improvements should be directed also in this sense.

An attempt towards this scope is reported in [30] where a
bucket algorithm is used to reduce the range of search. The
algorithm allows a maximum number of nodes to fall within
each bucket. If the number of nodes in the bucket exceeds a
certain pre-fixed value, then the bucket is split in two parts.
The subdivision is iterated until every bucket has a number
of nodes inferior to a defined one. This is roughly the concept
behind a more powerful tool, i.e. kd-tree.

A kd-tree is a generalization of binary trees to k-dimen-
sional data. Binary trees are studied in computer science as
data structures that emulate a hierarchical tree with a set of
linked nodes. Every node is connected to at most 2 other
nodes, called children. If each node is connected to 4 chil-
dren, then the tree is called a quadtree, if connected to 8
children the tree is a octree. The quadtree idea is identical to
the bucket idea: it is normally used to partition a two-dimen-
sional space by recursively subdividing it into four quadrants
or regions [19]. The three-dimensional analogue is called
octree. Quadtrees have been used in meshfree methods as
background mesh generators [11,21,23,37] and also for
adaptivity [45]. The use of binary trees is different in this
context. In this paper binary trees are used not to generate a
hierarchical mesh but rather as a tool for building a connec-
tivity map between nodes and Gaussian points.

In a recent work [18] binary tree methods have been
applied in meshfree methods, although for a different mesh-
less method (Radial Basis Function).

A kd-tree (where k stays for k-dimensional tree) is a
space-partitioning data structure for organizing N points in
a k-dimensional space. A complete exposition of kd-trees
is beyond the aims of this paper, but main concepts will be
briefly recalled. The interested reader can refer to specialized
textbooks as [15] or [41] for more formal definitions and
details. The space-partitioning achieved by hierarchically
decomposing a set of points into smaller sets of data, until
each subset has the same number of points. Figure 7a shows
the final space partition obtained with the kd-tree, whilst
Fig. 7b shows the correspondent hierarchical data structure.

The first step consists in picking a point (the root) and
considering a plane perpendicular to one of the axis and
passing through the root. The whole domain is then split

(a) (b)

Fig. 7 Example of kd-tree. a The space-partitioning. b The final
kd-tree

in two halves, each one containing roughly the same number
of nodes. For each of the two sub-partitions, a node is chosen
again, but this time the splitting plane will be on a differ-
ent dimension of the previous one. The two nodes are called
children. The procedure is then repeated for the children,
generating other children, until the final sub-partitions will
not contain any node. These final children are called leaves.
From the root to the leaves, every node of the tree represents a
point. In meshfree methods, two steps are necessary to build
the final connectivity matrix: the construction of the tree and
the range query. The computational cost for building the tree
is O(k N log N ) for points in R

k and the range query takes
only O(log N ), while for the brute force algorithm the cost
for range query is O(N ). In [24] it is recommended to use
O(log N ) algorithm for the neighbour search.

3.2 Speed-up using a background mesh: a mixed
kd-tree-elements approach

A further speed-up in neighbour search can be achieved
whenever a background element mesh is available for inte-
gration purposes and when the discretization nodes coincide
with the nodes of the integration mesh. In fact, each quad-
rature element, by construction, has Gaussian points inside
the element. Therefore, if the vertices of such quadrature ele-
ment are inside the support of a generic node xI , then also the
correspondent Gaussian points will be inside the support of
xI (Fig. 8a). However, it may happen that the element is par-
tially contained in the support, i.e. some vertices are inside
the support, and others are outside (Fig. 8b). This means
that some Gaussian points, very few, will be actually outside
the support but still be considered inside the support. Never-
theless, since the value of the kernel in such points is zero,
these Gaussian points will be automatically excluded from
the computation of the shape functions when constructing
the sparse indexing. Alternatively, by exploiting the fast log-
ical indexing, a double check of the distance vs. the support
radii could be performed to exclude those Gaussian points,
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Fig. 8 Neighbour search with a
background mesh. a Element
completely inside the support.
b Element cut by the support

(a) (b)

Table 1 Computational times
(expressed in seconds) for range
query using different algorithms

Bold values indicate the lowest
value
ES Exhaustive search

Nodes Gaussian points Vectorized ES Unvectorized ES kd-tree kd-tree with mesh

1000 95,526 2.9297 92.2132 18.0684 11.7255

1680 167,670 9.066 227.5757 50.4801 18.9538

2800 307,152 27.1781 708.9204 162.5948 37.9888

3150 346,032 65.6346 987.3208 209.0918 50.8274

3782 432,540 5940.9861 1588.1562 310.9347 60.6987

4320 504,630 20133.9203 1881.3168 415.4892 68.1305

belonging to elements cut by the support, but outside the
support (blue crosses in Fig. 8b).

Knowing the inverse mapping between elements and
nodes (i.e. which elements belong to each node), the search
can then be performed only inside the set of vertices of the
elements, when this set coincides with S1 (27). Since the
number of nodes it is usually less than the number of Gauss-
ian points, this approach notably reduces the computational
time. However, it can only be used in combination with ele-
ments. When a different type of integration is implemented,
for example regular background grid or the discretization
nodes do not coincide with the vertices of the mesh, it is nec-
essary to perform the full kd-tree neighbour search, which has
nevertheless an advantageous O(log N ) cost for range query.
It must be remarked, however, that this approach assumes a
certain regularity of the mesh (i.e. the mesh must be quasi-
uniform). In fact, the approach fails if the mesh is not covered
[14], meaning that for each element of the mesh, there exist a
certain number of nodes whose support overlap with the ele-
ment. To be more rigorous, the algorithm in [14] should be
used to check the mesh coverage. For triangular and tetrahe-
dral mesh and circular supports, this algorithm becomes par-
ticularly simple, leading to (little) extra computational costs.
However, current FEM mesh generators have advanced accu-
racy checks features for meshes, therefore can provide high
quality elements, ensuring safe applicability of the proposed

algorithm, particularly if the support size is chosen according
to Eq. 15.

3.3 Results

Numerical tests for a three-dimensional model of a bar have
been performed to assess the performances of three range
searching algorithms: brute-force (or exhaustive search), the
kd-tree and the kd-tree with a background mesh. Both num-
ber of nodes of set S1 (27) and number of Gaussian points
(set S2) (28) were varied. The test involved the computation
of the three indices ig, js and s as showed in Fig. 6, over a
tetrahedral background mesh.

For the brute force (or exhaustive search ES) algorithm,
two different versions have been used, one vectorized and
the other unvectorized. The vectorized version relies on the
highly optimized Matlab built-in function bsxfun but cre-
ates the full size ng × ns distance matrix S (Eq. 29). The
unvectorized version instead, explicitly loops over the nodes,
computes the squared distance between the I th node and
the Gaussian points (the second inner loop), compares the
squared distances with the square of the support size (instead
of their square roots, for efficiency) and extracts the three
indices. The unvectorized version, therefore, does not create
the full distance matrix. For efficiency, the square roots are
calculated only at the end of the loops.
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Fig. 9 Computational times for range query using different algorithms.
ES Exhaustive search. Axis are in log-scale

Table 1 shows a comparison between the four approaches.
It can be seen that vectorized brute force can be faster than
the other methods for relatively small data-sets. For large
data-sets, however, since it computes the full distance matrix,
ES demands much more memory (sometimes causing out-
of-memory errors) and, subsequently, larger computational
times (the jump in Fig. 9). The non-vectorized approach is
always slower than the other methods, except when the vec-
torized brute force fails. Therefore, for small data sets, the
vectorized brute force algorithm must be preferred over the
kd-tree: this is the case, for example, of the Gaussian points
at the boundaries used to impose the natural or the essential
boundary conditions, or for the bulk points of small numer-
ical models. However, with the increase of the number of
nodes (and Gaussian points), the brute force becomes pro-
hibitive. For relatively large data-sets, for example for the
points inside the domain, it is much more convenient to use
one of the kd-tree algorithms, preferably the one using the
background mesh. A robust code should be able to switch
between the two methods, for example, when the size of the
distance matrix exceeds a predefined number.

3.4 The moment matrix

The key of the reproducing properties of RKPM is the
moment matrix M(x) (Eq. 9, here recalled):

M(x) =
ns∑

I=1

p
(

x−xI

ρ

)
pT
(

x−xI

ρ

)
w

(
x−xI

ρI

)
, (32)

where ρ is the mean of all the dilatation parameters and p
is the polynomial basis. For linear reproducing properties in
2D is, for example,

pT
(

x − xI

ρ

)
=
[
1 x−xI

ρ
y−yI

ρ

]
. (33)

Once the connectivity vectors are obtained (31), the val-
ues s (16) can be used to calculate the weight function and
its derivatives. Indeed, the connectivity vectors ig, js and

s allow the evaluation of the window functions directly on
the non-zero values of the compact support functions. With
the opportune correction (10), these values will become the
shape functions. The role of the connectivity vectors is cru-
cial for the code, since they are computed only once (with an
efficient algorithm O(log N )) and all the subsequent oper-
ations can then be carried out vector-wise on these indices.
This operation is called loop vectorization. Moreover, the
computations are executed only on non-zero values of the
weight functions, avoiding any unnecessary computation.

3.4.1 The window function handle

In Matlab it is possible to define an object called function
handle, which allows a quick evaluation of a function. The
function handle is defined using the following command:

Kernel = @(s) 1− 6s2 + 8s3 − 3s4. (34)

where, for example, the 4th order spline is used as kernel;
however, different kernels can be used by changing this com-
mand line and, of course, the corresponding derivative in
Eq. 62. In this case @(s) indicate an anonymous variable.
Such mute variable can be replaced with the actual variable
s (30) and calculate the expression contained in the object
Kernel over all the values contained in s simply by execut-
ing the command

PSI = Kernel(s), (35)

where the vector PSI6 contains the non-zero values of the
weight functions for all the nodes and for all the Gaussian
points.

Once obtained the values PSI, the following operations
are necessary to calculate the entries of the moment matrix:

– the computation of the scaled coordinates ξI = x−xI
ρ

and

ηI
y−yI

ρ
,

– the computation of the polynomial basis (33),
– the computation of the sum of the polynomial basis (32).

3.5 Computation of scaled coordinates

Supposing GRIDSET is the coordinate list of the set S1 and
GGRID the coordinate list of the set S2 and CSI is the com-
puter implementation of ξI ∀I = 1, . . . , ns and ETA the
computer variable for ηI ∀I = 1, . . . , ns , then the compu-
tation of ξI and ηI is done in the following way:

CSI = (GGRID(ig, 1)− GRIDSET(js, 1))./mrho (36)

ETA = (GGRID(ig, 2)− GRIDSET(js, 2))./mrho (37)

where mrho is ρ the average of the dilatation parameters.

6 PSI is used instead ofW to avoid confusion with the Gaussian weights.
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3.5.1 Computation of the polynomial basis

Similarly to the command (34), it is possible to define the
polynomial basis as function handle. For a more neat pro-
gramming style, it is opportune to group these functions in
an array, or cell array.

A cell array is similar to a multidimensional array, but
with the interesting feature that data are allowed to be not
necessarily of the same type.

PolyBasis.p{1} = @(x,y) 1 (38)

PolyBasis.p{2} = @(x,y) x (39)

PolyBasis.p{3} = @(x,y) y (40)

PolyBasis.dpdx{1} = @(x,y) 0 (41)

PolyBasis.dpdx{2} = @(x,y) 1 (42)

PolyBasis.dpdx{3} = @(x,y) 0 (43)

PolyBasis.dpdy{1} = @(x,y) 0 (44)

PolyBasis.dpdy{2} = @(x,y) 0 (45)

PolyBasis.dpdy{3} = @(x,y) 1 (46)

Let us define a function handle of the type

P_handle = @(P) {P(CSI,ETA)} (47)

where CSI is (36) and ETA is (37). In this way, by simply
calling

P = cellfun(P_handle,PolyBasis.p(1:3)).’

(48)

the values of the polynomial basis are readily calculated.
Moreover, with the call

DPDX=cellfun(P_handle,PolyBasis.dpdx(1:3)).’
(49)

DPDY=cellfun(P_handle,PolyBasis.dpdy(1:3)).’
(50)

the derivatives of the polynomial basis can also be automati-
cally calculated, without the need of defining dedicated func-
tion handles for the derivatives.

3.5.2 Computation of the sum of the polynomials

According to Eq. 32, in order to obtain the entries of the
moment matrix, the sum of the polynomials (48) must be
performed over the nodes. After (48), P is a 3× 1 cell array.
Every element of the cell contains nnz values, the same num-
ber as the variables ig, js and s.

The sum is carried out in three steps:

1. the product

pi

(
x − xI

ρI

)
p j

(
x − xI

ρI

)
w

(
x − xI

ρI

)

i, j = 1, . . . , n p, (51)

where n p is the number of the polynomials included in
the basis;

2. reshape of the matrix product (51);
3. sum over the columns (the second dimension) of the

reshaped matrix.

The matrix product (51) originates n2
p vectors of size nnz×

1. However, since the moment matrix is symmetric, not all the
products need to be stored, but only n p(n p + 1)/2. There-
fore in Eq. 51 the products to calculate are only the ones
i, j = 1, . . . , n p with i ≤ j .

These indexes i, j for a symmetric matrix n p × n p can be
grouped in two arrays of length n p(n p + 1)/2. For example,
if n p = 3

i = [1 1 1 2 2 3
]

(52)

j = [1 2 3 2 3 3
]

(53)

Indexes in (52) and (53) allow the definition of a function
handle for the products in Eq. 51

M_handle = @(i,j) {P{i}.*P{j}.*PSI} (54)

In fact, vectors Pi and PSI are the same size and thus can be
multiplied in an element-wise manner. The call

M = arrayfun(M_handle,i,j) (55)

originates a cell array of size n p(n p + 1)/2, where each ele-
ment contains the product (51).

The next step is to reshape each element of the cell array M
from a nnz vector to a matrix ng×ns . Luckily, the command
sparse inMatlab allows this transformation without pad-
ding with zeros.

The command

S = sparse(i,j,s,m,n) (56)

uses vectors i, j, and s to generate an m × n sparse matrix
such that

S(i(k), j (k)) = s(k) k = 1, . . . , nnz (57)

if vectors i, j, and s are all the same length.
Additionally, any elements of s that are zero are ignored,

along with the corresponding values of i and j. Any ele-
ments of s that have duplicate values of i and j are added
together.
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Therefore, the following command can be defined

spar_handle=@(C) sum(sparse(ig,js,C,ng,ns),2)

(58)

where ng is ng and ns is ns .
Command (58) incorporates 2 commands, the first one is

sparse, which reshape the anonymous matrix C and the
second one is the sum over the nodes, where 2 stands for
the second dimension of the matrix, i.e. the columns. It can
be seen that with the introduction of the connectivity vectors
ig and js, it is no longer necessary to search for nodes at
each Gaussian point for the purpose of the sum in the moment
matrix. These operations can be indeed automatized once the
connectivity has been defined at the beginning of the calcu-
lation.

By calling

M = cellfun(spar_handle,M) (59)

the moment matrix M is finally calculated. The result of (59)
is a cell array of n p(n p + 1)/2 elements, each array contain-
ing ng elements, i.e. as many as the number of the Gaussian
points. By inverting M, it is possible to get the corrective
terms for the kernels (the weight functions) that restore the
reproducing properties.

3.5.3 Derivatives of the moment matrix

For completeness are here reported the commands necessary
to calculate the derivatives of the moment matrix. Firstly, it
is necessary to calculate the derivatives of the kernel, as in
Eq. 20.

∂w

∂x
= ∂w

∂s

∂s

∂ξI

∂ξI

∂x
= ∂w

∂s

∂s

∂ξI

1

ρI
(60)

∂w

∂y
= ∂w

∂s

∂s

∂ηI

∂ξI

∂x
= ∂w

∂s

∂s

∂ηI

1

ρI
(61)

The first step is calculating
∂w

∂s
by defining the following

function handle

dKernel = @(s)− 12s(s − 1)2 (62)

and then executing the command

dPSI = dKernel(S). (63)

The derivatives
∂s

∂ξI
and

∂s

∂ηI
are calculated as follows

dDcsi=((GGRID(ig,1)-GRIDSET(js,1))./rho(js))./S
(64)

dDcsi(S==0)=1 (65)
dDeta = ((GGRID(ig,2)-GRIDSET(js,2))./rho(js))./S

(66)
dDeta(S==0) = 1 (67)

where Eqs. 65 and 67 eliminate the indeterminate form.
Derivatives of the kernel functions are

dPSIcsi = dPSI.*dDcsi (68)

dPSIeta = dPSI.*dDeta (69)

The handles for the derivatives of the moment matrix are

DMx_handle = @(i,j) {(DPDX{i}.*P{j}

+P{i}.*DPDX{j}).*PSI
+ P{i}.*P{j}.*dPSIcsi} (70)

DMy_handle = @(i,j) {(DPDY{i}.*P{j}

+P{i}.*DPDY{j}).*PSI
+ P{i}.*P{j}.*dPSIeta} (71)

and the operations of product, reshape and sum are executed
by calling these commands

DMx = arrayfun(DMx_handle,i,j) (72)

DMx = cellfun(spar_handle,DMx) (73)

DMy = arrayfun(DMy_handle,i,j) (74)

DMy = cellfun(spar_handle,DMy) (75)

3.5.4 Explicit inverse of the moment matrix

In Sect. 3.4 the construction if the moment matrix for linear
reproducing property was illustrated.

If a linear reproducing property is desired, the moment
matrix can be inverted directly by symbolic manipulation, as
in [10,47]. This can still be done in 3D, when the moment
matrix is size 4× 4.

However, if higher order reproducing properties are
sought, this approach cannot be used, since the symbolic
inversion of a matrix of size larger than 5 × 5 is unstable
or even impossible to achieve practically. In Sect. 3.6.1 an
alternative approach is proposed. It will be shown that the
explicit inverse of the moment matrix for linear reproducing
property is indeed the starting point to calculate the inverse
of the moment matrix with higher reproducing capabilities.

The inversion of the moment matrix for linear reproducing
properties can be done following the Cramer’s rule

det(M) =
(

M2,2M3,3 −M2
2,3

)
M1,1 −M2

1,3M2,2

−M2
1,2M3,3 + 2M1,2M1,3M2,3 (76)

M−1
1,1 =

M2,2M3,3 −M2
2,3

det(M)
(77)

M−1
1,2 = −

M1,2M3,3 −M1,3M2,3

det(M)
(78)

M−1
1,3 =

M1,2M2,3 −M1,3M2,2

det(M)
(79)
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Fig. 10 Flowchart of the
proposed algorithm in meshfree
methods

M−1
2,2 =

M1,1M3,3 −M2
1,3

det(M)
(80)

M−1
2,3 = −

M1,1M2,3 −M1,2M1,3

det(M)
(81)

M−1
3,3 =

M1,1M2,2 −M2
1,2

det(M)
(82)

Derivatives of the inverse of the moment matrix can be
calculated with Eq. 14.

3.6 Inversion of the moment matrix through partitioning

In the previous section, explicit inversion formulas for the
moment matrix were illustrated, for the case of linear repro-
ducibility. This section is focused on the following two
questions:

1. how to calculate the shape functions if a higher order
reproducibility is sought?

2. how to calculate the shape functions if other points are
inserted?

The first question is usually known as p-adaptivity, whilst
the second is known h-adaptivity. Together, they are known
as hp-adaptivity. The hp-adaptivity consists in a global/local
refinement of the approximation through raising the order of
the polynomials in the approximating function and/or add-
ing nodes to the discretization, with the aim of reducing the
local error or capturing high gradient zones. Local h-refine-

ment consists in adding nodes to limited zones of the domain,
usually detected when a measure of the error exceeds a pre-
defined threshold, while global h-refinement means refining
the discretization in the whole domain. Local p-refinement
is done by enriching the approximation with the introduction
of extra-unknowns and they not need to be necessarily poly-
nomials. Global p-refinement is instead obtained in meshfree
methods by adding extra-functions to the polynomial basis
in Eq. 2. This section will deal on global p-refinement.

With the aim of reducing the error, the error must be cal-
culated, or, more appropriately, estimated a posteriori.

Detailed information on adaptivity in meshless methods
can be found in [31,43]. Once these zones are individuated,
then nodes or polynomials must be practically inserted into
the approximation. In meshfree methods, this task is simpler
than FE, since nodes can be inserted at any time in the cal-
culation without affecting the mesh connectivity and higher
order polynomials can be inserted in the basis vector p with-
out additional unknowns.

This section explains how practically insert extra polyno-
mials or nodes to the shape functions without carrying out
expensive operations.

The classic algorithm in Fig. 3 will be modified into the
one in Fig. 10.

3.6.1 Fast inversion of the moment matrix and p-adaptivity

In this section is proposed a method to efficiently invert
the moment matrix whenever the order of reproducibility
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is greater than one. As a result, it can be proficiently used for
global p-adaptivity. A similar approach based on the impos-
ing consistency constraints can be found in [10]. The repro-
ducing properties are imposed through Lagrangian multipli-
ers. The resulting method does not make use of a moment
matrix, but iteratively update the weights, nonetheless lead-
ing to similar formulas. The proposed method does not
employ Lagrangian multipliers but simply a partitioning
of the moment matrix and it is based on the updating of
its inverse. The approach described calculates explicitly the
inverse of the moment matrix without recurring to numerical
routines (Gauss elimination, LU factorization) for point-wise
inversion. This is one of the most important results of this
paper, since it vectorizes the code completely, without using
any for loops.

Let

wI = w

(
x − xI

ρI

)
I = 1, . . . , N (83)

and

p(k)
I = p(k)

(
x − xI

ρ

)
, (84)

where ρ is

ρ = 1

N

N∑
I=1

ρI . (85)

The superscript k in Eq. 84 is the number of polynomial terms
included in the basis functions p. In fact, shape functions with
such basis will be indicated with superscript k as well, i.e.

φ
(k)
I (x) = p(k)(0)T M−1

k (x)p(k)
I wI (x), (86)

Mk(x) =
N∑

I=1

p(k)
I p(k)T

I wI , (87)

where the scaled form has been used to avoid problems on
the condition number for Mk(x). The final goal is to obtain
the shape functions when an additional term is included in
the basis function, without re-calculating the moment matrix
and, most importantly, without performing the costly point-
by-point matrix inversion.

This means

φ
(k+1)
I (x) = p(k+1)(0)T M−1

k+1(x)p(k+1)
I wI (x). (88)

In order to do so, the corrective term needs to be updated

C (k+1)
I (x) = p(k+1)(0)T M−1

k+1(x)p(k+1)
I , (89)

which in turn requires the update of the basis

p(k+1)T
I =

[
p(k)T

I p(e)
I

]
(90)

and the update of the inverse of the moment matrix

Mk+1(x) =
N∑

I=1

p(k+1)
I p(k+1)T

I wI

=
N∑

I=1

[
p(k)

I

p(e)
I

] [
p(k)T

I p(e)
I

]
wI =

[
Mk(x) b

bT c

]
, (91)

where

b(x) =
N∑

I=1

p(k) p(e)wI (92)

c(x) =
N∑

I=1

p(e)2wI . (93)

Inversion of matrix (91) can be directly obtained from
the entries of M−1

k+1(x) without performing a computation-
ally expensive point by point inversion. In fact, using Boltz’s
formula, Mk+1(x) can be inverted block-wise by using the
following analytical inversion formula

M−1
k+1(x) =

[
M−1

k (x) 0
0 0

]

+ 1

q

[
(M−1

k b)(M−1
k b)T −M−1

k b
−(M−1

k b)T 1

]
, (94)

where

q(x) = c − bT (M−1
k b). (95)

Equation 94 is tremendously useful since one need to perform
only element-wise products and divisions that are particularly
fast in Matlab.

In fact, without this formula, one has to loop over the far
numerous Gaussian points and invert the moment matrix with
a numerical routine. This is one of the major drawbacks of
RKPM and MLS, since an accurate integration of the weak
form of the PDE might necessitate a high order Gaussian
quadrature scheme and therefore the number of Gaussian
points notably grows. Instead, using Eq. 94, assuming that
the entries M−1

k (x) are already available, one needs only to
calculate the moments b and c and perform only element-wise
operations to update the moment matrix.

Boltz’ formula allows a vectorized Matlab code and
effectively speeds up the calculation of the shape functions.

It must be pointed out though, that Eq. 94 shows how to
update the inverse of a matrix when an additional column
(and a row) is introduced when M−1

k (x) is already known.
Therefore to fully exploit the advantages of the block-inver-
sion, the entries of M−1

k (x) must be obtained beforehand.
Nevertheless, one of the greatest advantages of Eq. 94 is that
can be applied iteratively, in the sense that can be applied sev-
eral times until the desired order of reproduction is achieved.

For example, a linear reproduction property is at least
required for the convergence of the weak form. Therefore
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shape functions at least must satisfy linear reproduction con-
ditions, which lead to a 3× 3 moment matrix in two dimen-
sions and a 4×4 moment matrix in three-dimensions. These
sizes of matrices are easily invertible analytically, for exam-
ple with Cramer’s rule for the two-dimensional case and with
symbolic inversion for 4 × 4, that again do not require any
numerical routine for matrix inversion and can be obtained
with element-wise matrix operations.

It must be remarked that symbolic inversion is unstable
(and sometimes impossible for some symbolic softwares) for
5 × 5 and impossible to obtain for matrices of higher size.
Nonetheless linear reproduction property can be the start-
ing point of the inversion of a bigger size matrix. In fact once
M−1

3 (x) is calculated for the two-dimensional case, with (94)
it is possible to obtain M−1

4 (x). Once obtained M−1
4 (x) one

proceeds to M−1
5 (x) and so on until the sought order of repro-

duction is achieved.

3.6.2 First order derivatives

In the assembly of the stiffness matrix of a weak form, at least
first order derivatives of the shape functions are required,
hence a fast computation of the first order derivatives of
Eq. 88 can accelerate the assembly process.

∂φI

∂x

(k+1)

= ∂CI

∂x

(k+1)

wI + C (k+1)
I

∂wI

∂x
, (96)

where

∂CI

∂x

(k+1)

= p(k)T (0)

(
∂M−1

k+1(x)

∂x
p(k+1)

I +M−1
k+1(x)

∂p(k+1)
I
∂x

)
. (97)

Derivatives of M−1
k+1(x) can be readily obtained by deri-

vation of Eq. 94

∂M−1
k+1(x)

∂x
=
⎡
⎣ ∂M−1

k (x)

∂x
0

0 0

⎤
⎦

− 1

q2
∂q

∂x

[
(M−1

k b)(M−1
k b)T −M−1

k b
−(M−1

k b)T 1

]

+ 1

q

⎡
⎢⎢⎣

∂(M−1
k b)

∂x
(M−1

k b)T +(M−1
k b)

∂(M−1
k b)T

∂x
− ∂(M−1

k b)

∂x

− ∂(M−1
k b)T

∂x
0

⎤
⎥⎥⎦ ,

(98)

where

∂M−1
k (x)

∂x
= −M−1

k (x)
∂Mk(x)

∂x
M−1

k (x), (99)

∂(M−1
k b)

∂x
= ∂M−1

k (x)

∂x
b+M−1

k (x)
∂b
∂x

, (100)

∂Mk(x)

∂x
=

N∑
I=1

(
∂p(k)

∂x
p(k)T + p(k) ∂p(k)T

∂x

)
wI

+p(k)p(k)T ∂wI

∂x
, (101)

∂q

∂x
= ∂c

∂x
− ∂bT

∂x
(M−1

k b)+ bT ∂(M−1
k b)

∂x
, (102)

∂c

∂x
=

N∑
I=1

2p(e) ∂p(e)

∂x
wI + p(e)2 ∂wI

∂x
, (103)

∂b
∂x
=

N∑
I=1

(
∂p(k)

∂x
p(e) + p(k) ∂p(e)

∂x

)
wI

+p(k) p(e) ∂wI

∂x
. (104)

3.6.3 Fast inversion of the moment matrix and h-adaptivity

In this section a method to answer to the second of the ques-
tions in Sect. 3.6 is proposed.

Let us indicate with subscript N the moment matrix with
N nodes

MN (x) =
N∑

I=1

pI pT
I wI . (105)

If an additional node is introduced, the moment matrix
inverse needs to be updated.

MN+1(x)=
N+1∑
I=1

pI pT
I wI =

N∑
I=1

pI pT
I wI+pN+1pT

N+1wN+1

= MN (x)+ pN+1pT
N+1wN+1. (106)

Therefore it is simply a rank-1 update:

M−1
N+1(x) =M−1

N (x)

−
(

M−1
N pN+1

) (
M−1

N pN+1

)T

r
wN+1, (107)

r = 1+ pT
N+1

(
M−1

N pN+1

)
wN+1, (108)

therefore

φI (x) = pT (0)M−1
N+1(x)pI wI (x) I = 1, . . . , N + 1.

(109)

Derivatives are given by

∂φI

∂x
= pT (0)

[(
∂M−1

N+1(x)

∂x
pI +M−1

N+1(x)
∂pI

∂x

)
wI (x)

+M−1
N+1(x)pI

∂wI

∂x

]
, (110)
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∂M−1
N+1(x)

∂x
= ∂M−1

N (x)

∂x

− 1

r2

⎡
⎣
⎛
⎝∂

(
M−1

N pN+1

)

∂x

(
M−1

N pN+1

)T +

+
(

M−1
N pN+1

) ∂
(

M−1
N pN+1

)T

∂x

⎞
⎟⎠ r

−
(

M−1
N pN+1

) (
M−1

N pN+1

)T ∂r

∂x

⎤
⎦wN+1

−
(

M−1
N pN+1

) (
M−1

N pN+1

)T

r

∂wN+1

∂x
, (111)

where

∂
(

M−1
N pN+1

)

∂x
= ∂M−1

N (x)

∂x
pN+1 +M−1

N (x)
∂pN+1

∂x
,

(112)

∂r

∂x
=
[

∂pT
N+1

∂x

(
M−1

N pN+1

)

+ pT
N+1

∂
(

M−1
N pN+1

)

∂x

⎤
⎦wN+1

+pT
N+1

(
M−1

N pN+1

) ∂wN+1

∂x
. (113)

Finally, it should be remarked that the approach in formula
(106) was firstly noted in [46], without explicitly suggesting
the update of the inverse of the moment matrix.

3.7 The kernel corrective term

The term in Eq. 11 (here recalled for clarity) is called correc-
tive because it allows to calculate the shape functions (114)
from the kernel functions, restoring the reproducing proper-
ties.

φI (x) = CI (x)w

(
xI − x

ρ

)
, (114)

CI (x) = pT (0)M(x)−1pT
(

xI − x
ρ

)
. (115)

The values of the weight functions are computed through
the commands (35) and stored in an array PSI of length nnz

and so do the values of P, stored in a cell array. The problem
is the entries of the inverse of the moment matrix M−1, that
are stored in a cell array Minv and every element of the cell
is an array of length ng . Therefore, a naive approach would
loop over the basis function, then double loop over the nodes
and over the evaluation points, calculating the correction and

then applying it to the weight functions. Instead, the correc-
tive term can be quickly calculated using the connectivity
vector ig.

where ig act as a index in the command Minv{i,j}(ig).
The variable nargout is the number of output arguments.
If more than two arguments are requested, derivatives are
calculated.

This index ig points to Minv{i,j}(:), in the same
order PSI and P are stored, allowing the generic entry of the
moment matrix to become an array of length nnz and multiply
PSI and P in an element-wise manner. The same approach
can be applied also to the derivatives of the corrective term,
i.e.dCx anddCy. Using the same logic, the following handle
can be defined

asb_handle = @(f,g) f.*g(ig) (116)

that will be useful for the stiffness matrix assembly in the
next section. Finally, the shape functions are calculated as
follows

PHI = C.*PSI;
if nargout>2
DPHIx = (dCx.*PSI + C.*dPSIcsi)/mrho;
DPHIy = (dCy.*PSI + C.*dPSIeta)/mrho;

end

At this stage, though, the values are stored in arrays of
size nnz . To reshape the arrays, the following handle can
be defined

sp_handle = @(f)sparse(ig,js,f,ng,ns).

(117)

123



596 Comput Mech (2012) 49:581–602

The object (117) transforms a sparse array f defined by
indexes ig and js into a sparse matrix ng× ns.

The inverse operation can be performed by the following
command

desp_handle=@(f)f(sub2ind(size(f),ig,js)).

(118)

The final step for constructing the shape functions is

PHI = sp_handle(PHI);
if nargout>2

DPHIx = sp_handle(DPHIx);
DPHIy = sp_handle(DPHIy);

end

3.8 Assembly of the stiffness matrix

In this section the assembly of the stiffness matrix is
explained in detail for the two-dimensional case, however
the principle applies also to the three-dimensional structures.
The important result of this section is that no loops are nec-
essary to calculate the stiffness matrix.

Let us assume an isotropic linear elastic body �, (Fig. 11)
under the assumption of small displacements and small gra-
dient of displacements. The equilibrium equations and the
boundary conditions are, in absence of body forces:

∇ · σ = 0 x ∈ � (119)

σ · n = t̄ = λt0 x ∈ 
t (120)

u = ū x ∈ 
u (121)

where σ is the Cauchy stress tensor, n is the normal unity vec-
tor of the boundary 
t where the traction λt0 is prescribed
and 
u is the boundary where the displacement ū is pre-
scribed. The traction t0 is a unitary reference traction field
with magnitude λ.

Using the displacement u as a test function for Eqs. 119,
120 and 121, the variational form can be written as

∫

�

δεT σd�−
∫


t

δuT t̄d
t

+α

∫


u

δ (u− ū)T (u− ū) d
u = 0 (122)

where α is a penalty parameter (usually a large number) used
to enforce the essential boundary conditions.

Fig. 11 Description of the body �

The infinitesimal strain is defined as

ε =
⎡
⎣ εx

εy

γxy

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂v

∂y

∂u

∂y
+ ∂v

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x

∂

∂y

∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
u
v

]
= L u,

(123)

where L is the infinitesimal strain differential operator and
u is the displacement vector.

The linear elastic stress–strain relationship is defined
through the Generalized Hooke’s law (with the Voigt nota-
tion7)

σ = Cε =
⎡
⎣C11 C12

C12 C22

C33

⎤
⎦
⎡
⎣ εx

εy

2γxy

⎤
⎦ , (124)

where C is called the stiffness tensor of the elastic moduli
and for two-dimensional orthotropic materials in plane stress
tensional state is defined as

C =
⎡
⎣C11 C12

C12 C22

C33

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

E11/(1− ν12ν21) ν12 E22/((1− ν12ν21)

ν12 E22/((1− ν12ν21) E22/(1− ν12ν21)

G12

⎤
⎥⎥⎥⎥⎦ ,

(125)

7 The Voigt notation is the standard mapping for tensor indexes.
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where Eii is the Young’s modulus along axis i , Gi j is the
shear modulus in direction j on the plane whose normal is
in direction i , νi j is the Poisson’s ratio that corresponds to
a contraction in direction j when an extension is applied in
direction i .

If plane strain is desired, then the following changes are
necessary

E11 ← E11

1− ν2
12

, (126)

E22 ← E22

1− ν2
12

, (127)

G12 ← G12

1− ν2
12

, (128)

ν12 ← ν12

1− ν2
12

, (129)

ν21 ← ν21

1− ν2
12

. (130)

The displacement vector u is approximated with the mesh-
free shape functions

u(x) ≈ uh(x) =

⎡
⎢⎢⎢⎢⎢⎣

ΦT (x)︸ ︷︷ ︸
1×ns

ΦT (x)︸ ︷︷ ︸
1×ns

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

U︸︷︷︸
ns×1

V︸︷︷︸
ns×1

⎤
⎥⎥⎦ . (131)

It is opportune to distinguish between the mathematical vec-
tor Φ(x) which is size ns × 1

ΦT = [φ1(x) φ2(x) . . . φns

]
(132)

and the computer array PHI in Sect. 3.7, which is a sparse
matrix of size ng × ns .

Applying (123)–(131), the strain resulting from the
approximation is

εh(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ΦT

∂x

∂ΦT

∂y

∂ΦT

∂y

∂ΦT

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
U
V

]
(133)

and applying (124)–(133)

σ h =
⎡
⎣C11 C12

C12 C22

C33

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ΦT

∂x

∂ΦT

∂y

∂ΦT

∂y

∂ΦT

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
U
V

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11
∂ΦT

∂x
+ C12

∂ΦT

∂y

C11
∂ΦT

∂x
+ C22

∂ΦT

∂y

C33
∂ΦT

∂y
+ C33

∂ΦT

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
U
V

]
. (134)

The variational term for the stiffness matrix can be
expressed as follows

∫

�

δεT σd� = [δUT δVT
] ∫

�

⎡
⎢⎢⎢⎣

∂Φ

∂x

∂Φ

∂y

∂Φ

∂y

∂Φ

∂x

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11
∂ΦT

∂x
+ C12

∂ΦT

∂y

C11
∂ΦT

∂x
+ C22

∂ΦT

∂y

C33
∂ΦT

∂y
+ C33

∂ΦT

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d�

[
U
V

]
. (135)

Therefore the stiffness matrix K can be written as

K =
⎡
⎣K11 K12

KT
12 K22

⎤
⎦ , (136)

where

K11 =
∫

�

C11
∂Φ

∂x

∂ΦT

∂x
+ C33

∂Φ

∂y

∂ΦT

∂y
d�, (137)

K22 =
∫

�

C33
∂Φ

∂x

∂ΦT

∂x
+ C22

∂Φ

∂y

∂ΦT

∂y
d�, (138)

K12 =
∫

�

C12

(
∂Φ

∂x

∂ΦT

∂y
+
(

∂Φ

∂x

∂ΦT

∂y

)T
)

d�. (139)

The stiffness matrix can be then computed whenever the
following matrices are calculated

Kxx =
∫

�

∂Φ

∂x

∂ΦT

∂x
d�, (140)

Kyy =
∫

�

∂Φ

∂y

∂ΦT

∂y
d�, (141)

Kxy =
∫

�

∂Φ

∂x

∂ΦT

∂y
d�. (142)

Integrals in (140), (141) and (142) are calculated using
Gaussian quadrature. Naming W as the vector of size ng × 1
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containing the Gaussian weights associated with the Gauss-
ian points GGRID, then a brute force algorithm would be
for i=1:ns

for j=1:ns
Kxx(i,j) = W.’*(DPHIx(:,i).*DPHIy(:,j))
end

end

Double loops however, really slow down the calculation. To
avoid one loop, one could then think to create an intermediate
matrix

for i=1:nset
WX(i,:) = DPHIx(:,i)’.*W.’;

end
Kxx = WX*DPHIx;

Another possible approach that avoids a double looping
is the creation of repetitions of the arrays containing the
weights:

WX = DPHIx.*repmat(W,1,ns)

and then

Kxx = WX.’*DPHIy

The command repmat creates ns replicas of the vector W
along the columns. Nevertheless, such approach is extremely
costly in term of speed and memory, since it creates a tem-
porary array of size ng × ns .

Instead, indexing can be used with the handle in Eq. 116.
With the command desp_handle (118)

DPHIx = desp_handle(DPHIx) (143)

the derivatives of the shape functions are reshaped into mono-
dimensional arrays.

WX = asb_handle(DPHIx,W) (144)

Then reshapingDPHIx andWX into bi-dimensional arrays
with (117)

DPHIx = sp_handle(DPHIx) (145)

WX = sp_handle(WX) (146)

Finally Eq. 140 is computed

KXX = WX.’*DPHIx (147)

The same approach can be repeated for Eqs. 142 and 141.

4 Results

In order to show the effectiveness of the improvements, in this
section it will be presented a comparison between the classic
and the new methods based on the computational run-times.

Fig. 12 Three-dimensional case: geometry

Table 2 Elastic properties for the benchmark case

E11 E22 = E33 G12 G23 ν12 = ν13 ν23

122.7 GPa 10.1 GPa 5.5 GPa 3.7 GPa 0.25 0.45

Table 3 Geometry for the benchmark case

Lx L y Lz

185 mm 25 mm 2.5 mm

By classic it is intended the method based on a point-wise
inversion of the moment matrix (32), i.e. the moment matrix
is calculated and then the inversion is made by looping over
the Gaussian points, create a temporary matrix, invert it with
a standard numerical routine (LU factorization or Gaussian
elimination) and then pass it back to the cell array Minv.
Instead, the new method is the one explained in Sect. 3.6.
For both methods, the routines used for the connectivity, the
correction and the assembly are the same.

To assure a fair comparison, both methods have been exe-
cuted on the same computer, with a 3 GHz processor Intel
®Pentium ®with 1 GB of RAM. Nevertheless, performances
may vary and computational times reduce on different com-
puters. Hence, the computational times reported here should
be intended as a relative measure, not as an absolute measure
of the code performances.

As a benchmark case, a three-dimensional model of a bar
has been considered as in Fig. 12, with elastic properties and
geometry resumed in respectively in Tables 2 and 3.

The quadrature cells considered are cubic as in Fig. 13
and a full quadratic basis (superscript 2) has been included
as in Eq. 148, thus the moment matrix has size 10× 10.

p(2)T (x) = [1 x y z x2 y2 z2 xy yz xz
]
. (148)

Tables 4, 5, 6, 7, 8 and 9 illustrates the computational run-
times for the specimen for same number of nodes (11× 6×
3 = 132), but different number of Gaussian points. The dila-
tation parameter ρI is variable with the node and it is chosen
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Fig. 13 Continuous line
quadrature cells; circles nodes;
blue crosses Gaussian points.
(Color figure online)

Table 4 Computational run-times for the connectivity

Gaussian points Classic (s) New (s)

800 0.1614 0.1269

2,700 0.4329 0.4500

6,400 0.8698 0.8728

12,500 1.5980 1.5694

21,600 3.0833 3.2427

34,300 4.8564 4.2063

51,200 7.4106 7.2022

Table 5 Computational run-times for the correction term

Gaussian points Classic (s) New (s)

800 0.2220 0.3374

2,700 2.6361 2.5686

6,400 4.7568 4.7648

12,500 7.1372 7.7983

21,600 12.5379 18.1758

34,300 25.3300 24.7946

51,200 34.6201 33.2414

Table 6 Computational run-times for the assembly

Gaussian points Classic (s) New (s)

800 0.3424 0.3908

2,700 1.0952 1.0500

6,400 2.9279 3.1260

12,500 7.2566 5.9309

21,600 14.7860 11.1589

34,300 22.0235 21.5802

51,200 29.3857 31.1248

as 2.4 max(hI ) with hI the maximum length of the edges
concurring in that node.

The run-time has been divided mainly in time for the cre-
ation of the shape functions and time for the assembly of
the stiffness matrix. The run-times for the shape functions

Table 7 Computational run-times for the moment matrix

Gaussian points Classic (s) New (s)

800 1.8273 0.5012

2,700 11.4439 1.8473

6,400 22.4772 3.9266

12,500 49.4992 8.1483

21,600 75.7696 14.1422

34,300 135.0388 21.9535

51,200 170.9730 35.3794

Table 8 Computational run-times for the inversion of the moment
matrix

Gaussian points Classic (s) New (s)

800 1.5319 1.8981

2,700 12.6961 9.5511

6,400 58.8198 21.1465

12,500 190.0229 39.9969

21,600 555.5533 72.0766

34,300 1344.9519 117.3779

51,200 3002.2513 162.7680

Table 9 Computational run-times for the shape functions

Gaussian points Classic (s) New (s) New/classic (%)

800 3.7471 2.8693 76.57

2,700 27.2389 14.4471 53.04

6,400 86.9840 30.7691 35.37

12,500 248.3761 57.6299 23.20

21,600 647.1185 107.8531 16.67

34,300 1510.5029 168.6082 11.16

51,200 3215.7002 239.0169 7.43

comprise also the derivatives of the shape functions. The
run-time for the shape functions has been subdivided in 4
contributions:
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1. connectivity: because the size of data sets (ng × ns) is
relatively small, brute force was used in both cases;

2. moment matrix, i.e. the time necessary to compute the
cell array M as in Sect. 3.4;

3. inversion of the moment matrix, i.e. the time for inverting
the moment matrix;

4. correction term, i.e. the time for calculating the correc-
tion to the kernel as in Sect. 3.7.

It can be observed that, as expected, the major differences
are not in the connectivity (Table 4), in the correction term
(Table 5) and in the assembly (Table 6). In fact, for these
purposes, the same routines have been used in both meth-
ods. Instead, there is a great difference for the computation
times related to the moment matrix (Table 7), even though
the same procedure of Sect. 3.4 has been used for both cases.
The reason for such discrepancy is that in the classic method,
a symmetric 10× 10 moment matrix need to be constructed
straight after the connectivity phase, whereas with the new
method (the partitioning inversion method) only a symmet-
ric 4× 4 moment matrix is necessary. The symmetric 4× 4
moment matrix for the partitioning method can be inverted
symbolically and represents the starting point of the iterative
procedure described in Sect. 3.6. The remaining terms in the
new method are constructed at the same time of the inver-
sion, allowing a huge saving in terms of computational time,
around 80% average for all the cases.

This saving is not only in terms of speed but also in terms
of storage memory. In fact, the number of entries of the
moment matrix stored in the classic method is 10× 11/2 =
55, whereas in the partitioning method is 4 × 5/2 = 10.
Therefore, an estimation of the saving in terms of speed is
(55− 10)/55× 100 = 81.18%.

Moreover, for the storage memory, there is another aspect
to consider, which is not evident from the computational
times. After the inversion, the memory occupied by the
moment matrix (4×4) can be cleared since it is no longer nec-
essary. The update is executed directly on the inverse of the
moment matrix, through previous calculation of the moments
b (Eq. 92) and c (Eq. 93). After the update is executed, the
moments b and c required for the update of the inverse can
be deleted as well. On the contrary, for the classic method,
all the terms must be retained for the point-wise inversion,
and deleted only after the inversion is concluded. The inver-
sion through partitioning of the moment matrix is particularly
advantageous, as shown in Table 8. Moreover, Figs. 14 and
15 show another interesting side: the dataset of the compu-
tational times and the number of Gaussian points can be fit
by a quadratic curve for the classic method and by a linear
curve for the proposed method.

The proposed method, either for the inversion of the
moment matrix and for the construction of the shape func-
tions, has a computational cost O(n) with respect to the num-

Fig. 14 Computational run-times for the inversion of the moment
matrix: circles classic method; squares new method; dashed line qua-
dratic fit for the classic method; continuous line linear fit for the new
method

Fig. 15 Computational run-times for the shape functions: circles clas-
sic method; squares new method; dashed line quadratic fit for the classic
method; continuous line linear fit for the new method

ber of Gaussian points, compared to the O(n2) of the clas-
sic one. The saving in computational time is tremendous:
in fact, for the classic method (Table 9), for 51,200 Gauss-
ian points, almost an hour (54 min) is needed to calculate
the shape functions and their first derivatives, while with the
proposed method only 4 min.

5 Conclusions

This paper reported a number of techniques able to reduce
the computational costs of the construction of the shape func-
tions in a MLS/RKPM. Firstly, the bottlenecks of the method
were identified, namely the neighbour search, the inversion of
the moment matrix and the assembly of the stiffness matrix.

The burden of the neighbour search can be alleviated
through the use of the kd-tree algorithm, that also creates the
node-Gaussian point connectivity that facilitates the assem-
bly of the stiffness matrix. Another important result is the
inversion of the moment matrix through partition, which
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eliminates the need of point-wise inversion and vectorizes
one of the most computationally expensive in meshfree meth-
ods.

It has been shown that, for a fixed number of degrees
of freedom, the computational cost goes linearly with the
number of Gaussian points. Gaussian points are needed to
numerically evaluate the integrals in a weak form of the
equations of equilibrium. A good compromise between accu-
racy and costs is given by a Gaussian quadrature of order 3,
which means 9 Gaussian points per triangular element in two-
dimensions and 27 Gaussian points per tetrahedral element
in three-dimensions.

This means that the bottle neck is represented by the num-
ber of Gaussian points. In this sense, a leap ahead would be
then represented by further researching stabilization of nodal
integration techniques: a truly-meshfree method that do not
require a background mesh for the purposes of the integra-
tion, will then eliminate the costs associated with the use of
Gaussian points.
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