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Abstract A numerical method for the computation of
shakedown loads of structures subjected to varying thermal
and mechanical loading is proposed for the case of multi-
dimensional loading spaces. The shakedown loading factors
are determined based on the lower bound direct method using
the von Mises yield criterion. The resulting nonlinear convex
optimization problem is solved by use of the interior-point
method. Although the underlying theory allows for the con-
sideration of arbitrary numbers of loadings in principle, until
now applications have been restricted to special cases, where
either one or two loads vary independently. In this article,
former formulations of the optimization problem are gen-
eralized for the case of arbitrary numbers of loadings. The
method is implemented into an interior-point algorithm spe-
cially designed for this method. For illustration, numerical
results are presented for a three-dimensional loading space
applied to a square plate with a central circular hole.

Keywords Direct method · Shakedown analysis ·
Interior-point algorithm · Large-scale problem ·
Multidimensional loading space

1 Introduction

For the design of engineering structures it is most important
to reliably predict whether or not the considered system is
capable of resisting to the given loading beyond the elastic
limit. Different failure mechanisms can occur, in particu-
lar if the loads vary as function of time. In case of instan-
taneous collapse, the system fails during the first loading
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cycle, whereas the accumulation of plastic strains from sev-
eral loading cycles can lead to incremental collapse (ratchet-
ing). However, plastic deformations may eventually lead to
failure even if the amount of total plastic deformation is lim-
ited and remains small, but the plastic strain increments occur
in an alternating manner, which is often referred to as alter-
nating plasticity. If none of these failure mechanisms occurs,
one says that the system shakes down.

The according shakedown load can be determined most
conveniently by using direct methods [1–3]. These will be
applied in this study using the lower bound shakedown theo-
rem by Melan [4,5]. Their most appreciable advantage is the
fact that the loading history does not need to be given deter-
ministically, but only its bounding envelope [6]. However,
direct methods lead to nonlinear convex optimization prob-
lems. For engineering problems of practical relevance, this
generally implies large numbers of variables and constraints.

Direct methods have been handicapped for long time by
the lack of appropriate tools in nonlinear optimization. How-
ever, the substantial increase in computational capabilities in
recent years allowed for the development of efficient numer-
ical methods in this field. Among the existing approaches for
the solution of nonlinear optimization problems, we focus
on the interior-point method [7–11], which has been imple-
mented into several software packages for general nonlinear
programming, such as loqo [12,13], knitro [14,15] and
ipopt [16–18].

These codes are quite powerful, as shown, e.g., in the com-
parative studies [19,20], and cover a wide range of applica-
tions. Nevertheless, they often lack efficiency compared to
specialized algorithms in case of large numbers of variables
and constraints. Therefore, they have hardly been applied in
the context of direct methods, as e.g., ipopt in [21] and [22].
To overcome this problem, following [23], second order cone
programming (socp) has been widely used in recent years, in
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particular, the software package mosek [24] e.g., in [25–29],
as well as the codes sedumi [30] and sdpt3 [31] in [32].

Another possibility to improve the numerical procedures
focuses on the prior structural analysis. For example, instead
of the standard finite element method (fem), in [33] the sym-
metric Galerkin boundary element method (bem) has been
used, whereas in [34] the meshless element-free Galerkin
method (efg) has been introduced to the solution proce-
dure. Non-standard fem has been applied, e.g., in [35,36]
for cell-based smoothed elements (cs- fem) and for edge-
based smoothed elements (es- fem), respectively. In [37] a
non-conforming element is proposed, which is constructed
from bilinear shape functions and enriched by internal sec-
ond-order polynomials. Furthermore, alternative method-
ologies have been published in [38,39] on the basis of
piece-wise linearization of the yield surface and in [40] where
a strain-driven strategy is proposed.

Nevertheless, the use of appropriate numerical tools to
solve nonlinear optimization problems is of crucial rele-
vance in the field of direct methods. Since not all kinds
of problems in limit and shakedown analysis can be for-
mulated as socp and for better computational performance
through problem-tailored solution procedures, some inde-
pendent interior-point algorithms have been presented for
both limit analysis, e.g., [41–45], and shakedown analysis,
e.g., [46–51].

Based on previous work [52,53] on the DC- decomposi-
tion, in [48–50] the interior-point algorithm ipdca has been
presented and successfully applied to problems of shake-
down analysis with either one or two independently varying
loads. On the basis of ipdca, a new interior-point algorithm
has been proposed recently in [54–56], which is character-
ized by a problem-oriented solution strategy for the specific
case of von Mises materials. Moreover, several numerical
advancements in the new algorithm lead to a more stable
performance.

In this article, a new formulation is presented, that allows
for the computation of shakedown loading factors for arbi-
trary numbers of thermal and mechanical loadings. The
described methodology is illustrated by application to a
square plate with a central circular hole subjected to three
independent loadings. To our knowledge, no results on shake-
down analysis with more than two independently varying
loadings have been obtained before.

2 Static approach of shakedown analysis

We use the statical shakedown theorem by Melan [4,5] to
determine the shakedown factor αSD , which is the maxi-
mum loading factor α such that the system does not fail due
to incremental collapse or alternating plasticity. Here, we
restrict ourselves to elastic-perfectly plastic, time-indepen-

dent material behavior. Furthermore, geometrical nonlinear-
ity is not considered. In addition, we assume the existence of
a convex yield function F (σ (x, t), σY (x)) such that the nor-
mality rule is satisfied, where σY (x) denotes the yield stress
in the point x.

Then, Melan’s theorem states that the system will shake
down if one can find a loading factor α > 0 and a time-
independent residual stress field ρ̄(x) whose superposi-
tion with the purely elastic stress field σ E (x, t) satisfies
the yield condition at any time t in any point x of the
structure.

∀x, ∀t : F
(
α σ E (x, t) + ρ̄(x), σY (x)

)
≤ 0 (1)

For the application, the total stresses σ are decomposed
into two parts, σ = σ E + ρ̄. The residual stress field ρ̄

is induced by the evolution of plastic deformation, whereas
σ E denotes the elastic stress field which would occur in a
purely elastic reference body under the same conditions and
loading. Since the elastic reference stress field σ E is in equi-
librium with the external loading, the residual stress field ρ̄

is self-equilibrated and the principle of virtual work reads as
follows, [57].
∫

V

δε : ρ̄ dV = 0 (2)

Here, δε denotes a virtual strain field, which satisfies
the kinematical boundary conditions. Using the fem, this
virtual strain field is approximated based on appropriate
shape functions for the displacements using the relation
ε = 1

2 (∇u + u∇). Carrying out the integration numerically,
Eq. 2 is thereby converted into a system of linear equations
for the residual stresses ρ̄r evaluated in the Gaussian points
r ∈ [1, NG], where NG denotes the total number of Gaussian
points of the system.

NG∑
r = 1

Cr · ρ̄r = 0 (3)

The so-called equilibrium matrices Cr ∈ Rm E ×6 only
depend on the geometry of the system and the chosen element
type. They can be calculated using the principle of virtual
work and are computed by the user-defined subroutine uel
in ansys. Their dimension is m E = 3 NK − NBC , where
NK is the total number of nodes and NBC is the number of
kinematical boundary conditions.

With (1) and (3) the shakedown loading factor αSD can be
computed from the following optimization problem on the
basis of Melan’s theorem.

(PM ) αSD = max α

NG∑
r=1

Cr · ρ̄r = 0 (4a)
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∀r ∈ [1, NG] , ∀t :
F

(
α σ E

r (t) + ρ̄r , σY,r

)
≤ 0 (4b)

3 Description of the loading domain
in multidimensional loading spaces

The considered structure is subjected to an arbitrary finite
number NLof loads P�. Thus, we restrict ourselves to loading
histories H(x, t) which can be expressed as combinations of
the NLloading cases, where the time-dependency is captured
through the introduction of loading multipliers μ�(t) for each
loading case. Here, we scale all loads to the generalized unity
load P0.

H(x, t) =
NL∑
�=1

P�(x, t) =
NL∑
�=1

μ�(t) P0(x) (5)

As shown in [6], it is sufficient to only consider the bound-
ing envelope of the loading history. Therefore, the bounds of
each of the loading multipliers are defined.

μ−
� ≤ μ�(t) ≤ μ+

� (6)

Merging the load multipliers into the vectorμ = μ� e�, the
set K of all possible combinations of loading cases within
these bounds can be defined as follows.

K =
{
μ ∈ RNL

∣∣∣μ−
� ≤ μ� ≤ μ+

� , ∀� ∈ [1, NL]
}

(7)

Then, the loading domain � can be defined as set of
all possible loading histories within the bounding envelope
described by (7).

� =
{

H(x, t)
∣∣∣H(x, t) =

NL∑
�=1

μ�(t) P0(x) , ∀μ ∈ K
}

(8)

In analogy to (5), the elastic reference stresses are decom-
posed according to the loading cases.

σ E (x, t) =
NL∑
�=1

μ�(t) σ E
� (x) (9)

As before, using the fem allows for the formulation of
the stresses in terms of the values in the Gaussian points
r ∈ [1, NG]. The stresses σ E

r,� can be computed as result of
purely elastic analysis for the loading case � with standard
fem software.

σ E
r (t) =

NL∑
�=1

μ�(t) σ E
r,� (10)

The NLgiven loads span an NL-dimensional polynomial
loading domain � with NC = 2NL corners. Since it is suffi-
cient to consider only the corners of the loading domain, the
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Fig. 1 Loading domain in a three-dimensional loading space

time-dependence of σ E can be expressed through the stress
states in these corners j ∈ [1, NC]. This is done by intro-
ducing the matrix UNL ∈ RNC×NL with entries U j�, where
j ∈ [1, NC] and � ∈ [1, NL].

σ
E, j
r =

NL∑
�=1

U j�σ
E
r,� (11)

Each row of the matrices UNL represents the coordinates
of one corner of the loading domain in the NL-dimensional
loading space – scaled with the load P0. Thus, the intro-
duction of UNL requires the definition of the corners of the
loading domain with the given factors μ−

i and μ+
i as intro-

duced in (6). In order to define such a matrix UNL for arbi-
trary numbers of loading cases NL , the corners of the loading
domain are arranged in a specific order. For illustration, we
begin with the case of three independent loads, NL = 3. The
according domain in the three-dimensional loading space is
illustrated in Fig. 1 with the associated matrix U3 (12).

U3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ+
1 μ+

2 μ+
3

μ−
1 μ+

2 μ+
3

μ+
1 μ−

2 μ+
3

μ−
1 μ−

2 μ+
3

μ+
1 μ+

2 μ−
3

μ−
1 μ+

2 μ−
3

μ+
1 μ−

2 μ−
3

μ−
1 μ−

2 μ−
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The third column consists of two divisions of length 4,
where μ+

3 is the value of all entries in the first part, and in
the second part all entries have the value μ−

3 . We denote
such a substructure by block. Then, the second column can
be divided into two blocks having two entries μ+

2 and μ−
2

each, whereas the first column comprises four blocks with
one entry μ+

1 and μ−
1 each. This ordering scheme can be

generalized for the case of arbitrary finite numbers of load-
ings NL . The last column of the associated matrix UNL ∈
RNC×NL consists of one block with NC/2 entries μ+

NL and
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μ−
NL . The penultimate column is composed of two blocks

with NC/4 entries μ+
NL−1 and μ−

NL−1, and so on. Finally, the
first column can be divided into NC/2 blocks, where each of
the blocks consists of one pair μ+

1 and μ−
1 only.

Thereby, the matrices UNL ∈ RNC×NL can be constructed
column-wise in the following way:

For l = 1, 2, . . . , NL do the following:
in the considered column l write 2NL−l blocks one below
the other, where each block consists of 2l−1 entries with
the maximum value μ+

l followed by 2l−1 entries with the
minimum value μ−

l

4 Solution procedure with interior-point method

The yield condition (1) has to be satisfied for all Gaussian
points r ∈ [1, NG] and all corners of the loading domain
j ∈ [1, NC].
∀r ∈ [1, NG] , ∀ j ∈ [1, NC] :
F

(
α σ

E, j
r + ρ̄r ; σY,r

)
≤ 0

The solution procedure of the presented algorithm ipsa is
specially tailored to the von Mises yield criterion, which leads
to significant benefits in the performance compared to gen-
eral solvers. The necessary transformations and implementa-
tion issues are described in [56] and will not be repeated here.
However, the resulting optimization problem (PIP ) reads as
follows.

(PIP ) min f (x) = −α

A · x = 0 (13a)

cI (x) ≥ 0 (13b)

x ∈ Rn (13c)

The problem consists of m∗
E = m E + 5NG · (NC − 1)

equality constraints (13a), m I = NG · NC inequality con-
straints (13b) and n = (5NC+1)·NG+1 variables, which are
merged in the solution vector x. The objective function f (x)

is linear, the equality constraints are affine-linear with the
constant coefficient matrix A ∈ Rm∗

E ×n and the inequality
constraints are nonlinear and concave. Moreover, the Slater
condition is satisfied by definition. Thus, the optimization
problem is regular, nonlinear and convex.

The solution of this problem is obtained by application of
the interior-point method. Slack variables w are introduced to
transform the inequality constraints into equality constraints.
In addition, split variables y and z are inserted into (13c) to
handle the free variable x, because otherwise its unbounded-
ness might lead to numerical instabilities, see e.g., [58].

Then, to ensure that the solution of the problem cannot
leave the feasible region described by the subsidiary condi-
tions, barrier terms are added to the objective function. Here,

we use logarithmic barriers weighted by a barrier parameter
μ which tends to zero during the iteration.

fμ(x, y, z,w) = f (x) − μ

[
n∑

i = 1

log(yi )

+
n∑

i = 1

log(zi ) +
m I∑

j = 1

log(w j )

⎤
⎦ (14)

The resulting problem thus takes the form:

(Pμ) min fμ(x, y, z,w)

A · x = 0 (15a)

cI (x) − w = 0 (15b)

x − y + z = 0 (15c)

w > 0, y > 0, z > 0 (15d)

with the Lagrangian of (Pμ):

L = fμ(x, y, z,w) − s · (x − y + z) − λE · (A · x)

− λI · (cI (x) − w) , (16)

where λE ∈ Rm∗
E ,λI ∈ R

m I+ and s ∈ Rn+ are Lagrange mul-
tipliers. This function can be used to apply the Karush–Kuhn–
Tucker conditions (kkt) which are necessary and sufficient
optimality conditions for regular convex problems [59]. The
kkt state that a solution is optimal if and only if the Lagrang-
ian L possesses a saddle point,

∇ΠL = 0, (17)

where ∇Π(.) denotes the gradient in all variables Π of the
problem. The system of nonlinear equations (17) is solved
by use of the Newton method. The step values �Πk in the
iteration step k + 1 are computed from the known values Πk

of the previous iteration step k.

J (Πk) · �Πk = −∇ΠL(Πk) (18)

where:J (Πk) = ∇ΠL(Π)∇Π

∣∣∣∣
Π=Πk

Note, that general solvers typically use the complete Jaco-
bian for the solution of (18), whereas we take advantage of
the specific structure of the involved matrices to reduce the
system by appropriate substitution of variables, which sig-
nificantly reduces the running time (see also [56]).

Once the step values �Πk have been calculated as the
solution of the system of linear equations (18), the variables
Πk+1 of the subsequent step k+1 can be determined by (19).

Πk+1 = Πk + ϒk · �Πk (19)

Here, the diagonal matrix ϒk of damping factors ensures
the non-negativity conditions of slack and split variables and
Lagrange multipliers. In addition, damping of the Newton
step can guarantee that the computed step is associated with
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Fig. 2 System and loading cases

Table 1 Dimensions of the plate

Length L in (mm) 100

Thickness t in (mm) 2

Diameter D in (mm) 20

Table 2 Thermal and mechanical characteristics

Young’s modulus (MPa) 7.24 × 104

Yield stress (MPa) 345

Poisson’s ratio 0.33

Density (kg/m3) 2.78 × 103

Thermal conductivity (W/(m2 K)) 151

Specific heat capacity (J/(kg K)) 875

Coefficient of thermal expansion 2.47 × 10−5

Transfer coefficient at boundary (W/(m2 K)) 200

Transfer coefficient in hole (W/(m2 K)) 1200

a descent direction. For this, we apply a linesearch strategy
using an �2-merit function, if necessary [56].

5 Numerical example

The described algorithm is applied to a square plate with a
circular hole. The considered system is illustrated in Fig. 2.

The characteristic dimensions are given in Table 1.
The plate is made of 2024–T6 aluminum and is assumed to

be homogeneous and isotropic. The thermal and mechanical
characteristics are given in Table 2.

Fig. 3 FEM-model and mesh

All material parameters are assumed to be independent of
the applied temperature. The loading process is considered
to be quasi-static. No transient thermal effects are taken into
account. Creep due to the high temperature is not included
in the current calculation.

Due to the symmetry of the system, only one quarter of the
plate is considered with according boundary conditions. The
system is discretized by isoparametric, hexahedral elements
in ansys. For the thermal analysis the element-type solid70
and for the structural analysis the element-type solid185 have
been used. The mesh consists of 882 nodes and 400 elements
and is shown in Fig. 3.

Two different types of loading will be considered sepa-
rately:

1. The two-dimensional case is a typical benchmark prob-
lem for validation of algorithms for shakedown analy-
sis. Two uniform normal tractions P1 and P2 are applied
which vary independently of each other.

2. In the three-dimensional case the plate is additionally
subjected to a thermal loading �T which is applied on
the boundary of the hole. All three loads vary indepen-
dently of each other.

5.1 Two-dimensional loading space

In the two-dimensional case, the plate is subjected to two
uniform normal tractions P1 and P2 which are applied in
both directions perpendicular to the sides of the square. For
the calculation of the elastic stresses an arbitrary value P0 =
100 MPa has been used. The two loads vary in the following
ranges:

0 ≤ P1 ≤ μ+
1 P0 (20a)

0 ≤ P2 ≤ μ+
2 P0 (20b)

The larger one of μ+
1 and μ+

2 is normalized to one. The
associated two-dimensional loading domain is illustrated
in Fig. 4.
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Fig. 4 Loading domain in the two-dimensional calculation
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Results for this problem have been presented by many
authors, e.g., [36,60–71]. Comparative studies of these and
other works have been given in [33,46,57,72]. The com-
parison with most of these has been presented in [56]. We
avoid repetition and confine ourselves to compare our results
exemplarily to the ones obtained by Mouhtamid [70] and to
the partly-analytical solution in [73] (Fig. 5).

5.2 Three-dimensional loading space

In the three-dimensional case, a thermal load �T is applied
to the boundary of the hole in addition to the two normal trac-
tions P1 and P2. For the calculation of the elastic stresses the
arbitrary values P0 = 100 MPa, T1 = 500 K and T0 = 300 K
have been used. We choose μ−

1 = μ−
2 = μ−

3 = 0 such that
the loads vary independently in the following ranges:

0 ≤ P1 ≤ μ+
1 P0 (21a)

0 ≤ P2 ≤ μ+
2 P0 (21b)

0 ≤ �T ≤ μ+
3 �T0 (21c)

The loading domain is given in Fig. 6. Moreover, the 111
points in the three-dimensional loading space are shown, for
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Fig. 6 Computed points in loading space

which the calculation of the shakedown factor has been car-
ried out.

The results can be presented as a sequence of two-dimen-
sional plots as shown in Fig. 7. Here, the solutions for
different fixed ratios μ+

1 /μ+
2 are illustrated, each of them

representing a fixed angle in the P1−P2–plane. Note, that
only the ratio of the maximum factors is kept constant in
these cases, whereas all three loads vary independently in all
calculations.

In Fig. 8 the three-dimensional shakedown domain is
shown. For the purpose of a clear presentation, the point
(0, 0, 22.823) is not plotted. Otherwise, the distance between
the plotted points would have to be reduced. The numerical
results for some specific ratios are given in Table 3. In order
to get a material-independent presentation, the coordinates
of the points are given in the scaled loading space.

In Table 4 numerical details for the two-dimensional and
the three-dimensional case are compared. For both cases,
the relevant numbers describing the problem’s dimension
are presented as well as the mean values of the number
of iterations and the CPU-time. The latter ones are used to
demonstrate a tendency and shall not be used for an exact
comparison, because the average is taken over a different
total number of values.

Since the number of iterations is very sensitive to the
applied convergence criteria and tolerances, the absolute
value may not be as important as the comparison between
the different cases. Thus, the number of iterations is scaled
to the one in the two-dimensional case. The same holds for
the given value of CPU-time due to the sensitivity to the used
computer.

5.3 Discussion of results

The high values of the computed shakedown factors in the
case that the temperature load predominates the normal
tractions, μ+

1 < 0.5 μ+
3 and μ+

2 < 0.5 μ+
3 , are only of theo-

retical interest, because the assumption of temperature- inde-
pendence of the material parameters is no more valid due to
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Fig. 8 Shakedown domain in three-dimensional loading space

the high temperatures. Nevertheless, as expected, also in the
range of predominating normal tractions, there is an impor-
tant influence of the temperature loading on the shakedown
factor.

The number of variables in the three-dimensional case is
nearly twice the number in the two-dimensional case, as can
be seen in Table 4. The number of constraints is even more
than doubled. Thus, the significant increase of running time is
not astonishing. However, the small difference in the number
of iterations is remarkable.

6 Conclusions

A new method for the application of shakedown analysis
to the case of multidimensional loading spaces has been

Table 3 Numerical results of shakedown analysis in three-dimensional
loading space

(μ+
1 , μ+

2 , μ+
3 ) P1/σY P2/σY E αT �T/σY

(1, 0, 0) 0.619 0 0

(0, 1, 0) 0 0.611 0

(0, 0, 1) 0 0 22.823

(1, 1, 0) 0.454 0.454 0

(0, 1, 1) 0 0.566 2.022

(1, 0, 1) 0.568 0 2.029

(1, 1, 1) 0.426 0.426 1.523

(0.5, 0.5, 1) 0.402 0.402 2.876

(0.5, 1, 0.5) 0.254 0.508 0.908

(1, 0.5, 0.5) 0.508 0.254 0.907

(0.5, 1, 1) 0.244 0.489 1.748

(1, 0.5, 1) 0.489 0.244 1.747

(1, 1, 0, 5) 0.440 0.440 0.786

Table 4 Comparison between the 2D- and 3D-computation

2D-case 3D-case

NK 882 882

NG 3200 3200

NC 4 8

n 67201 131201

m∗
E 50646 114646

m I 12800 25600

∅ No. of iter. (%) 100 113

∅ CPU-time (%) 100 249

presented, allowing to compute shakedown domains of struc-
tures subjected to arbitrary finite numbers of independent
thermo-mechanical loads.
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The algorithm has been used for the computation of the
shakedown loading factors of a plate subjected to three
thermo-mechanical loads which vary independently of each
other. The associated three-dimensional loading space and
the three-dimensional shakedown domain have been pre-
sented.
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