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Abstract A new multiscale computational method is
developed for the elasto-plastic analysis of heterogeneous
continuum materials with both periodic and random micro-
structures. In the method, the multiscale base functions which
can efficiently capture the small-scale features of elements
are constructed numerically and employed to establish the
relationship between the macroscopic and microscopic vari-
ables. Thus, the detailed microscopic stress fields within
the elements can be obtained easily. For the construction
of the numerical base functions, several different kinds of
boundary conditions are introduced and their influences are
investigated. In this context, a two-scale computational mod-
eling with successive iteration scheme is proposed. The new
method could be implemented conveniently and adopted
to the general problems without scale separation and peri-
odicity assumptions. Extensive numerical experiments are
carried out and the results are compared with the direct
FEM. It is shown that the method developed provides excel-
lent precision of the nonlinear response for the heteroge-
neous materials. Moreover, the computational cost is reduced
dramatically.
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1 Introduction

In the past few decades, composite materials are commonly
used in industrial and engineering practice due to their excel-
lent mechanical and physical properties, such as high strength
and high stiffness, heat-resistance, low density, high damp-
ing, improved thermal conductivity, and so on. These materi-
als always have multiple scale natures and are heterogeneous
at a certain scale. The microstructure characteristics, includ-
ing the sizes, morphologies, strengths and distributions of
the heterogeneities, have a significant impact on the over-
all macroscopic behavior of composite materials. In order
to optimize the composite materials and take advantage of
the different properties of each component more reasonably,
it is necessary to investigate the influence of the microstruc-
tures on the macroscopic performance. In principle the direct
numerical methods by meshing all the heterogeneities can be
applied for these problems, but such treatment will lead to
systems with very large numbers of degrees of freedom when
the materials are complicated and may be not practicable even
using the advanced supercomputers, owing to the requisite of
a tremendous amount of computer memory and CPU time.
Thus, it has become an essential problem to develop effective
computing models of heterogeneous materials in the practice
engineering.

A large body of research has been performed to obtain
the effective material properties of heterogeneous media
through various multiscale modeling techniques. Kanoute
et al. [1] reviewed some commonly used multiscale methods
in the context of modeling mechanical and thermomechan-
ical responses of composites. Among them, macroscopic
effective constitutive response is predicted as a result of the
analytical or numerical solution of a boundary value prob-
lem at the microscopic level. For the analytical approach,
Eshelby [2] considered the shape of the inhomogeneity by
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means of the Eshelby tensor and proposed the equivalent
inclusion method. The method was further developed by a
number of authors, for example, Hashin and Strikman [3],
Mori and Tanaka [4], Hill [5], Christensen and Lo [6], Hori
and Nemat-Nasser [7], et al. Also, there are some other
analytical methods, such as the transformation field analy-
sis theory [8]. However, there are a few restrictions when
these simplified micromechanics models are used to solve
the nonlinear problems, since they are difficult in capturing
accurately the detailed microscopic stress and strain infor-
mation in the complicated structures.

To overcome these difficulties, some numerical multi-
scale methods for heterogeneous materials are proposed and
become increasing popular. In general, two different kinds
of these numerical approaches can be distinguished. The first
one concerns the case where the scales of microscopic and
macroscopic can be fully separated. Notable among this kind
of approaches is the asymptotic computational homogeniza-
tion method, also called global-local analysis, which was first
proposed by Benssousan and Lions [9] and Suquet [10] et al.
In this method, the FEM is applied to obtain the homogenized
material parameters as well as evaluate the valuable infor-
mation on the local micro-scale fields from the macroscopic
responses [11]. The computational homogenization method
has been extensively studied and extended for solving various
kinds of nonlinear problems, such as, small deformation elas-
to-plastic problems [12–18], local damage problems [19,20]
and dynamic wave propagation problems [21–23]. Despite
its overall success, the asymptotic computational homogeni-
zation method also has some limitations. For example, the
numerical procedure is constructed by assuming the local
periodicity on the RVEs. However, in practice, many hetero-
geneous materials have more or less arbitrariness in the size
and distribution of constituents. In order to adapt to general
heterogeneous materials, the size of RVE must be sufficiently
large to contain enough microscopic heterogeneous informa-
tion [13], which results in increase of the computational cost.

The second kind of approaches concerns the case where
the characteristic length of microscale is not small enough
to satisfy the assumption of the scale separation (e.g. see
[24–26] and the references therein). This kind of approach
requires that special strategies are needed for bridging the
micro- and macro-scale directly. In present paper, we treat the
problems of this kind. For this purpose, we inherit the basic
idea of the multiscale finite element method (MsFEM), which
can be traced back to the work presented by Babuska et al.
[27,28] and was further developed by Hou et al. [29,30] for
solving second-order elliptic boundary value problems with
high oscillating coefficients. The MsFEM provides an effec-
tive way to capture the large-scale solutions on a coarse-scale
mesh without resolving all the small-scale features. This is
accomplished by constructing the multiscale base functions
(shape functions) that are adaptive to the local property of

the differential operator. The method has been successfully
used for the numerical simulation of the two-phase flow and
transport in highly heterogeneous porous media [31–34] and
extended to solve the nonlinear partial differential equations
[35]. Moreover, several similar multiscale methods have been
developed, such as the multiscale finite volume method [36]
and the finite volume multiscale finite element method [37].
However, fewer works discuss about the applications of the
MsFEM for the vector field problems in the computational
solid mechanics. It seems that the method will face some
difficulties when it is extended to deal with the problems in
solid mechanics where the bulk expansion/contraction phe-
nomena (i.e., Poisson’s effect) have to be considered in the
construction of the base functions.

In order to solve the problems in solid mechanics, an
extended mutilscale finite element method (EMsFEM), in
which the additional coupling terms of the numerical base
functions for the interpolation of the displacement field are
introduced to consider the coupling effect among different
directions in multi-dimensional vector problems, was pro-
posed by Zhang and his coworkers [38]. By doing this, the
microscopic heterogeneous features of elements can be well
captured by the numerical base functions in the solid defor-
mation. The EMsFEM has been successfully used for the
elastic [38] and elasto-plastic [39] analyses of the periodic
lattice truss materials. The above-mentioned researches show
that, the downscaling computation in the EMsFEM can be
implemented easily and the detailed microscopic stress and
strain fields can be obtained simultaneously as well as the
macroscopic responses. Thus, the EMsFEM has great poten-
tial for nonlinear analysis of heterogeneous materials.

In this paper, the EMsFEM is further developed for mod-
eling the elasto-plastic behavior of heterogeneous continuum
materials. The small deformation of elasto-plastic materials
with the von Mises yield criterion is assumed. Both the mate-
rials with periodic and random microstructures are consid-
ered. A large number of numerical experiments have shown
that the boundary conditions for the construction of the base
functions play a key role on the accuracy of the multiscale
method. A good choice of the boundary conditions can signif-
icantly improve the numerical precision. Thus, two new kinds
of boundary conditions, i.e., the periodic boundary condi-
tions and generalized periodic boundary conditions are intro-
duced for the construction of the numerical base functions.
They are expected to reflect better the nature of the under-
lying heterogeneities of coarse elements. With the evolution
of microscopic stress in the nonlinear analysis, the unbal-
anced nodal forces in micro-scale are treated as the combined
effects of macroscopic equivalent forces and microscopic
perturbed forces by a special technique under the condition of
consistency, in which the macroscopic equivalent forces are
used to solve the macroscopic displacement field and micro-
scopic perturbed forces are used to obtain the detailed stress
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and strain in the micro-scale. Then the two-scale computa-
tional strategy with successive iteration scheme is proposed
in the framework of nonlinear analysis. Extensive numerical
examples are carried out and the results are compared with
the traditional FEM which is applied directly on the resolved
fine grids. The results show that the EMsFEM developed pro-
vides excellent precision of the nonlinear response for the
heterogeneous materials, especially under the (generalized)
periodic boundary conditions. Meanwhile, we will show that,
the computer memory and CPU time required in our method
are reduced dramatically.

Note that, unlike classical homogenization based
approaches, since a full representation of the microstruc-
ture is solved directly on each coarse element rather than
at the Gauss points of element, the method can obtain more
accuracy results about the real microscopic stress and strain
information. This is quite advantageous for strength and non-
linear analyses of heterogeneous materials, particularly when
the stress and strain values in each element on micro scale
are required. Moreover, the scale separation and periodicity
assumption are no longer required in the current research,
which further widen the range of applications of the method.

This paper is organized as follows. In the next section, the
base equations for the elasto-plastic problems of continuum
materials are briefly given. In Sect. 3, we present in detail
the construction process of the numerical base functions for
the displacement field of a coarse element, in which different
kinds of boundary conditions for the construction of the base
functions are presented. In Sect. 4, the equivalent stiffness
matrix of a coarse element is deduced. Then, the downscal-
ing computation technique of the EMsFEM is presented in
Sect. 5, by which the real microscopic variables within the
elements can be obtained easily. In Sect. 6, after introducing
the equivalent technique of microscopic nodal forces (unbal-
anced forces) in the EMsFEM, the two-scale computational
modeling with successive iteration scheme is proposed in
the context of nonlinear analysis. Also, the flow charts of
the implementation processes are provided. In Sect. 7, sev-
eral illustrative numerical examples are conducted and the
results are compared with the direct FE method to examine
the validity of the EMsFEM. Then, the computer memory
and CPU time are compared between the two methods to
show the efficiency of the new method in Sect. 8. Finally,
some discussions are presented.

2 Basic equations of the elasto-plastic problems

In this section, we briefly present the basic equations for the
small deformation elasto-plastic analysis of continuum mate-
rials. Also, some notations and assumptions that will be used
in the subsequent sections are provided.

Ω

Γ

uΓ

σΓ

x

y

Fig. 1 Illustration of the heterogeneous body

Consider an elasto-plastic continuum body occupying a
region � and having a boundary � depicted in Fig. 1. The
boundary is constrained in some regions, where displace-
ments are specified. Also, on part of the boundaries, distrib-
uted force per length, called traction, is applied. Note that
only the plane strain problems are considered in this paper.
The equilibrium equation and boundary conditions can be
expressed as

div (D : ε (u)) = f in �
nσ = T on �σ
u = u on �u

(1)

where D is the fourth-order stiffness tensor representing
material properties, ε (u) is the strain tensor given as

ε (u) = 1

2

(
∇u + (∇u)T

)
(2)

and u is the displacement vector; σ is the stress tensor which

has four independent components, σ = [
σx σy σz τxy

]T ; f

is the body force vector, f = [
f x f y

]T ;�σ and �u are the
force and displacement boundary conditions, respectively; n
is the unit normal matrix given as

n =
[

nx 0 0 ny

0 ny 0 nx

]
(3)

The strain increment is decomposed into the elastic and plas-
tic parts, dεe and dεp, such that

dε = dεe + dεp (4)

Also, we have the following constitutive relations

dσ = De(dε − dεp) (5)

where De is the fourth-order elasticity tensor.
For simplicity, we assume that the elasto-plastic mate-

rials defined here obey the Mises yield criterion with lin-
ear isotropic hardening. For the classical rate-independent
J2 elasto-plasticity, the yield function, plastic flow rule,
loading/unloading condition of the Karush–Kuhn–Tucker
form and the plastic consistency condition are given as,
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respectively

f (σ, ξ) = σ̄ − σY (ε̄
p) (6)

dεp = dλ
∂Q

∂σ
(7)

f ≤ 0, λ ≥ 0, f λ = 0 (8)

ḟ = 0 (9)

where σ̄ and σY are the equivalent stress and yield stress,
respectively, which can be expressed as

σ̄ =
√

3

2
σdev:σdev, σY = σ 0

Y + H ε̄ p (10)

where σdev = σ − (1/3)tr(σ)I denotes the deviatoric stress
tensor and I is the second-order symmetric unit tensor, σ 0

Y is
the initial yield stress, H is the hardening modulus, λ ≥ 0
is the plastic multiplier, ξ is the vector of internal state var-
iable for the strain hardening and can be identified with the
equivalent plastic strain such that

ξ := ε̄ p =
∫ √

2

3

∣∣dεp
∣∣ =

∫ (
2

3
dε p

i j dε
p
i j

)1/2

(11)

In the case of associative plasticity, the flow potential func-
tion Q is the same as f , so the associative flow rule of plastic
deformation can be given as follows

dεp = dλ
∂ f

∂σ
= dλ

3

2

σdev

σ̄
(12)

The above descriptions are referred to as the fine-scale model
problems. For the problems with multiscale feature, the
length scale of heterogeneities ε is much smaller than the
macroscopic scale of structures. A meaningful solution is
obtained with traditional FEM only if the finite element’s
mesh size h is smaller than the finest scale, i.e., h � ε, which
is prohibitive due to that it requires a tremendous amount of
computing resource. While for the EMsFEM developed in the
following sections, since the small scale information can be

effectively captured on the large-scale through the numerical
multiscale base functions, then the problems can be solved
using a mesh of size h � ε, thus resulting in a reduced
number of degrees of freedom in the computational model.

3 The construction of numerical base functions

Let us consider the fine and coarse discretization meshes as
shown in Fig. 2. For the EMsFEM, the main work is to numer-
ically construct the multiscale base functions of each coarse-
grid element. Then the small scale information is gathered
into large scale through the equivalent stiffness matrices. By
this way, the effect of small scale is well captured on the large
scales.

For the vector field problems of computational solid
mechanics, Numerical experiments have shown that the mul-
tiscale base functions used for the displacement interpolation
in different coordinate directions are no longer the same for
the coarse-grid elements with heterogeneous media. Thus the
multiscale base functions for the displacement field should be
constructed separately for different direction components. In
the two-dimensional problems, two forms of base functions
are constructed, in which one is used for the displacement
interpolation in the x-direction and the other is used for the y-
direction. In addition, to consider the coupling effect among
different directions in the solid deformation, the additional
coupling terms of the displacement fields are introduced into
the multiscale base functions. The multiscale element then
becomes mixed-interpolation type.

Take one of the coarse elements shown in Fig. 2 for exam-
ple, the element occupying a region K,K ⊂ �. The base
functions are constructed by solving the equilibrium equa-
tion in region K with some specified boundary conditions.

From Eqs. 1 and 2, the general expression for solving the
base functions of a two-dimensional problem can be given

Fig. 2 Schematic description
of the EMsFEM
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as follows

LNi = 0 in K
Ni (x, y) affined on ∂K
i = 1, 2, . . . ,m

(13)

where L is the calculation operator and satisfies Lu =
div

(
D : 1

2

(∇u + (∇u)T
))

; m means the node number of a
coarse element and m = 4 is used in the current research.

Equation 13 is solved with the following boundary condi-
tion

Ni = N0
i on ∂K (14)

where Ni is the base function of a coarse-grid node i and has
two forms, i.e., Nx

i and Ny
i . It satisfies Ni | j = δi j , (i, j =

1, 2, . . . ,m), where Ni | j = Ni (x j , y j ) is defined and δ is
the Kronecker delta; N0

i is the boundary value imposed for
the construction of the base function Ni . In general, Eqs. 13
and 14 are solved with the traditional FEM on the corre-
sponding fine-scale grids (i.e., sub-grids shown in Fig. 2) to
compute the base functions Ni .

Once the base functions have been constructed, the dis-
placement fields within a coarse element can be expressed
as

u =
4∑

i=1

Nixx u′
i +

4∑
i=1

Nixyv
′
i (15)

v =
4∑

i=1

Niyyv
′
i +

4∑
i=1

Niyx u′
i (16)

in which Niyx (or Nixy) is introduced which is an addi-
tional coupling term and means the displacement field in the
y-direction (or x-direction) within the element induced by
unit displacement of node i in the x-direction (or y-direction).

The base functions constructed should satisfy

⎧⎪⎪⎨
⎪⎪⎩

4∑
i=1

Nixx = 1,
4∑

i=1
Niyy = 1

4∑
i=1

Niyx = 0,
4∑

i=1
Nixy = 0

(17)

Equations 15 and 16 can be expressed in a unified form

u = Nu′
E (18)

where N is the base function matrix of a coarse grid element,
u is the displacement vector of the nodes in the fine-scale
mesh, and u′

E is the displacement vector of nodes in the macro
level. They can be expressed as

u = [u1 v1 u2 v2 · · · · · · un vn]T

N =
[
RT

1 RT
2 · · · RT

n

]T

u′
E = [

u′
1 v1′ u′

2 v
′
2 u3′ v3′ u4′ v4′

]T (19)

where

Ri =
[

N1xx (i) N1xy(i) N2xx (i) N2xy(i) N3xx (i) N3xy(i) N4xx (i) N4xy(i)
N1yx (i) N1yy(i) N2yx (i) N2yy(i) N3yx (i) N3yy(i) N4yx (i) N4yy(i)

]

i = 1, 2, ......, n (20)

and n is the total node number of the fine-scale mesh within
the sub-grids.

As mentioned by many researchers [29–32,38,39], the
choice of the boundary conditions N0

i for the construction
of the base functions has a big influence on the accuracy of
the multiscale solutions. References [38,39] have proposed
two kinds of boundary conditions, i.e., linear boundary con-
ditions and oscillatory boundary conditions with oversam-
pling technique, for the construction of the base functions. In
this paper, two new kinds of boundary conditions (i.e., peri-
odic boundary conditions and generalized periodic boundary
conditions) are introduced. In the following, we take the con-
struction of Nx

1 = {
N1xx , N1yx

}
as an example to show the

basic construction process of the numerical base functions.

3.1 Linear boundary conditions (EMsFEM-L)

As shown in Fig. 3, for the linear boundary conditions, a unit
displacement is applied on the node 1 in the x-positive direc-
tion, and the values vary linearly along boundaries 12 and 14,
just as in the standard bilinear (linear) base functions, while
the displacements on boundaries 34 and 23 are constrained in
the x-direction to avoid rigid displacement. At the same time,
the displacements of the boundary nodes of the sub-grids are
all constrained in the y-direction. Using the boundary condi-
tions mentioned above, the internal displacement field of the
coarse element can be obtained by solving the equilibrium
equation (Eq. 13) on the sub-grids with the standard finite
element analysis. Therefore, the numerical base function Nx

1
is obtained. The rest of base functions of the coarse element
can be constructed in a similar way.

Fig. 3 The construction of base functions Nx
1
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3.2 Oscillatory boundary conditions with oversampling
technique (EMsFEM-O)

It is easy to know that the linear boundary conditions impose
too strong restrictions on the deformation of the boundary
layer of the coarse elements. These artificial constraints will
make the equivalent stiffness matrices of elements overes-
timate, especially for highly heterogeneous materials. The
oversampling technique will relieve this difficulty in some
degrees. Note that unlike the scalar problems [29–31], the
oversampling technique is used here just for obtaining the
oscillatory boundary conditions, which are further applied
for the construction of base functions of the target coarse
elements.

Consider a larger domain K′ that covers the coarse ele-
ment as illustrated in Figs. 2 and 4, in which 
1234 is the
original element (target coarse element) and
1′2′3′4′ is the
oversampling element. Firstly, the temporary base functions
ψ j ′( j ′ = 1′, 2′, 3′, 4′) of the oversampling element are con-
structed with the linear boundary conditions shown in Fig. 4
(here, ψ1′xx is taken as an example), without consideration
of the additional coupling terms in the base functions. Then
the temporary base functions ϕi of the original element are
constructed through the linear combination of ψ j ′ , i.e.

φi xx =
4∑

j=1

cx
i j
ψ j ′xx (21a)

φiyy =
4∑

j=1

cy
i jψ j ′ yy (21b)

where cx
i j

and cy
i j

are the constants determined by the condi-

tions φi xx | j = δi j and φiyy
∣∣

j = δi j , respectively. The tem-

porary base functions ϕi obtained satisfy
∑4

i=1 φi xx = 1,∑4
i=1 φiyy = 1. Then, the boundary node values of ϕi are

extracted and used as the oscillatory boundary conditions
for constructing the final base functions. Without loss of

Fig. 4 Illustration of the oversampling technique

generality, Nx
i = {

Nixx , Niyx
}

can be obtained by solving
the following problem

LNx
i = 0 in K

Nixx (x) = φi xx , Niyx (x) = 0 on ∂K
i = 1, 2, ......,m

(22)

The final base functions, i.e., Nixx , Nixy, Niyy and Niyx (i =
1,2,3,4) obtained by this way also satisfy Eq. 17.

3.3 Periodic boundary conditions (EMsFEM-P)

For the materials with periodic microstructures, we consider
a RVE (unit cell), with vertices 1, 2, 3, 4 that are intercon-
nected by boundaries �12, �23, �43 and �14, as shown in
Fig. 5. Instead of the prescribed displacements which are
common in the linear boundary conditions, kinematical con-
straints are applied to the boundaries to ensure periodicity of
the model in the deformed configuration. Take the construc-
tion of Nx

1 for example, as illustrated in Fig. 5, the boundary
conditions for a pair of the corresponding nodes

(
A+,A−)

on opposite edges �12 and �43, can be given as
{

uA+ − uA− = 
x
vA+ = vA− (23)

Similarly, for a pair of the corresponding nodes
(
B+, B−)

on the opposite edges �14 and �23, the boundary conditions
can be expressed as
{

uB+ − uB− = 
y
vB+ = vB− (24)

where, 
x and 
y are the given constants, whose values
at node 1 are both set to be 1, and are both set to be 0 at
nodes 2 and 4. For the other boundary nodes, the values of

x and 
y vary linearly along edges �12 and �14, respec-
tively. The displacements of the node 3 are constrained in

1 2

3
4

x

y

K

uA+=uA-+ x
vA+=vA-

A+

A-

B-B+

uA-

vA-

uB+=uB-+ y
vB+=vB-

uB-

vB-

[ ]

][[ ]

[ ]

Fig. 5 Periodic boundary conditions for the construction of base func-
tion Nx

1
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both coordinate directions. Using the kinematical constraints
described above, the whole displacement field of the coarse-
grid element can be obtained by solving the equilibrium equa-
tion (Eq. 13) on the sub-grids with the standard finite element
analysis. In this way, the numerical base functions can be
obtained.

3.4 Periodic boundary conditions combined with the
oversampling technique (generalized periodic boundary
conditions) (EMsFEM-OP)

Combining the periodic boundary conditions and the over-
sampling technique mentioned above, the generalized
periodic boundary conditions are introduced for random
(non-periodic) heterogeneous materials. The main idea of
this approach can be described as follows. First, the over-
sampling technique is only used to construct the oscillatory
boundary conditions. Subsequently, based on the generated
oscillatory boundary conditions, kinematical constraints are
extracted and applied to the target grid element to com-
pute the required multiscale base functions, which are dif-
ferent from the conventional oversampling technique where
the generated oscillatory boundary conditions are directly
imposed on the target coarse grid elements.

Take the construction of Nx
1 for example, the numerical

procedure requires three steps:

Step 1 The oversampling technique is utilized to obtain the
oscillatory boundary conditions for the base functions, just
the same as the step mentioned above for the oversampling
technique. As an example illustrated in Fig. 5, the generated
displacements in the x-direction of a pair of nodes

(
A+,A−)

on the opposite edges are u′
A+ and u′

A− , respectively.

Step 2 With the oscillatory boundary conditions obtained
above, the kinematical constraints are constructed and
applied to the target coarse grid element, e.g., for the cor-
responding nodes

(
A+,A−)

(the kinematical constraints for
the nodes

(
B+,B−)

can be constructed in the same way), the
constraints can be written as{

u A+ − u A− = u′
A+ − u′

A−
vA+ − vA− = 0

(25)

Step 3 Using the kinematical constraints described above,
the based functions can be constructed directly on the coarse
grid element.

4 Equivalent stiffness matrix

Once the multiscale base functions are constructed, the equiv-
alent stiffness matrix of a coarse element can be obtained

under the conception of equivalence of strain energy, such
that

KE =
p∑

e=1

K′
e, K′

e = GT
e KeGe (26)

where p is the total number of fine-scale elements within the
sub-grids, Ke is the traditional stiffness matrix of a fine-scale
element e (see Fig. 2), which can be expressed as

Ke =
∫

�e

BT
e DeBed�e (27)

in which Be and De are the strain-displacement matrix and
material property matrix of the element e, respectively; Ge

is a transition matrix which denotes the mapping relation
between the displacement vectors of the micro-scale nodes
and macro-scale nodes

ue = Geu′
E,Ge =

⎡
⎢⎢⎣

Re1

Re2

Re3

Re4

⎤
⎥⎥⎦ (28)

where ue is the displacement vector of element e.
In the same way, we can obtain all the equivalent element

stiffness matrices of the coarse elements. Thus the equivalent
global stiffness matrix of the overall structure is obtained as
follows

K = M
A

i=1
Ki

E (29)

where AM
i=1 is a matrix assembled operator, and M is the

total number of the coarse elements, Ki
E can be obtained

from Eq. 26.
The traditional FEM is then, able to be carried out on the

coarse-scale meshes, which reduces the degrees of freedom
significantly in the macroscopic level computation. Thus, the
macroscopic displacement vector U can be obtained by solv-
ing the following equation

KU = Fext (30)

where Fext is a system of external forces subjected to the
structure.

5 Downscaling computation

As for the EMsFEM, the relation between the micro- and
macro- scales is created through the multiscale base functions
which are constructed numerically and can reflect the micro-
scale natures within each coarse element. Take advantage of
this relation, the downscaling computation could be carried
out easily and the detailed stress and strain information at the
micro-scale can be obtained simultaneously in the multiscale
computation as well as the macro displacement response of
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the overall structure. Thus, the evolution of the microscopic
variables accompany with the load steps can be well captured,
which is important for the elasto-plastic analysis.

Take the fine-scale element e mentioned above as an exam-
ple, the microscopic nodal displacements can be obtained
through Eq. 28 when the macroscopic displacements have
been obtained. Then, it is easy to obtain the strain and stress
of element e by using the geometrical equation and the phys-
ical equation

εe = Beue = Teu′
E , Te = BeGe (31)

and

σe = Deεe = Seu′
E , Se = DeBeGe (32)

In practical implementation, the strain mapping matrix Te

and the stress mapping matrix Se of the element e can be
stored in a data base and do not need to be re-computed, then
the microscopic strain and stress information can be conve-
niently obtained at each incremental step.

6 Two-scale modeling scheme for elasto-plastic analysis

In this section, a two-scale modeling scheme based on the
EMsFEM for the elasto-plastic heterogeneous materials is
developed and the flow charts of the algorithm are provided.

1 2

34

nmicroF

n

Coarse element

The structure

Fig. 6 A force applied on the node of microscale meshes of a coarse
element which is contained in the structure

6.1 Treatment of micro-scale nodal forces

As we can see from Sect. 4 that, the problems are finally
solved on the macro-scale once the equivalent stiffness matri-
ces of coarse elements have been obtained. In this case, the
external forces Fext in the formula (30) should be applied on
the macroscopic nodes. However, it is inevitable that some
external forces are acted on the nodes of micro-scale meshes
within the coarse elements. On the other hand, when material
nonlinearity is considered in the multiscale analysis, it will
induce unbalanced nodal forces in the micro-scale meshes
with the emergence of plastic deformation. Thus, it is neces-
sary to put forward an equivalent method to substitute the
macroscopic nodal forces (i.e., the forces applied on the
corner nodes of coarse elements) for the micro-scale nodal
forces, and ensure that the global displacement response of
structure and local micro-scale stress and strain response
within the coarse elements are remain unchanged.

As shown in Fig 6, a force Fmicro,n is applied on the nth
node of micro-scale meshes of a coarse element which is
contained in the structure. In our method, the nodal forces
in the micro-scale within the coarse element are treated as
the combined effects of the macroscopic equivalent forces
and microscopic perturbed forces (see Fig. 7a, b), in which
the macroscopic equivalent forces (Fig. 7a) are used to solve
the macroscopic displacement field and the microscopic per-
turbed forces (Fig. 7b) are used to obtain the local stress and
strain in the micro-scale.

In reference [39] we have derived the macroscopic equiv-
alent forces by virtue of the principle of virtual work, it can
be expressed as

FE,n = Fmicro,nRn (33)

in which FE,n = [
FE1,n FE2,n FE3,n FE4,n

]
are the mac-

roscopic equivalent forces shown in Fig. 7a, and FEi,n =[
FEi x,n FEiy,n

]
(i = 1, 2, 3, 4). Rn is a part of the numeri-

cal base function that can be obtained by formula (20).
For the microscopic perturbed forces, since the periodic

boundary conditions are used in this paper for the construc-
tion of numerical base functions, to be consistent, here we just

Fig. 7 Equivalence of
micro-scale nodal force depicted
in Fig 6: a macroscopic
equivalent forces; b constrains
for the microscopic perturbed
forces

n1EF n2EF

n3EFn4EF

+
n

nmicroF

(a) (b)
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fix the four corner nodes of the coarse element in the x- and
y-directions, while the other boundary nodes of the coarse
element are constrained periodically as shown in Fig. 7b.
Then the local effect of the microscopic perturbed force can
be obtained by the conventional FE analysis on the sub-grids
acted by the force Fmicro,n under the constraint conditions
mentioned above.

6.2 Incremental iteration algorithm

In the numerical procedure of the EMsFEM, two-scale com-
putational strategy is established to analyze the nonlinear
problems, in which the macro-scale (coarse-scale) is used
to solve the macroscopic displacement increment and the
micro-scale (fine-scale) is adopted to obtain the evolution of
the microscopic stress and strain. The link between the two
scales is built through the numerical base functions.

As the analysis in Sect. 6.1, the temporary microscopic
stress increment in the EMsFEM can be treated as combined
effects of two items, that is

dσ̃ = d
∑

+dσ̂ (34)

where d
∑

is the stress increment induced by the macro-
scopic displacement increment 
U, and dσ̂ is the stress
increment induced by the local effect of microscopic per-
turbed forces. Note that dσ̂ is set to zero vector for the first
iteration step since no microscopic unbalanced forces exists.

To describe the evolution of plastic strains, we introduce
a load parameter t, 0 ≤ t ≤ T . Now the load interval [0, T ]
of interest is discretized into some nonoverlapping intervals
[0, T ] = ∪N

n=0

[
tn, tn+1

]
. We assume that the solutions of

variables ε
p
n ,σn, ξn and Un at load step tn are given. Then

the variables at tn+1 can be computed by using the following
incremental FE algorithm in the interval 
t = tn+1 − tn .

(a) For the macro-scale problems, we introduce the load
increment parameter ςn+1 = (n + 1)
t/T and suppose that
all the external forces Fext are acted on the macroscopic
nodes, thus we have


U = [
τK

]−1

F(tn ≤ τ ≤ tn+1) (35)

where


F = (ςn+1 − ςn)Fext (36)

and

τK = M
A

i=1

τKi
E (37)

where τKi
E is the equivalent stiffness matrix of the i th coarse

element, M is the total number of coarse elements in the
structure.

As we know that the equivalent stiffness matrix of the
coarse element are derived by the numerical multiscale base
functions whose values depend on the material properties of

the fine-scale elements within the coarse element. For the
material nonlinearity problems, the material property matrix
[D] in Eq. 13 and [De] in Eq. 27 are changed along with
the evolution of macroscopic displacements. That is to say,
the Eq. 35 is a nonlinear system of equations. There are sev-
eral common methods can be used for solving this prob-
lem, such as, the Newton-Raphson iteration (N-R) method,
the modified Newton-Raphson iteration (mN-R) method and
the initial stiffness iteration method. For the N-R method, it
requires that the numerical base functions of coarse elements
be re-constructed and the equivalent global stiffness matrix
be re-formed and reduced in each iteration step. Whereas
the mN-R method requires that the numerical base functions
and the equivalent global stiffness matrix are updated only
at the beginning of each increment step. It avoids the expen-
sive repetitions of constructing base functions and forming
equivalent matrix. However, more iterative steps are needed
in order to reach the convergence. Generally speaking, the
initial stiffness iteration method can be seemed as a special
case of the mN-R method, whose base functions and equiv-
alent stiffness matrix of each coarse element only need to be
solved one time in the elastic stage and remain unchanged for
the subsequent increment steps. For the sake of simplicity, in
this paper, we just used the initial stiffness iteration method
to solve the nonlinear system of equations.

It should be remarked that, though the initial stiffness itera-
tion method refrains from recomputing the equivalent matrix
thus overcomes a major computational cost, it sometimes
will encounter convergence rate problem. Suppose elastic-
perfectly plastic materials are used, the procedure may con-
verge at a slow rate or even fail to converge. In such a case,
the other iteration methods which have been developed for
the high nonlinear analyses of elasto-plastic problems could
be adopted.

(b) For the micro-scale problems, the unknown state vari-
ables at tn+1 can be computed in the following forms by
virtue of the backward (implicit) Euler scheme [40]

εn+1 = εn +
ε (38)

ε
p
n+1 = ε

p
n +
λn+1rn+1 (39)

ξn+1 = ξn +
ξ (40)

σn+1 = De:(εn+1 − ε
p
n+1) (41)

fn+1 = f (σn+1, ξn+1) = 0 (42)

where r = ∂ f
∂σ

is the normal direction of the yield surface.
Using ( 12) and ( 41), the final updated stress σn+1 can be

expressed as follows

σn+1 = σtrial −
λDe: ∂ f

∂σn+1
(43)

in which σtrial = σn + De:
ε is the elastic trial stress. Here,
the radial return algorithm [41] is applied to compute the
returned stress.
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6.3 Flow chart for the elasto-plastic multiscale computation

In the practical computation, there are two main implemen-
tation parts in the EMsFEM for elasto-plastic analysis:

1. Preprocessing part In this part, the numerical multiscale
base functions of each coarse element are constructed,
and the corresponding equivalent stiffness matrix of the

EK
i

M

i
EKK A

1=
=

Fig. 8 Flow chart for the preprocessing part

coarse element is derived in the elastic situation. All these
results are stored in the data base and can be obtained
conveniently. Note that for the heterogeneous materials
with periodic microstructures, the numerical base func-
tions only need to be constructed one time on a unit cell.
The flow chart for preprocessing part is plotted in Fig. 8.

2. Iteration part The nonlinear system is computed incre-
mentally using the initial stiffness iteration scheme in the
frame work of two-scale computational procedure. The
algorithm is converged when macro- and micro-scale
states are equilibrated simultaneously. We employ the
following notation to denote the physical quantities in
the iteration computation: •( j)

n , in which the right sub-
script n denotes the load increment and the right super-
script ( j) denotes the iteration count. Quantities with-
out the right superscript, i.e., •n , denote the converged
results at the load step n. Supposing that the values of
variables σn, ε

p
n , ξn and Un at the time load increment tn

are given. For the increment interval
t = tn+1 − tn , we
have σ

(0)
n+1 = σn, ε

p(0)
n+1 = ε

p
n , ξ

(0)
n+1 = ξn,U(0)n+1 = Un

and 
F(0)n+1 = (ζn+1 − ζn)Fext . The flow chart of itera-
tion part is plotted in Fig. 9.

Fig. 9 Flow chart for the
iteration part
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7 Numerical examples

In this section, several representative numerical examples
are presented for the analysis of elasto-plastic heterogeneous
materials with both periodic and random microstructures.
For the previous case, the linear and periodic boundary con-
ditions are adopted for the constructions of multiscale base
functions, respectively; while for the random one, the gen-
eralized periodic boundary conditions are used. To examine
the validity of the developed method, the structures are also
solved by the directed FEM on the fine-scale models (FEM-
F), whose results can be seen as reference solutions. Note
that plane strain is assumed here and all the parameters are
dimensionless.

Example 1 For the first example, we consider a cantilever
beam structure which is composed of 30 × 6 periodic micro-
structures. The macroscopic FE model is shown in Fig. 10,
in which the x-displacement of the left edge of the struc-
ture and the y-displacement of the middle point on the left
edge is fixed and a uniformly distributed load F is applied on
right side with a magnitude of 1,000 and is divided into 10
steps. Three kinds of unit cells (see Fig. 11) are considered
respectively in this example, in which the unit cell 1 is the
two-phase composite material, the matrix (phase 1) behavior
reveals the plastic deformation (obey the Mises yield crite-
rion with linear isotropic hardening) with Young’s modulus
Ee = 1.0e6, Poisson’s ratio μ = 0.3, hardening modulus
H = 0.25e6 and initial yield stress σ 0

Y = 700, whereas the
hard inclusion (phase 2) is assumed to never yields, with the
following properties: Ee = 1.0e7 and μ = 0.3; the unit cell
2 is porous material without phase 2; the unit cell 3 is solid
and can be seen as homogeneous material.

y

x

A

F

Fig. 10 Macroscopic FE model and its boundary conditions

Figures 12, 13 and 14 show the load-displacement curves
at Point A obtained by the three methods for the struc-
tures with different unit cells. We can see that, for all cases
the results obtained by the EMsFEM-P are more accuracy

Fig. 12 Macroscopic load-displacement curves at Point A (unit cell 1)

Fig. 13 Macroscopic load-displacement curves at Point A (unit cell 2)

Fig. 14 Macroscopic load-displacement curves at Point A (unit cell 3)

Fig. 11 Three kinds of
microscopic FE models: a unit
cell 1; b unit cell 2; c unit cell 3
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than those obtained by the EMsFEM-L. It demonstrates that
the periodic boundary conditions can simulate the deforma-
tion of unit cells within the structures more reasonably and
improve convergence as opposed to linear boundary condi-
tions. However, for the structures with the unit cell 1 and unit
cell 2, there are also slight errors between the EMsFEM-P
and the reference solutions. The maximum relative errors
(i.e., at the final loading step) are 3.78 and 1.80% respec-
tively for two different types of unit cell. The reasons of the
errors of the EMsFEM-P are mainly arisen by the bound-
ary effects of the structure in the frame work of two-scale
procedure and will be discussed in the next numerical exam-
ple in detail. For the structure with homogeneous unit cell
(unit 3), both the EMsFEM-P and EMsFEM-L can yield
almost the same results as the reference values. Figures 15,
16, 17, 18, 19 and 20 show the distributions of microscopic
equivalent stress and equivalent plastic strain for the struc-
tures with different kinds of unit cells obtained by the FEM-
F and EMsFEM-P. We can see that approving results can
be obtained by the EMsFEM-P, whose results fit fairly well
with those of the FEM-F. It illustrates that the EMsFEM-P

can capture well the evolution of the microscopic vari-
ables.

Example 2 We explain the boundary effect of structure men-
tioned above through a simple, but illustrative numerical
example. As shown in Fig. 21, the bottom of a plane strain
structure is fixed in the y-direction and a uniformly distrib-
uted load F=10,000 is applied on the top side. Also, the x-
direction of the left lower corner of the structure is fixed
to avoid the rigid body displacement. The structure is com-
posed of 8×8 periodic unit cells. Only the unit cell 1 shown in
Fig. 11a is considered here and the material properties are the
same as Example 1 except that the initial yield stress for phase
1 here is σ 0

Y = 300. The mesh discretization schemes for the
EMsFEM and FEM-F are shown in Fig. 22a and b, respec-
tively. Figure 23 shows the load-displacement curves at Point
A obtained by the three methods. There are slight errors for
the EMsFEM-P when the loading step increases, while for the
EMsFEM-L, the results are obvious stiffer. The distributions
of microscopic equivalent stress and equivalent plastic strain
for the structure are shown in Figs. 24 and 25. We can see that,

Fig. 15 Microscopic
von-Mises stress at the final
loading step (unit cell 1):
a FEM-F; b EMsFEM-P

Fig. 16 Microscopic
equivalent plastic strain at the
final loading step (unit cell 1):
a FEM-F; b EMsFEM-P
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Fig. 17 Microscopic
von-Mises stress at the final
loading step (unit cell 2):
a FEM-F; b EMsFEM-P

Fig. 18 Microscopic
equivalent plastic strain at the
final loading step (unit cell 2):
a FEM-F; b EMsFEM-P

Fig. 19 Microscopic
von-Mises stress at the final
loading step (unit cell 3):
a FEM-F; b EMsFEM-P

for the unit cells locate on the inside of the structure, both
the distributions of microscopic equivalent stress and equiv-
alent plastic strain obtained by the EMsFEM-P are almost
the same with those of the FEM-F, while for the unit cells

on the boundaries of the structure, the distributions obtained
by the two methods have some differences. This is because
that in the EMsFEM-P, the periodic boundary conditions are
used for the construction of numerical base functions. In this

123



162 Comput Mech (2012) 49:149–169

Fig. 20 Microscopic
equivalent plastic strain at the
final loading step (unit cell 3):
a FEM-F; b EMsFEM-P

Fig. 21 Structure and its boundary conditions

context, the periodic deformations are happened for all the
cells. While in practice, the fine-scale elements on the bound-
aries of structure are not constrained and can deformed freely.
This to say, there are forcible deformations on the boundaries
of the structure in the EMsFEM-P and lead to the errors,
this problem also exists in other homogenization methods.

However, we can see from the results in Figs. 12, 13, 14 and
23 that, the errors caused by the boundary effect of struc-
ture in the EMsFEM-P is very slight and the results meet
the demand of precision. Moreover, when the number of unit
cells contained in the structure increases (i.e., the propor-
tion of the unit cells located on the boundaries of structure is
reduced) or the unit cell tends to be homogeneous, the bound-
ary effects will become more weaken. On the other hand, the
results also illustrate that the periodic boundary conditions
are more reasonable than linear boundary conditions and can
reflect the nature of the underlying heterogeneities since the
deformations of the inner unit cells fit very well with the
direct FE solutions.

Example 3 Consider a macroscopic FE model shown in
Fig. 26, which is composed of 16 × 10 periodic unit cells.
The left and right sides of the model are fixed in the x-direc-
tion and the bottom of the model is fixed in the y-direction.
A uniformly distributed load of 10,000 is applied on the top
side and divided into 10 steps. The two-phase unit cell shown
in Fig. 11a is also used in this example with the initial yield

Fig. 22 Mesh discretization
schemes for the EMsFEM and
FEM-F: a coarse-scale grids;
b fine-scale grids

(b)(a)
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Fig. 23 Macroscopic load-displacement curves at Point A

stress σ 0
Y = 300 and the unloading situation is considered to

examine the feasibility of our method.

For simplicity, only the EMsFEM-P is considered in this
example, and the results are compared with the FEM-F. The
macroscopic load-displacement curves at Points A and B are
plotted in Figs. 27 and 28, respectively. At the same time,
the horizontal and vertical displacement fields of the overall

A

B

10000

Fig. 26 Macroscopic FE model and its boundary conditions

structure obtained by the two methods at loading state P are
shown in Figs. 29 and 30, respectively. As can be seen from
the figures, the results obtained by the EMsFEM-P fit fairly

Fig. 24 Microscopic von-Mises stress at the final loading step: a FEM-F; b EMsFEM-P; c EMsFEM-L

Fig. 25 Microscopic equivalent plastic strain at the final loading step: a FEM-F; b EMsFEM-P; c EMsFEM-L
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Fig. 27 Macroscopic load-displacement curves at Point A (The dotted
arrows denote the loading and unloading direction)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0 200 400 600 800 1000 1200
External force

D
is

pl
ac

em
en

t i
n 

X
-d

ir
ec

tio
n

at
 P

oi
nt

 B

FEM-F

EMsFEM-P

P

Q

Fig. 28 Macroscopic load-displacement curves at Point B (The dotted
arrows denote the loading and unloading direction)

well with the reference values for both loading and unloading
situations. Figures 31 and 32 show the distributions of micro-
scopic von-Mises stress at the state P and Q, respectively. We
can see that the EMsFEM-P can capture well the evolution of
microscopic variables along with the deformation histories.

Example 4 As mentioned before, our method can be easily
used for computing the nonlinear problems with non-peri-
odic microstructures (random microstructures are considered
here), which is hard to be solved by the general homogeni-

zation methods. This is achieved by constructing the appro-
priate boundary conditions for the numerical base functions
of each coarse element that can well capture the heterogene-
ities of fine-scale elements on the boundaries of sub-grids. In
the EMsFEM, the generalized periodic boundary conditions
can be used for this purpose. In this example, we consider a
two-phase composite material beam model shown in Fig. 33.
The size of the model is 240 × 48 and the size of the fine
grid block is 1 × 1. The material property for each phase is
the same as Example 1 and the macroscopic FE model and
boundary conditions shown in Fig. 10 are used. The reinforc-
ing phase (phase 2) is distributed in the fine grids randomly.
Three cases are considered here, in which the volume frac-
tions of the phase 2 are 10, 20 and 30%, respectively. At the
same time, the initial yield stresses of phase 1 for the three
cases are σ 0

Y = 170, 140 and 100, respectively.

Figure 34 shows the macroscopic load-displacement
curves at Point A for the three cases. As we can see that
the results obtained by the EMsFEM-OP and reference val-
ues are in good agreement. The distributions of microscopic
equivalent stress and equivalent plastic strain for the case 2
(volume fraction of the phase 2 is 20%) at the final loading
step are plotted in Figs. 35 and 36, respectively, also a good
agreement between the two methods can be found.

8 Computational cost comparison

The main purpose for developing multiscale methods is to
solve some practical problems that are prohibitive by the tra-
ditional numerical methods (standard FEM, for example) due
to the requisite of a tremendous amount of memory storage
and CPU time. In this section, we make a rough estimate of
the computer memory and CPU time in the EMsFEM, and
compare them with those of the traditional FEM (FEM-F).

Fig. 29 The horizontal displacement field at state P: a FEM-F; b EMsFEM-P
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Fig. 30 The vertical displacement field at state P: a FEM-F; b EMsFEM-P

Fig. 31 Microscopic von-Mises stress at state P: a FEM-F; b EMsFEM-P

Fig. 32 Microscopic von-Mises stress at state Q: a FEM-F; b EMsFEM-P
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Fig. 33 Distribution of materials for composite material beam mode

Fig. 34 Macroscopic load-displacement curves at Point A

Let’s consider a numerical model with the number of
coarse elements N and the number of fine elements within

each coarse element M . Here the elements numbers are
treated as an approximate representation of the nodes num-
bers for ease of description. Then for the FEM applied on
the fine-scale model directly, the total number of elements at
fine scale is N · M and the memory needed is O(a · N · M),
where a is the number of degrees of freedom on a single
node. For the 2-D problems considered in the present paper,
a = 2. For the EMsFEM applied on the coarse-scale mod-
els, if the serial computer is used, the memory needed is
O(a · N ) + N · O(a · M). In addition, if the oversampling
technique is adopted in the EMsFEM, i.e., replace M by
M ′ in the above expression, where M ′ is the number of fine
grid elements within the oversampling region, the memory
needed increases a little. It can be seen that the EMsFEM
can offer a big saving in computer memory for large-scale

Fig. 35 Microscopic
von-Mises stress for the case 2
at the final loading step:
a FEM-F; b EMsFEM-OP
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Fig. 36 Microscopic
equivalent plastic strain for the
case 2 at the final loading step:
a FEM-F; b EMsFEM-OP

computation. For Example 3 in Sect. 7, N = 160,M = 320
and N · M = 51, 200. In this case, the FEM-F needs about
150 times more memory than the EMsFEM.

For the nonlinear problems, the operation count is s1 ·
O(a · N · M) for the FEM-F, where s1 is the total num-
ber of the iterative steps. The operation count for the EMs-
FEM consists of two parts, i.e., the preprocessing computa-
tion part and the nonlinear iteration computation part. In the
preprocessing computation part, sub-grids problems need to
be solved 6 times in each coarse element to obtain the base
functions (i.e., Nx

i and Ny
i , i = 1, 2, 3 need to be solved on

subgrids problems, while Nx
4 and Ny

4 can be computed from
Eq. 17). Thus, the operation count is 6 · N · O(a · M) for
the preprocessing part. Note that if the structures with peri-
odic microstructures are considered, the base functions only
be constructed on one coarse element (unit cell) and used for
other ones, thus the preprocessing times can be omitted in this
case. For the nonlinear iteration computation part, from the
flow chart (Fig. 9) we can see that the operation count is about
s2 ·(N · O(a · M)+ O(a · N )), where s2 is the total number of
the iterative steps for the EMsFEM. Thus the total operation
count is 6 · N · O(a · M)+ s2 · (N · O(a · M)+ O(a · N )).
Note that both of the FEM-F and the EMsFEM use the initial
stiffness iteration procedure for the nonlinear analysis, the
total number of the iterative steps are almost the same for the
two methods. It should be mentioned that it is quite difficult
to compare fairly the CPU times between the EMsFEM and
FEM-F due to many factors (such as algorithm, hard ware,
practical problems, etc), so the function expression of the
operator ‘O’ is hard to define. But we can roughly estimate
that it is the power of degrees of freedom if the serial com-
puter is used. Thus, it also can be seen that the computing time
is reduced significantly in our method when the structures are
large. For Example 3, when the algorithms are implemented
on the same computer, the FEM spends about 11150 seconds
for all the loading and unloading process, while the EMsFEM
only spends about 510 seconds.

It should be remarked here that, since the microscopic
sub-girds problems in the EMsFEM are solved in each coarse
element independently, our method can be easily developed
for the parallel computing. In this context, the computational
cost will be further reduced.

9 Conclusions

A new multiscale computational method for the elasto-plas-
tic analysis of heterogeneous materials is proposed based on
the idea of the extended multiscale finite element method
(EMsFEM), in which the multiscale base functions are con-
structed numerically and employed to establish the relation-
ship between the macroscopic displacement and microscopic
stress and strain. By this means, the microscopic sub-girds
(or RVEs) problems are solved on the coarse-scale element
level rather than on the integration point level that are com-
monly used by many homogenization methods. This brings
us a more convenient way to get directly the mechanical
response on micro scale of the heterogeneous materials,
which is important for strength prediction and nonlinear anal-
yses. Extensive numerical examples for problems with both
periodic and random microstructures are carried out and the
results are compared with those of the direct FEM, it is shown
that the multiscale method developed provides excellent pre-
diction of the nonlinear response for the heterogeneous mate-
rials, especially under the (generalized) periodic boundary
conditions. Moreover, the current method can reduce the
memory storage and CPU time drastically for large scale
structures.

Note that in our method the construction of the base func-
tions and the downscaling computation for each coarse ele-
ment are performed independently, thus, the current method
can be easily developed for parallel computing. So the
method developed has great potential for the nonlinear
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analysis and dynamic analysis of large-scale problems that
are intractable by the traditional numerical methods.
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