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Abstract The aim of this paper is to provide a general
procedure to extract the constitutive parameters of a plasticity
model starting from displacement measurements and using
the Virtual Fields Method. This is a classical inverse problem
which has been already investigated in the literature, however
several new features are developed here. First of all the pro-
cedure applies to a general three-dimensional displacement
field which leads to large plastic deformations, no assump-
tions are made such as plane stress or plane strain although
only pressure-independent plasticity is considered. Moreover
the equilibrium equation is written in terms of the deviator-
ic stress tensor that can be directly computed from the strain
field without iterations. Thanks to this, the identification rou-
tine is much faster compared to other inverse methods such as
finite element updating. The proposed method can be a valid
tool to study complex phenomena which involve severe plas-
tic deformation and where the state of stress is completely
triaxial, e.g. strain localization or necking occurrence. The
procedure has been validated using a three dimensional dis-
placement field obtained from a simulated experiment. The
main potentialities as well as a first sensitivity study on the
influence of measurement errors are illustrated.
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The notation used in the paper follows the indications given in
Elasticity and Plasticity of Large Deformations (Bertram, 2008) [1].

M. Rossi (B) · F. Pierron
LMPF, Arts et Métiers ParisTech, Rue St Dominique, B.P. 508,
51006 Châlons-en-Champagne, France
e-mail: marco.rossi@ensam.eu

F. Pierron
e-mail: Fabrice.Pierron@ensam.eu

List of symbols

Variables
a Acceleration
b Specific body force
[Bk] Matrix to evaluate the gradient at the

integration point of element k
B0,Bt Body in the reference and current

placement
da0, da Element of area in the reference and

current placement
dm0, dm Element of mass in the reference and

current placement
dv0, dv Element of volume in the reference and

current placement
E Young’s modulus
E = lnV Spatial logarithmic strain tensor
Ep• Plastic strain rate
�Ep

k Plastic strain increment at element k
F Total traction force in the test
F Deformation gradient
δF• Virtual velocity gradient
f Resultant of the external forces
δD Virtual rate of deformation tensor
I Unit tensor
̂N (t)

P k = {̂n P
i j } Normalised tensor of the plastic flow

̂N (t)
S k = {̂nS

i j } Normalised tensor of the deviatoric stress
n0,n Normal vector in the reference and current

placement
p Equivalent cumulated plastic strain
R Rotation tensor
R Lankford parameter
t Surface load
S = {si j } Deviatoric part of the Cauchy stress tensor
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T = {σi j } Cauchy stress tensor
T1P K 1st Piola-Kirchhoff stress tensor
U,V Right and left stretch tensors
u Displacement vector
[uN

k ] Matrix of the nodal displacement
at element k

δv Virtual velocity vector
[δvN

k ] Matrix of the nodal virtual velocity at
element k

x0, x Position vector in the reference and current
placement

ν Poisson’s ratio
ξ = {Xi } Constitutive parameters vector
σT Equivalent stress
σY Yield stress
�p Yield function
χ Motion function

Numbering

k Index referring to the element
Ncp Number of constitutive parameters
NE Number of elements
Nt Number of time steps
t Index referring the time step

Operators

· Inner or scalar product
| | Modulus of a tensor or absolute value of a

scalar
Grad, grad Material and spatial gradient operator

Generic notations
scalars Italic letters like A, B, a, b, α, β …
vectors Small letters in bold like a, b,α,β …
tensors Large Latin letters in bold like A, B, …

1 Introduction

The characterization of the plastic behaviour of metals is
commonly obtained by means of uniaxial tensile tests. The
main limitation of such tests is the occurrence of plastic
instabilities, e.g. diffuse and localized necking, as the plas-
tic deformation increases. The necking makes the stress state
inside the specimen triaxial and leads to fracture [2–4]. More-
over extensive research in the field of plasticity and the new
materials continuously developed in this area led to new con-
stitutive models that often require the identification of a great
number of parameters. This area of research is extremely
wide, examples of recent models developed in anisotropic
plasticity can be found in Cazacu et al. [5], Plunkett et al. [6]
and Barlat et al. [7] which extend the criteria of Barlat et al. [8]

and Karafillis and Boyce [9], for instance. Other interesting
theories can be found in Darrieulat and Piot [10], Feigenbaum
and Dafalias [11], Voyiadjis et al. [12]. Vegter and van den
Boogaard [13] use a piecewise description of the anisotropic
yield limit using Bézier splines, Bai and Wierzbicki [14]
introduce the dependence on the third stress invariant. Many
other authors could be cited here, however it is evident that
there is an increasing interest in the field, also from the indus-
trial side, since the new models can be implemented in FE
codes, leading to a more accurate description of the manufac-
turing processes which involve severe plastic deformation.

Often the main limitation to the applicability of a new
model resides in the difficulty of experimentally identify-
ing the required constitutive parameters. Indeed, in order to
characterize the plastic behaviour of such complex materials
up to large deformation the standard uniaxial tests become
inadequate.

More sophisticated experimental procedures can be
employed, for instance hydraulic bulge tests [15,16], bend-
ing tests [17,18], torsion test, punch test, biaxial test [19],
combined tests [20,21] etc.

In general, in these tests, it is not possible to identify
directly the parameters of the constitutive equation because
the stress state in the specimen is not uniform during the
deformation process and it cannot be computed a priori from
the specimen geometry. An inverse approach which involves
finite element (FE) updating is often adopted [22–26], i.e. a
FE model of the test is built up and the constitutive parame-
ters of the plasticity model are iteratively modified in order
to achieve the best agreement with the quantities measured
in the actual tests. The comparison can be made either on the
force measured during the test [27,28] or including also the
displacement measured at the surface of the specimen, for
instance using full-field measurements [22,26]. This proce-
dure can become highly time-consuming, especially if the
constitutive model or the geometry are complex, because
at each iteration a complete FE computation has to be per-
formed. Another drawback is that often the actual boundary
conditions are not perfectly reproduced in the FE model,
introducing errors in the subsequent identification.

Other methods have been proposed to directly evaluate
the constitutive equations from the displacement and strain
field measured by an optical full-field technique, examples
of applications in plasticity are given in Rossi et al. [29] and
Latourte et al. [30]. An interesting approach is the one pro-
posed by Romano et al. [31] where the identification proce-
dure only involves displacement measurements, the method
was used by the same authors to identify the material param-
eters using MRI-based displacement measurements [32].
A complete overview of the identification methods based on
full-field measurement is given by Avril et al. [33].

Among such methods the Virtual Fields Method (VFM)
is one of the most used and well-known. The advantage of
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using full-field measurements in the identification process
is that a lot of information can be obtained from a single
test, especially if it is designed in such a way as to produce
a suitable heterogeneous strain field. A review of the VFM
is given by Grédiac et al. [34] and its application to elasto-
plasticity is described in Grédiac and Pierron [35] and Avril
et al. [36], moreover Pierron et al. [37] extended the method
to cyclic loads and kinematic hardening. In dynamic, exam-
ples of application of the VFM are given in Pierron et al. [38]
and Avril et al. [39].

In the aforementioned papers the VFM was applied to iso-
tropic plasticity at small strain, here it is extended to large
plastic deformation and an anisotropic behaviour is consid-
ered. The main features introduced are:

– the proposed procedure is developed for a general three-
dimensional displacement field, no conditions such as
plane stress or plane strain are imposed;

– dealing with large plastic deformation, the plastic strain
is assimilated to the total one and the elastic part of the
deformation is neglected, in such way the elastic proper-
ties do not enter in the identification of the plastic consti-
tutive parameters. Besides, using the total deformation,
the procedure is less sensitive to the measurement noise
since the magnitude of the strains to be measured is usu-
ally large compared to the sensitivity of the measurement
system;

– at each step the equilibrium equation is written in terms
of the deviatoric stress tensor which can be directly eval-
uated from the displacement field, thus no iterations are
required even if a non linear hardening law is used. This
feature makes the identification procedure very fast even
when a great amount of data have to be processed and a
large number of parameters have to be identified.

All these aspects will be studied in depth in the following.
Since the proposed method can be adapted to various plas-
ticity models, the intent here is also to provide a framework
to the reader which allows to use the same procedure with
different plasticity models.

In this study the Hill48 anisotropic yield criterion was used
and the identification routine was validated using simulated
data from a tensile test on a notched specimen where signifi-
cant strain localization is produced. The use of simulated data
enables to have a direct evaluation of the correctness of the
identified parameters. Subsequent papers will be dedicated
to real experiments.

On this subject it can be said that the possibility of exper-
imentally measuring a volume displacement field during a
mechanical test has been demonstrated in several studies.
For example, the X-ray tomography plus digital volume cor-
relation (DVC) can be successfully used to obtain volume
full-field experimental results [40–43]. The DVC requires

a random internal pattern which can be inherent to the
material microstructure, as in bones or foams, or introduced
artificially [44–46]. However, other techniques can be adopted
too, for instance, in sheet metals, the volume displacement
field inside the necking region can be reconstructed starting
from surface measurement on both faces [47]. The present
approach could be also adapted to large deformation on bio-
logical tissues with MRI or MRE [48]. Although the develop-
ment of volume full-field measurement techniques is still in
its infancy compared to the surface ones, the technologies are
rapidly progressing. We believe that it is worth putting efforts
in identification procedures which involve three-dimensional
data since many complex phenomena such as plastic insta-
bilities, necking, strain localization can be entirely detailed
only resorting to a three-dimensional description.

2 Simulated tensile test

The aim of the proposed method is the identification of the
plastic constitutive parameters starting from the displace-
ment field measured during a test; this is often referred to as
an inverse problem. The known quantities are the geometry
of the specimen, the measured displacement field at each step
of the test, the loading conditions, plus the plasticity model
which is assumed a priori. The unknowns are the constitutive
parameters corresponding to the chosen plasticity model.

Usually the displacement is measured with a full-field
optical technique, in the present case the test has been simu-
lated using an FE model. The purpose of this paper is indeed
to validate the identification procedure and this can be eas-
ily done using simulated tests where the parameters to be
identified are the ones input in the simulations.

The FE model does not enter in the identification proce-
dure and formally there are no differences in using actual data
or simulated data. Of course simulated data are not affected
by measurement errors and the displacement field is consis-
tent with the material constitutive model input into the FEM.

2.1 FE model of the test

The simulated test is a tensile test on a thick notched shaped
specimen, the geometry is illustrated in Fig. 1. The speci-
men is 4 mm thick and is made of an aluminum-like material
which will be described in the following. The displacement
field used as input in the identification procedure is taken
at the centre of the specimen in the zone named volume of
measurement.

The peculiarity of such a test is that, although the shape of
the central zone is rectangular, because of the notch radii at
the sides, the strain rapidly localizes at the centre of the spec-
imen leading to a heterogeneous and triaxial stress–strain
field.
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Fig. 1 Geometry of the specimen used in the simulated test (dimen-
sions in mm). The three dimensional displacement field used in the
identification procedure is the one inside the volume of measurement

ABAQUS/Standard has been used to create the numerical
model. The adopted mesh is illustrated in Fig. 2, 8-node brick
elements have been employed to build up the model. Thanks
to the geometrical symmetries of the specimen, only 1/8 of
the specimen has to be used in the computation. A global
Cartesian coordinate system is defined with the following
orientations: 1-axis along the width of the specimen, 2-axis
along the traction direction, 3-axis along the thickness, the
origin is positioned at the centre of the specimen.

The chosen plasticity model is the classical Hill48 crite-
rion for anisotropic plasticity [49] with the associated flow
rule. The equivalent stress, expressed in terms of the devia-
toric stress, writes:

σT (S) = [ f (s22 − s33)
2 + g(s33 − s11)

2

+h(s11 − s22)
2 + ls2

23 + ms2
31 + ns2

12]
1
2 (1)

where f, g, h, l,m, n are constants which describe the aniso-
tropic behaviour. Assuming that only normal anisotropy is
present, the six parameters can be rewritten as a function of
the parameter R, introduced by Lankford et al. [50], which
represents the ratio of the transverse strain to the through
thickness strain in a uniaxial tensile test [51], viz:

f = 1

1 + R
; g = 1

1 + R
; h = R

1 + R
; l = 3

2
;

m = 3

2
; n = 1 + 2R

1 + R
; (2)

The hardening behaviour is described using an isotropic
hardening model and a modified power law to compute the
relation between the yield stress and the equivalent plastic
strain, i.e.:

σY = K H (p + ε0)
NH (3)

{0,0,0}
1

3

2

Fig. 2 Mesh of the FE model and used global coordinate system. Only
1/8 of the specimen can be used in the computation thanks to the sym-
metries along 3 planes

Table 1 Material properties input in the FE model to generate simu-
lated experiments

Elastic properties

Young’s Modulus 70 GPa

Poisson’s ratio 0.3

Constitutive parameters
of the plasticity model

K H 310 MPa

ε0 0.02

NH 0.08

R 0.6

where σY is the yield stress, p is the equivalent plastic strain
and K H , ε0 and NH are parameters. The values of the param-
eters used in the simulated test are reported in Table 1, they
will be the reference constitutive parameters to be identified
in the inverse problem.

In Fig. 3 a rendering of the deformed shape of the speci-
men is shown as well as a cut view of the equivalent plastic
strain field produced inside the necking zone. At the end
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Fig. 3 Numerical simulation of the test. A localized necking is
produced at the centre of the specimen. In the cut view on the right
the equivalent plastic strain field (PEEQ in ABAQUS/Viewer) inside
the specimen is illustrated. The maximum value of the plastic strain is
reached at the centre

of the test the maximum level of plastic deformation at the
centre is around 1.

The specimen is loaded with a linearly increasing dis-
placement applied to the end nodes, simulating a tensile test
performed in displacement control. The maximum displace-
ment is 4.6 mm, the test is subdivided in 50 equispaced steps.
A reference time t is introduced with t = 0 at the beginning
and t = 1 at the last step.

In Fig. 4 the obtained force vs displacement curve is plot-
ted, in the same graph three time steps at different stages of
the test are highlighted, for these steps the obtained equiva-
lent plastic strain maps are then shown in Fig. 5. The strain
maps are taken at the top surface of the specimen and at
the mid plane in order to describe the plastic deformation
inside and outside the specimen. The plastic strain distribu-
tion changes during the test and localizes towards the cen-
tre. It can be observed that, in the last part of the test, the
plastic strain obtained inside the specimen is around 25%
greater than the one at the surface. It is clear that, in such a
kind of problems with strain localization, volume strain mea-
surements are necessary to be able to correctly describe the
problem.

Finally, in Fig. 6 the stress field obtained inside the spec-
imen at the end of the test is shown. The state of stress
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Fig. 4 Force versus displacement curve obtained from the simulated
tests. The maximum imposed displacement is 4.6 mm which correspond
to the reference time t = 1.00

is triaxial, all the components in the three directions are
consistently different from zero and the plane stress assump-
tion is not valid anymore.

2.2 Extraction of the simulated displacement field

The displacement field is given in terms of the nodal
displacement uN of a 3D mesh over the volume of measure-
ment. This is a convenient way of expressing the measured or
simulated data, indeed the displacement at each point inside
the volume of measurement can be obtained as a function of
the nodal displacement using the element shape functions.

The mesh adopted to describe the displacement field can
be independent from the mesh adopted in the FE model. The
procedure to extract the simulated displacement field is expli-
cated in Fig. 7. The FEM model is used to obtain the displace-
ment field in the specimen during the deformation process,
then the displacement field in the volume of measurement is
obtained as a linear interpolation over a measurement mesh
which can be selected by the user. In practise this procedure
can be used to smooth the data and reduce its size [52].

In order to check the dependency of the identification rou-
tine on the adopted measurement mesh, four different mea-
surement meshes have been taken into consideration, named
Mesh-0, Mesh-1, Mesh-2 and Mesh-3. Mesh-0 is the one
adopted for the FE model (cf. Fig. 2), in the volume of mea-
surement there are 26 × 42 × 10 elements and there is a
refinement in the 2-direction towards the centre of the speci-
men where the strain localizes. Mesh-1 has the same number
of elements as the previous one but there is no refinement in
the 2-direction. Mesh-2 is a coarser mesh with 20×20×6 ele-
ments. Finally, Mesh-3 is a very coarse mesh with 8 × 8 × 4
elements.

In conclusion the inverse problem to be solved has been
summarized in Table 2, the known quantities are obtained
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Fig. 5 Equivalent plastic strain maps obtained at different time steps of the test. For each time step two maps are represented, one taken at the
outer surface of the specimen and the other in the mid plane inside the specimen

Fig. 6 Components of the stress tensor in the three directions at the mid plane of the specimen at t = 1.00. The produced state of stress is
completely triaxial

Fig. 7 The displacement field
is extracted from the FE model
by linear interpolation of the
nodal value over a 3D
measurement mesh. The size of
the mesh adopted to describe the
displacement field can be
decided independently by the
user
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Table 2 Known and unknown parameters in the inverse problem

Known Unknown

Geometry Constitutive parameters

Traction force (F) ξ = {R, K H , ε0, NH }
Displacement field (uN )

Plasticity model

Yield criterion: Hill48

Flow rule: associative flow rule

Hardening law: σY = K H (p + ε0)
NH

from the simulated test, the unknown parameters are then
identified with the proposed procedure and compared with
the one used as input in the simulated test.

3 Identification procedure

The virtual fields method is based on the principle of virtual
power and allows to retrieve the constitutive parameters from
a set of strain fields measured over a specimen during a test.
An application of the VFM to elasto-plasticity has already
been presented in Grédiac and Pierron [35]. Here the method
is extended to large deformation, using the finite deforma-
tion theory to compute displacement and strain; besides the
identification is performed neglecting the elastic part of the
deformation. For another application of the VFM at large
deformation see Guélon et al. [53].

3.1 The principle of virtual power for finite deformation

The principle of virtual power is an alternative way of
expressing the equation of motion and equilibrium. Let us
consider a material body B which is subjected to a defor-
mation process in time into an Euclidean space. The space
occupied by the body at the initial instant t0 is called the ref-
erence placement and indicated by B0 while the position at a
time t is called the current placement and is indicated by Bt ,
see Fig. 8. Using a Cartesian coordinate system an arbitrary
material point in the reference placement is denoted by the
position vector x0 and the same point in the current place-
ment is denoted by the position vector x. It is possible to pass
from one configuration to the other by the motion function
χ . The field of displacement vectors is the difference of the
position vectors of a material point in the current and in the
reference placement.

u (x0, t) = χ (x0, t)− x0 (4)

All the local deformation measures are obtained from the
deformation gradient F defined as:

F = Grad χ (x0, t) = Grad u (x0, t)+ I (5)

Fig. 8 Description of the motion of a material body, reference place-
ment and current placement at the time t . The body in the current place-
ment is subjected to surface loads and body forces

F is dimensionless and assumed to be invertible at each
point and each time. The polar decomposition allows to sep-
arate the deformation and the rotation parts of F:

F = RU = VR (6)

where R is the rotation tensor and U and V are the right and
left stretch tensors. At time t the body Bt is subjected to a
general distribution of surface loads t and body forces b.

Let us now consider an arbitrary kinematically admissible
vector field δv, called virtual velocity, as test function. The
principle of virtual power states:

∫

Bt

T · δD dv +
∫

Bt

a · δv dm

=
∫

∂Bt

(Tn) · δv da +
∫

Bt

b · δv dm (7)

with

δD = 1

2
(grad δv + gradT δv) (8)

The term virtual power derives from the fact that δv can
be seen as a virtual velocity field and δD as a virtual stretch
rate, in this sense Eq. 7 becomes a balance between the virtual
power of the internal and external forces.

The principle of virtual power is written in the current
placement Bt using an Eulerean or spatial description. In
this specific case, it is more advantageous to rewrite it in
terms of the reference placement B0 using a Lagrangean or
material description. Mathematically both descriptions are
equivalent. It writes:
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∫

B0

T1P K · δF• dv0 +
∫

B0

a · δv dm0

=
∫

∂B0

(

T1P K n0

)

· δv da0 +
∫

B0

b · δv dm0 (9)

where

δF• = Grad δv (x0, t) (10)

and T1P K is a different stress measurement, namely the 1st
Piola-Kirchhoff stress tensor:

T1P K = det (F)T F−T (11)

The 1st Piola-Kirchhoff stress tensor, also called engineer-
ing or nominal stress, relates forces applied in the current
placement with areas in the reference placement [1]. All the
quantities refer to the material points in the reference place-
ment using the position vector x0. If the deformation process
is quasi-static, the inertia forces can be ignored. Neglecting
also the body forces such as the body weight, Eq. 9 becomes:
∫

B0

T1P K · δF• dv0 =
∫

∂B0

(

T1P K n0

)

· δv da0 (12)

which is valid at any time and for any admissible virtual field.

3.2 The Virtual Fields Method for non-linear problems

The Virtual Fields Method has already been extended suc-
cessfully to many cases of non-linear problems like rubber,
elasto-plasticity, etc. Here, the aim is to identify the constitu-
tive parameters of a plasticity model when the displacement
field of the specimen and the loading conditions during the
test are known. The procedure is applied to heterogeneous
displacement fields where no direct relationships are avail-
able between stress and strain fields.

Let us consider a general plasticity model governed by
Ncp parameters and call ξ = {X1, X2, . . . , X Ncp } the vector
of the constitutive parameters which is the unknown of the
problem. If the parameters are correct, the actual stress field
inside a specimen can be computed from the measured strain
field. The surface forces acting at the boundary of the speci-
men can be related to the loads measured during the test. The
following cost function is defined:

ψ (ξ , δv, t) =
∣

∣

∣

∣

∫

B0

T1P K · δF• dv0

−
∫

∂B0

(

T1P K n0

)

· δv da0

∣

∣

∣

∣

(13)

According to the principle of virtual power (see
Eq. 12), the function ψ(ξ , δv, t) is zero for any admissi-
ble virtual fields δv and at any time t of the test, when the
parameters are correct. At this point a general cost function
is assembled using Nv admissible virtual fields and Nt time

step of the test. It writes:

Ψ (ξ) =
Nv
∑

i=1

Nt
∑

j=1

ψ(ξ , δvi , t j ) (14)

The identification process consists in the minimization of
the cost function with respect to the constitutive parameters.
The final identified parameters are the ones that best verify
the equilibrium law written in the form of the principle of
virtual power.

In the following sections it will be shown how to compute
the stress field from the measured displacement field and how
to chose suitable virtual fields.

4 Computation of the deviatoric stress field

In a general plasticity model the following set of constitutive
equations have to be defined: a yield criterion which indicates
if the material undergoes plastic deformation; a directional
flow rule which designates the direction of the plastic flow
according to the stress state; a hardening rule which describes
how the yield locus evolves because of the deformation
process.

The proposed approach is limited to pressure-independent
plasticity models, in this case the yield criterion Φp can be
written as a function of the deviatoric stress tensor S:

Φp (S) = σT (S)− σY = 0 (15)

where σT is the equivalent stress and σY is the yield stress
which is identified as the yield limit in a tensile test in certain
material direction. In Fig. 9 a general yield locus is repre-
sented in the so called Haigh-Westergaard plane or principal

Fig. 9 Representation of a general yield locus in the Haigh-
Westergaard plane. The normalised tensors ̂NS and ̂Np represent the
direction of the deviatoric stress and the direction of the plastic flow
respectively
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deviator stress plane. S is a general deviatoric stress tensor
which fullfils the yield condition and ̂NS is a normalised
tensor such as:

S = |S|̂NS (16)

The direction of the plastic flow, defined by the versor ̂Np,
is obtainable from the measured displacement field, therefore
the aim is to find a function F which returns the direction of
the deviatoric stress versor from the plastic flow normal, that
is:

̂NS = F(̂Np) (17)

At this point the deviatoric stress tensor can be computed
using Eq. 16 in Eq. 15 and solving the resultant equation for
the scalar modulus |S| which is the only unknown.

σT (|S|̂NS)− σY = 0 (18)

Using an associative flow rule the directions of the plastic
flow is normal with respect to the yield surface at the yielding
point, it follows:

̂Np = dΦp (S)
d S

/ ∣

∣

∣

∣

dΦp (S)
d S

∣

∣

∣

∣

(19)

If the yield locus is convex and differentiable, the direc-
tion of the plastic flow is univocally determined by the direc-
tion of the deviatoric stress tensor and the function F can be
obtained inverting Eq. 19. The procedure is general and can
be applied to any plasticity model when it is possible to find
an invertible relation between the plastic flow direction and
the deviatoric stress versor.

In the present case the procedure is applied to the Hill48
yield criterion given in Eq. 1. Denoting ̂Np = {̂n p

i j } and
̂NS = {̂nS

i j }, the numerator of Eq. 19 is computed as:

dΦp (S)
d S

= 2 |S|

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(h + g) −h −g 0 0 0
−h ( f + h) − f 0 0 0
−g − f (g + f ) 0 0 0
0 0 0 n 0 0
0 0 0 0 l 0
0 0 0 0 0 m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n̂S
11

n̂S
22

n̂S
33

n̂S
12

n̂S
23

n̂S
31

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(20)

Since the matrix of Eq. 20 is singular, in order to find the
inverse relation further conditions have to be introduced, viz:

tr̂Np = tr̂NS = 0 (21)

where the trace of ̂Np is zero because of the volume
conservation during the plastic flow and the trace of̂NS is zero
because the trace of the deviatoric stress is zero. After few
mathematical steps the sought function F can be expressed
as the following linear transformation:

̂NS = A ̂Np
∣

∣

∣A ̂Np

∣

∣

∣

(22)

where the numerator of Eq. 22 can be numerically computed
as follows:

A ̂Np =
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(23)

A is a 4th-order tensor and the anisotropic constants have
been rewritten in terms of the parameter R using Eq. 2. It may
be noted that only six components are represented in Eq. 23
because of the symmetry of the tensor, however the nine com-
ponents have to be used to compute the tensor modulus at the
denominator of Eq. 22. Once the direction of the deviatoric
stress is established, the modulus is computed solving Eq. 18
written for the adopted yield criterion, it results:

|S| = σY

[

1

1 + R

(

n̂S
22 − n̂S

33

)2 + 1

1 + R

(

n̂S
33 − n̂S

11

)2

+ R

1+R

(

n̂S
11−n̂S

22

)2+ 3

2
n̂S

23

2

+ 3

2
n̂S

31

2

+ 1+2R

1+R
n̂S

12

2]− 1
2

(24)

where the yield stress σY is updated for the current time step
using the hardening law given in Eq. 3.

4.1 Computation of the plastic flow direction
from the displacement field

The plastic flow direction has to be computed from the mea-
sured displacement field. As explained in Sect. 2.2 the dis-
placement field has been discretized over a three-dimen-
sional mesh using brick elements and linear shape functions.
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The stress computation will therefore be performed at the
integration points of each element. Here a single integration
point, placed at the element centroid, was adopted. In the FE
theory this is referred to as reduced integration and it is often
preferred in the case of brick elements to avoid the shear
locking and volumetric locking effect [54].

The plastic strain rate at the integration point of element
k and at time step t of the test can be computed as follows:

Ep
k

• = ∂Ep
k

∂t
≈ Ep

k
(t) − Ep

k
(t−1)

Δt
= ΔEp

k
(t)

�t
(25)

such relation is valid if the strain increment ΔEp
k
(t)

is suf-
ficiently small. Since the plastic deformation is isochoric in
pressure-independent plasticity and, at large strains, the elas-
tic part is small compared to the plastic one, the plastic strain

tensor Ep
k
(t)

can be approximated to the deviatoric part of the

total strain tensor E(t)k , viz:

Ep
k ≈ Ek − 1

3 tr (Ek) I (26)

The total strain tensor is computed as the spatial logarith-
mic strain or Henky strain tensor:

Ek = lnVk (27)

where the stretch tensor Vk for element k is obtained from
the deformation gradient Fk using Eq. 6. The deformation
gradient at the integration point is obtained from the nodal
displacement using the shape functions, i.e. in a matrix form:

[Fk] = ([Bk(x0
N
k )][uN

k ])T (28)

where [uN
k ] is an 8 × 3 matrix which contains the displace-

ment of the 8 nodes of the element k along the 3 directions
and [Bk] is a 3 × 8 gradient matrix which is obtained from
the nodal coordinates x0

N
k and the shape functions. More

details about how to compute the displacement gradient at
the integration point of an element can be found in every FE
textbook, cf. Zienkiewicz and Taylor [55], for instance.

Dealing with anisotropic plasticity, the yield criterion is
defined in the material coordinate system oriented according
to the texture of the material. Let us assume that in the unde-
formed body the material coordinate system coincides with
the global coordinate system. During the deformation pro-
cess the material coordinate system can change its orientation
because of body rotations. The plastic strain tensor defined in
Eq. 26 has to be rotated into the material coordinate system
using the rotation tensor R obtained from the polar decom-
position, see Eq. 6, it follows:

Ep
k

∣

∣

mat = Rk
T Ep

k Rk (29)

The direction of the plastic flow to be used in the compu-
tation of the deviatoric stress is the direction of the plastic
strain rate in the material coordinate system, therefore using

Eq. 25 and Eq. 29, for element k and time step t , it writes:

̂Np
(t)
k = Δ Ep

k

∣

∣

(t)
mat

∣

∣

∣Δ Ep
k

∣

∣

(t)
mat

∣

∣

∣

(30)

From ̂Np
(t)
k the normalised tensor ̂NS

(t)
k is computed

using Eq. 22 and Eq. 23. The deviatoric stress tensor in
the material coordinate system can be computed as follows
according to Eq. 16:

S(t)k

∣

∣

∣

mat
=

∣

∣

∣S(t)k

∣

∣

∣

A ̂Np
(t)
k

∣

∣

∣A ̂Np
(t)
k

∣

∣

∣

(31)

where
∣

∣

∣S(t)k

∣

∣

∣ is obtained from Eq. 24. The deviatoric stress

tensor can be expressed in the global coordinate system using
the rotation tensor R(t)

k , viz:

S(t)k = R(t)
k S(t)k

∣

∣

∣

mat
R(t)

k

T
(32)

4.2 Determination of the plastic range

The procedure works only if plastic deformation takes place.
During a test, especially if there is a strain localization, it may
happen that parts of the specimen are under plastic deforma-
tion and others are unloaded and come back into the elastic
range. A procedure is needed to find out which parts of the
measurement volume are in the elastic range and which are
in the plastic range. The simplest way of doing this is con-
sidering under plastic deformation the elements in which the
strain increment �Ek

(t) exceeds a fixed strain threshold.
Here a finer criterion is provided which however assumes

that the elastic properties of the material are known, for
instance they can be identified from the same test using the
standard VFM. At the first step of the test, the specimen is
stress free and with no accumulated plastic deformation:
{

S(0)k = 0

p(0)k = 0
∀ element k (33)

At the current step t , for each element k, a trial deviatoric
stress is obtained assuming that the increment is in the elastic
range:

Str ial
k

(t) = Sk
(t−1) + E

(1 + ν)
ΔEk

(t) (34)

where �Ek
(t) is the deviatoric strain tensor as in Eq. 26.

All the stress and strain tensors are expressed in the material
coordinate system although the subscript |mat has been omit-
ted for the sake of clarity. The yield criterion (Eq. 1) and the
hardening law (Eq. 3) are then used to check if the element
is in the elastic or plastic range. Two cases are possible:
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Fig. 10 Definition of the active volume. The computation of the cost
function is restricted to the zone of the volume of measurement, called
the active volume, in which all the elements are subjected to plastic
deformation

1. the element is in the elastic range

σT (Str ial
k

(t)
)− σY (p

(t−1)
k ) < 0

then

{

S(t)k = Str ial
k

(t)

p(t)k = p(t−1)
k

2. the element is in the plastic range

σT (Str ial
k

(t)
)− σY (p

(t−1)
k ) > 0

then

{

S(t)k computed from Eq. 31

p(t)k = p(t−1)
k +

√

2
3ΔEp

k
(t) ·ΔEp

k
(t)

It is worth nothing that the procedure is valid both for
loading and unloading. In order to study the initial part of
the test, when the first yielding occurs, a further refinement
could be done splitting the increments where the deformation
changes from elastic to plastic [35]. Here such feature was
not adopted because the aim of the study is to characterize
the specimen behaviour at large strains, when the plastic flow
is completely developed.

For each step of the test, a portion of the measurement vol-
ume is then flagged in which all the elements are subjected
to plastic deformation, this portion is referred to hereafter as
the active volume. The concept is explained in Fig. 10, the
width of the active volume, 2W , is the same as the width of
the volume of measurement and equals the total width of the
specimen; the height of the active volume 2H varies accord-
ing to the elements that are in the plastic range. In Fig. 11
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H
 [

m
m

]

Strain localization

Yielding point

plastic flow occurs in the
whole measurement zone

Fig. 11 Evolution of the height H of the active volume. At the begin-
ning the whole measurement area is subjected to plastic deformation
(H = 10 mm), then it decreases in order to keep into account only the
elements subjected to plastic deformation

the evolution of the height H during the test is plotted as
a function of the reference time. After the yielding point,
the whole measurement zone is subjected to plastic defor-
mation, then, as the strain localizes at the centre, the height
of the active volume decreases.

The idea here is that the zones of the specimen in the
elastic range are not useful for the identification of the con-
stitutive parameters of the plasticity model, indeed they can
only be a source of undesired noise. The cost function will
be evaluated only in the elements of the active volume.

5 Choice of the virtual fields

The cost function described by Eq. 13 is composed of two
integrals, one over the volume B0 which represents the vir-
tual power of the internal forces and the other over the surface
of the body ∂B0 which represents the rate of virtual work of
the external forces. According to the VFM the first integral
is computed using the measured displacement fields and the
second one is computed using the loads measured during the
test.

A key point of the proposed identification procedure is the
possibility of using the deviatoric stress in the computation
of the virtual power of the internal forces, because, as expli-
cated in the previous section, the deviatoric stress tensor can
be computed from a general three dimensional displacement
field without making any assumptions on the stress state. This
can be done using suitable virtual fields.

5.1 Computation of the virtual power of the internal forces
in terms of the deviatoric stress

The virtual power of the internal forces is computed using the
1st Piola-Kirchhoff stress tensor which is computed from the
deformation gradient F and the Cauchy stress tensor T, see
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Eqs. 11 and 12. The deformation gradient is obtained from
the measured displacement field using Eq. 28, but, unfortu-
nately, using the procedure presented in Sect. 4, it is possible
to derive only the deviatoric part of the Cauchy stress tensor.

The problem is overcome by defining suitable virtual
fields. Rewriting the volume integral of Eq. 13 using the
definition of the 1st Piola Kirchhoff tensor given in Eq. 11
and the definition of deviatoric stress (i.e. S = T− 1

3 tr(T)I),
it follows:
∫

B0

T1P K · δF• dv0

=
∫

B0

det (F)TF−T · δF• dv0

=
∫

B0

det (F)
(

S + 1
3 tr (T) I

)

F−T · δF• dv0

=
∫

B0

det (F) S F−T · δF• dv0

+
∫

B0

det (F) 1
3 tr (T)F−T · δF• dv0 (35)

Hence, defining a virtual field δv such that:

F−T · δF• (δv (x0)) = 0 ∀ x0 ∈ B0 (36)

the second integral in the last expression of Eq. 35 equals
zero and the first one involves only the deviatoric stress. It
follows that the virtual power of the internal forces is obtained
directly from the deviatoric stress and the deformation gra-
dient, viz:

∫

B0

T1P K · δF• dv0 =
∫

B0

det (F) S F−T · δF• dv0 (37)

It is interesting to compare the same condition written in
terms of the current placement Bt using the Eulerean repre-
sentation. The virtual power of the internal forces assumes
this form (cf. Eq. 7):

∫

B0

T1P K · δF• dv0 =
∫

Bt

T · δD dv

=
∫

Bt

(

S + 1
3 tr (T) I

) · δD dv (38)

The condition of Eq. 36 becomes:

I · δD (δv (x)) = tr (δD) = 0 ∀ x ∈ Bt (39)

which means that the virtual velocity field has to satisfy
virtual volume conservation. This intuitively suggests why
the integral is independent from the hydrostatic stress which
is the part of the stress tensor responsible for the volume
change.

5.2 Computation of the virtual power of the external forces

The surface integral of Eq. 13 represents the action of the
surface forces and can be regarded as the virtual power of
the external forces. From an actual test it is easy to measure
the resultants of the boundary forces using for instance load
cells, but their distribution over the specimen is in general
unknown. A way to overcome this problem with the VFM is
to chose virtual fields which are constant in the parts of the
body surface subjected to boundary forces. Let us consider a
portion of the surface ∂B0, named ∂S0, where a boundary
force distribution with resultant f is applied. By choosing a
virtual field δv such that:

δv (x0) = δv ∀ x0 ∈ ∂S0 (40)

the constant value can be placed out of the integral:

∫

∂S0

(

T1P K n0

)

· δv da0 =
(∫

∂S0

(

T1P K n0

)

da0

)

· δv
(41)

According to the definition of the 1st Piola-Kirchhoff ten-
sor, the integral under parenthesis can be rewritten in terms
of the current placement and it equals the resultant of the
surface forces, viz:
(∫

∂S0

(

T1P K n0

)

da0

)

· δv =
(∫

∂S
t da

)

· δv = f · δv
(42)

5.3 Definition of the virtual fields used in the identification
procedure

The choice of the virtual fields plays an important role in
the identification. Different techniques can be adopted, e.g.
in recent applications of the VFM a procedure to automati-
cally generate optimized virtual fields by a minimization of
the sensitivity to noise was developed in Avril et al. [56]
and adapted to elasto-plasticity in Pierron et al. [37]. In the
present application noise is less of an issues than for elastic-
ity, therefore the virtual fields have been manually defined,
however other possibilities could be explored in the future.

The same mesh used to describe the displacement field
is adopted to describe the virtual fields in the active vol-
ume in terms of virtual nodal velocity, see also Avril and
Pierron [52]. Such approach is not mandatory, the virtual
fields can be defined using polynomial functions or different
mesh but it is convenient because it considerably simplifies
the computations. The gradient of the virtual velocity field at
each integration point can be defined as:

[

δF•
k

] =
(

[Bk]
[

δvN
k

])T
(43)
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Fig. 12 Schematic view of the
adopted virtual fields δva and
δvb illustrated as deformation of
a regular mesh

where
[

δvN
k

]

is an 8 × 3 matrix defining the virtual velocity
of the 8 nodes of element k and [Bk] is the matrix defined in
Eq. 28. Although the same mesh and the same shape functions
are employed, the nodal displacements

[

uN
k

]

in Eq. 28 come
from experimental (here, simulated) measurements while the
virtual nodal velocity is an arbitrary function defined by the
user.

In order to use the deviatoric stress in the computation of
the cost function, the condition given in Eq. 36 has to be valid
at each integration point, i.e.:

F−T
k (uN

k ) · δF•
k(δv

N
k ) = 0 ∀ element k (44)

where uN
k is the measured displacement field at the element

nodes and δvN
k is the virtual velocity field at the element

nodes. In the present application, in order to satisfy such con-
dition, the virtual velocity field is defined only for the 1st and
2nd-directions, then, at each element, a programming routine
adjusts the nodal velocity in the 3rd direction according to
the value of the deformation gradient Fk in such a way as to
satisfy Eq. 44, see the Appendix for more details.

Two virtual fields have been defined, namely a and b:

δva =

⎧

⎪

⎨

⎪

⎩

δv1 = 0

δv2 = x2

H
δv3 so that F−T

k · δF•
k = 0

δvb =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δv1 = x1

W

(|x2| − H)

H
δv2 = 0
δv3 so that F−T

k · δF•
k = 0

(45)

where H and W are the semi-height and the semi-width of
the active volume. The virtual velocity at the boundary nodes
where the traction force is applied (i.e. where x2 = ±H ) is
respectively δva = {0,±1, 0} and δvb = {0, 0, 0}. Conse-
quently the rate of the external work , Eq. 42, returns the
resultant of the vertical forces, i.e. the traction force F , for
virtual field a and zero for virtual field b. The two adopted
virtual fields have been schematically represented in Fig. 12.

The global cost function for the two virtual fields becomes:

Ψ (ξ) =
Nt
∑

t

∣

∣

∣

∣

∣

( NE
∑

k

detF(t)k S(t)k F(t) −T
k · δF• (t)

a k Δv0 k

)

−2F (t)
∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

NE
∑

k

detF(t)k S(t)k F(t) −T
k · δF• (t)

b k Δv0 k

∣

∣

∣

∣

∣

(46)

where the integrals of Eq. 13 are approximated by a sum
over the quantities computed at the integration point of each
element. The deviatoric stress tensor S(t)k is expressed in the
global coordinate system using Eq. 32.

6 Results and discussion

The procedure was implemented in MATLAB and used to
identify the constitutive parameters of the simulated exper-
iment. The displacement field and traction force obtained
from the FE model have been used as input in the identifi-
cation procedure. The identified parameters have then been
compared to the ones input in the simulation.

The influence of the initial guess, the influence of the mesh
used to describe the displacement field and an initial study
about the influence of noise are presented here.

6.1 Minimization of the cost function

The whole identification procedure is summarized in the flow
chart of Fig. 13. The input data are the specimen geometry,
the 3D displacement field, the tensile force and the chosen
constitutive model. As a first step the data are processed in
order to obtain the deformation tensors and the virtual fields
at each integration point and at each time step. Such operation
has to be performed only once because the unknown consti-
tutive parameters do not enter in the computations. After this
data preprocessing, the parameters are identified finding the
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Fig. 13 Flow chart of the
computation algorithm
employed to find the best set of
constitutive parameters

minimum of the cost function. The adopted minimization
routine is the SQP algorithm [57] implemented in Matlab
[58].

The stability of the procedure has been checked looking
at the influence of the initial guess input in the minimiza-
tion algorithm. Three different initial values have been used
within the parameter application range. The results are listed
in Table 3. The error of the identified parameters relatives
to the hardening behaviour (K H , ε0, NH ) is computed as the
least square error between the equivalent stress–strain curve
input in the FEM model and the one calculated with the iden-
tified parameters. The single parameters are not compared
directly, because, for instance, parameter ε0 is not as influent
as parameter K H in the description of the stress–strain curve.

When both virtual fields are used in the cost function,
the parameters are correctly identified with errors less than
1%. The solution is independent from the first guess. If only
virtual field δva is used, the solution is still stable but the
identification is not satisfactory, especially in the identifica-
tion of the anisotropic parameter R. Using only virtual field
δvb in two cases is not possible to obtain a converged solution
and in the third case it is possible to correctly identify only

the parameter R. The choice of appropriate virtual fields is
essential for a good identification.

An important remark has to be made about the compu-
tational time. For instance in the first case of Table 3 the
cost function has to be computed 233 times to complete
the minimization, using the proposed method the CPU time
needed to evaluate the cost function, on a standard laptop
(Intel Dual Core 2.27GHz, RAM 4GB), is around 2 s and
the whole minimization procedure takes less than 10 min.
If the same problem was handled with an FE updating tech-
nique, at each cost function evaluation an FE run would have
to be launched. In this case the time required to perform the
numerical simulation is around 300 s on the same laptop,
that means that the time required to compute the cost func-
tion will be more than 100 times greater. This fact testifies
the high potentiality of the proposed method in analyzing
complex phenomena which cannot be described using sim-
ple two-dimensional models.

As explained in Sect. 2.2, the displacement field has been
extracted from the numerical model using four measurement
grids. The effect of the adopted grid on the identification is
illustrated in Table 4.
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Table 3 The robustness of the identification procedure is tested using different initial guesses chosen in the range of variabilities of the parameters

Hardening law Anisotropy Minimization

K H ε0 NH Err. (%) R Err. (%) Iter. Eval.

Reference 310 0.02 0.08 − 0.6 − − −
First guess 500 0.1 0.2 − 1.2 − − −
Identified 310.1 0.022 0.080 0.09 0.60 0.35 39 233

Only δva 317.5 0.022 0.080 2.49 0.46 −22.9 49 315

Only δvb n.c. n.c n.c. − n.c. − 15 81

First guess 150 0.01 0.05 − 1 − − −
Identified 310.1 0.022 0.080 0.09 0.60 0.35 30 188

Only δva 317.5 0.022 0.080 2.49 0.46 −22.9 48 402

Only δvb n.c n.c. n.c. − n.c. − 4 26

First guess 600 0.05 0.01 − 0.8 − − −
Identified 310.1 0.022 0.080 0.09 0.60 0.35 38 225

Only δva 317.5 0.022 0.080 2.49 0.46 −22.9 40 266

Only δvb 600.0 0.199 0.144 94.8 0.59 −1.28 33 384

The identified parameters have been obtained using the two virtual fields described in Eq. 45. The identification was then performed again using
only virtual field δva or δvb in the cost function. In the last two columns the number of iterations and the number of function evaluations are listed
n.c. not converged

Table 4 Dependence of identification on the 3D mesh used to regular-
ize the measured displacement data

Used mesh Hardening law Anisotropy

K H ε0 NH Err. (%) R Err. (%)

Mesh-0 310.1 0.022 0.080 0.09 0.602 0.35

Mesh-1 313.0 0.025 0.083 0.86 0.602 0.53

Mesh-2 313.9 0.028 0.087 0.89 0.62 2.60

Mesh-3 287.8 0.001 0.044 4.62 0.64 7.40

Reference 310 0.02 0.08 − 0.6 −
First guess 500 0.1 0.2 − 1.2 −

A coarser mesh reduces the quality of the identification
since the displacement field is described in a more approxi-
mate way. Nevertheless, even using a very coarse mesh, the
error remains under 5% in the identification of the stress-
strain curve and under 10% in the identification of the
Lankford parameter. Figure 14 illustrates the stress–strain
curves identified with the different measurement meshes.
Using Mesh-3 only the first part of the stress–strain curve is
correctly identified, then, as the stress localizes at the centre,
the description of the displacement field becomes too rough
to lead to a correct identification.

6.2 Influence of noise

The influence of noise and measurement errors in the iden-
tification from full-field measurements is a complex prob-
lem. It is beyond the aim of this paper to examine in details
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Fig. 14 Comparison of the stress–strain curves obtained with the
parameter identified using different measurement meshes

this aspect, however in this section a simple study is con-
ducted to show how the proposed technique can handle noisy
data.

At large strains the measurement of the total strain is not
very sensitive to noise. However the noise can become a rel-
evant problem in the computation of the strain rate where the
strain increments �E, which can be rather small, have to be
computed, see Eq. 25.

A test was conducted adding a standard Gaussian white
noise to the nodal displacement uN , before starting the identi-
fication procedure. The standard deviation of the input noise
is 2 µm, this value is roughly the resolution of a commercial
2D DIC system with a field of view of 200 × 200 mm (for
instance see www.dantecdynamics.com).

123

www.dantecdynamics.com


68 Comput Mech (2012) 49:53–71

Fig. 15 Contour plot of the strain increment component �E22 at the
test time t = 0.70 in the central section of the volume of measurement.
The effect of the introduced noise is clearly visible

In Fig. 15 a contour map of the strain increment compo-
nent�E22 in the central section of the measurement volume
is illustrated for the test time t = 0.7, the presence of noise
is clearly visible. To reduce the effect of noise a temporal
smoothing can be performed by computing the strain rate
at time t using more time steps and performing a polyno-
mial fitting. This can be efficiently done using a convolution
method as the one provided by Savitzky and Golay [59].

In this case Eq. 25 can be rewritten as:

Ep
k

• = ∂Ep
k

∂t
≈

∑m
j=−m h j E

p
k
(t+m)

�t
(47)

The strain rate at the time t is computed using 2m + 1
steps. A procedure to compute the convolution weights h j is
given in Gorry [60], in this paper the method is extended to
consider also the end points of the data set. In Fig. 16, the
same strain increment of Fig. 15 is computed using Eq. 47,
considering 5 and 15 points respectively.

The strain maps are filtered and the effect of the noise
is almost zeroed using 15 points in the strain rate computa-
tion. The results in terms of identification are illustrated in
Table 5. The identification error considerably decreases as
long as more points are used to compute the strain rate. This
feature can be very useful dealing with actual measurement
data often affected by high level of noise, especially in case
of three-dimensional full-field measurements.

Of course this is only a preliminary study to show the
potentialities of the procedure, future in-depth analyses will
have to be dedicated to this issue.

7 Conclusions

In this paper a procedure to extract the constitutive parame-
ters of a plasticity model from a three dimensional displace-
ment field is presented. The procedure is an application of

Fig. 16 Contour plot of the strain increment component �E22 at the
test time t = 0.70 obtained using the convolutions method. In the left
plot 5 time steps have been used to compute the strain increment, in the
right plot 15 time steps

the VFM at large deformations and it is valid for a general
plasticity model although here it was implemented for the
Hill48 anisotropic model. The main intent of the paper is
to give a general description of the theory while its applica-
tion to particular cases and to real experimental tests is left
to upcoming papers, nevertheless an application example is
illustrated using simulated experiments.

The procedure allows to directly utilize the full-field
displacement data and the force measured during an experi-
mental test to identify the constitutive parameters by the min-
imization of a cost function. It can be easily implemented in
a program and used to process experimental data.

The presented technique is an effective tool to study the
plastic behaviour at large deformation especially when a
three dimensional representation is needed to describe phe-
nomena such of the occurrence of necking or other plastic
instabilities.

A first validation was performed looking at the stability of
the procedure and the influence of noisy data was also studied
by input artificial noise in the simulated displacement data.

The main outcomes of the paper are:
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Table 5 Effect of the noise in
the identification

First the parameters have been
identified using the noisy data,
then the strain increment �E
has been computed using the
convolution method with 5 and
15 points respectively

Hardening law Anisotropy

K H ε0 NH Err. (%) R Err. (%)

Noisy data 305.06 0.200 0.010 5.93 0.645 7.5

Convolution (5 pts.) 311.77 0.123 0.102 1.36 0.604 0.83

Convolution (15 pts.) 307.71 0.018 0.076 0.45 0.598 −0.33

Reference 310 0.02 0.08 − 0.6 −
First guess 500 0.1 0.2 − 1.2 −

– a procedure is developed which allows to use a general
3D displacement field to directly evaluate the constitutive
parameters of a general plasticity model; no hypotheses
such as plane stress or plane strain have to be used;

– the procedure is well suited to be used in optimization
algorithms, using the deviatoric stress in the evaluation
of the cost function, no iterations are required to obtain
the stress field from the displacement field, this feature
enables to considerably reduce the computational time;

– the method seems to be effective to allow for noisy mea-
surements; the stress computation is based on the eval-
uation of the total strain which is usually rather large,
besides a convolution derivative over multiple time incre-
ments can be used as a smoothing filter;

– the proposed implementation of the procedure requires
that the volume measurement data are regularized in a
3D mesh, however the identification procedure is quite
stable with respect to the size of the chosen discretization
mesh.

In future works, the presented technique has to be
validated on real data, using different plasticity models and
different experimental tests. Simulated experiment could
be used as well to evaluate the influence of the noise and
establish what is the optimal configuration in terms of time
increment and regularization grid size. Finally the use of
automatically generated virtual fields can be introduced in
the identification algorithm.

Appendix

As stated in Sect. 5.3, the virtual velocity in the 3rd direc-
tion is computed using a programming routine in order to
satisfy Eq. 44, in this appendix more details are given on
how this routine is built up. For an arbitrary element k the
virtual velocities of the eight nodes are defined by the 8 × 3
matrix [δvN

k ], with:

[δvN
k ] =
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(48)

the numerical values in the first two columns of the matrix
are evaluated using the nodal coordinates and the analytical
description of the virtual fields given in Eq. 45. The values
in third column, which represent the virtual velocity in the
third direction, are computed using the routine. The routine
is applied to all elements, at each iteration the following steps
are repeated:

1. since the same node can be shared by several elements,
the routine finds out which nodes of the element k
have an already assigned velocity δv3, such nodes are
excluded from the subsequent steps;

2. a constant displacement δv3 is assigned to the available
nodes, the sign of δv3 is positive for the nodes in the
lower face of the element and negative for the upper
face.

3. the numerical value of δv3 is computed by solving the
following equation:

[F−T
k ] · ([Bk][δvN

k (δv3)])T = 0

which is the condition of Eq. 44 written using Eq. 43 to
express δF•

k .

At the end of the procedure the virtual velocity is assigned
to all nodes. The CPU time required to complete this oper-
ation is around 350 seconds which is comparable to the
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time needed to perform a numerical simulation of the test.
However, as explained in section 6.1 and illustrated in the
flow chart of Fig. 13, the routine has to be executed only
once during the data preprocessing and does not enter in the
computation of the cost function.
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