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Abstract An enhanced beam element is proposed for the
nonlinear dynamic analysis of skeletal structures. The for-
mulation extends the displacement based elastic Timoshenko
beam element. Shear-locking effects are eliminated using
exact shape functions. A variant of the Bouc–Wen model is
implemented to incorporate plasticity due to combined axial,
shear and bending deformation components. Interaction is
introduced through the implementation of yield functions,
expressed in the stress resultant space. Three additional hys-
teretic degrees of freedom are introduced to account for the
hysteretic part of the deformation components. Numerical
results are presented that demonstrate the advantages of the
proposed element in simulating cyclic phenomena, in which
shear deformations are significant.

Keywords Timoshenko beam · Hysteretic model ·
Bouc–Wen · Finite elements

1 Introduction

Modern design codes allow structures to undergo significant
inelastic deformations prior to collapse. Furthermore, exces-
sive dynamical loading, away from code specified design
levels, stresses the structure to ultimate states underlining
the need for the simulation of nonlinear response due to
material nonlinearities. In this context, various beam ele-
ments have been proposed either through displacement based
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formulations [4] or force based formulations [35]. Material
nonlinearity is introduced at the section level, either macro-
scopically through a plastic-hinge approach [20] or through
a fibre-based formulation at the element level [25,32]. In the
former, the Timoshenko beam theory is implemented within
the framework of a force based distributed plasticity formu-
lation. Although more accurate, the fibre based formulation
comes at the cost of requiring numerical integrations at the
section level. At least three points of integration are needed
to achieve a linear distribution of the curvature along the ele-
ment’s length with the most efficient Lobatto rule [35]. Thus,
in a time marching-process as a nonlinear dynamic analysis,
the computational advantage of concentrated plasticity, dis-
placement based schemes remains significant.

The Timoshenko beam theory has not been addressed in
such problems, mainly due to the shear locking problem [28,
37] of the displacement based isoparametric formulation that
can lead to inaccurate results both in the linear and nonlin-
ear case. The Timoshenko beam theory leads to increased
structural displacements. This increase can be even greater
under dynamical excitation since the dynamic characteris-
tics of the structure are altered. Such deviations from the
standard Euler–Bernoulli based approach can have signifi-
cant influence on the displacement based design of structures
[1]. In structural members that are subjected to high shear
forces, as in shear links of eccentrically braced frames, shear
effects are very important both in the elastic and inelastic
regime [17].

So far, considerable effort has been made in introduc-
ing the Bouc–Wen model into the inelastic analysis of skel-
etal structures and structural joints [10]. In [12], a force
based concentrated plasticity beam element is derived, within
the framework of Euler–Bernoulli assumption, that accounts
only for plastic bending deformations. Symeonov et al.
[38] introduce an Euler–Bernoulli, force based, element
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formulation where interaction between the axial force and
the bending moment is considered. This formulation leads to
a non-constant flexibility matrix which depends on both the
moment and the curvature of a given cross-section. Although
exact, especially in the case of members of variable cross-
sections, this approach leads to an increased computational
cost due to the fact that state matrices do not remain constant
and need updating, as the solution evolves.

When studying the dynamic behaviour of nonlinear sys-
tems, dissipation phenomena are of the utmost importance.
As such, hysteretic damping needs to be addressed directly by
incorporating a hysteretic rule to model the cyclic response
of the structure. One such attempt was initiated by Bouc in
his original formulation of the single degree degrading hys-
teresis model [5], followed by several modifications intro-
duced, such as the Bouc–Wen model [42], the Baber–Noori
model [3] and the Reinhorn model [34]. These models of
hysteresis—also known as smooth hysteretic models—are
capable of simulating a number of different types of hyster-
etic response using a single smooth hysteretic function. The
advantages of the Bouc–Wen model as compared to other
rate independent hysteretic models, either smooth such as
the Ozdemir model [24] and the Ramberg–Osgood model
[29] or piece-wise linear such as the Takeda model and the
Q-hyst model [31], have been extensively reviewed in the
literature [15].

In this work, a displacement based beam element is pro-
posed for the nonlinear dynamic analysis of skeletal struc-
tures. Inelasticity is introduced at a macro-level, considering
three additional degrees of freedom, namely the hysteretic
axial deformation, the hysteretic shear deformation and the
hysteretic curvature. These additional degrees of freedom are
set to evolve according to the Bouc–Wen hysteresis model.
Moreover, different hysteretic parameters can be attributed
at each end, yielding a versatile formulation for e.g. steel
members bearing different connections in each end. Using
the variational principle of virtual work, a modified hyster-
etic stiffness matrix is derived that can be easily incorporated
into existing finite element schemes within the framework of
the direct stiffness method. Alternatively, an advanced cus-
tomized solution procedure may be implemented. In this, the
governing equations of the problem are formulated in state-
space form and the solution is obtained using a predictor–
corrector differential equation solver that results in solutions
of improved accuracy.

The present work is structured as follows: In Sect. 2,
the properties of the implemented Bouc–Wen hysteretic rule
are introduced. In Sect. 3, the formulation of the element
is presented. For the sake of clarity, only the planar case
is examined in this work, whereas the 3D beam element
formulation can be derived in a straightforward similar man-
ner. Six new, hysteretic degrees of freedom are defined (three
per node) which follow the Bouc–Wen hysteretic rule. The

proposed solution algorithm is then described in Sect. 4.
Finally, numerical examples are presented which demon-
strate the robustness of the method in terms of accuracy and
computational speed.

2 The Bouc–Wen hysteretic model

2.1 The multi-axial formulation of Bouc–Wen hysteresis

The Bouc–Wen model was introduced by Bouc [5] and
modified subsequently by Wen [42], Baber and Noori [3]
and Reinhorn [34]. To account for yield criteria involving
more than one components of the stress tensor, a general for-
mulation is needed to address the inherent interaction. Fol-
lowing Sivaselvan and Reinhorn [35] the stress tensor can be
decomposed into an elastic and hysteretic part as follows:

{σ }={
σ e}+{σ h}= [α] [E] {ε}+([I ]−[α]) [E] {z} (1)

where {σ } is the 6×1 stress vector, {σ e} is considered the
elastic part of the stress tensor, {σ h} the hysteretic part of the
stress tensor, [α] denotes a square diagonal matrix with post
yield to elastic stiffness moduli, [E] is the elastic constitutive
matrix [13], [I ] is the identity matrix, {ε} is the 6×1 strain
vector and {z} is a 6×1 hysteretic strain vector. A hysteretic
6×1 stress vector is thus defined as:

{σ h} =
[

Eh
]
{z} (2)

where
[

Eh
]

= ([I ] − [α]) [E] (3)

Casciati [6] proves that if the hysteretic vector evolves
according to the following Bouc–Wen hysteretic rule:

{σ̇ h} =
[

Eh
]
{ż} =

[
Eh
]
([I ] − H1 H2 [R]) {ε̇} (4)

then Eq. 1 accurately describes the nonlinear hysteretic
behaviour of a material with linear kinematic hardening in
the 3D stress space. In relation (4) H1 and H2 are smoothed
Heaviside functions expressed in the following form:

H1 = ∥
∥�

({
σ h
})+ 1

∥
∥n

H2 = γ sgn
({
σ h
}T {ε̇}

)
+ β

(5)

where �
({σ h}) is a yield criterion such that:

�
(
{σ h}

)
− 1 ≤ 0 (6)

with the equality holding when yield has occurred. In Eq. 5
n is the smoothing parameter and β, γ are shape factors that
define the shape of the loading and unloading branches of the
hysteretic loop. The first of Eq. 5 smooths the transition from
the elastic to the inelastic region. The second controls the
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unloading phases under cyclic excitation. Equations 1–6 can
be alternatively formulated in the stress-resultant space con-
sidering the proper, elastic, constitutive matrix and the proper
vector of strains conjugate to the stress-resultants [38].

Since rates of the corresponding parameters appear in both
sides of Eq. 4 the hysteretic vector {z} is rate independent.
The typical elastic-perfectly plastic hysteretic behaviour can
be derived, setting β = γ = 0.5, n > 6 in Eq. (5) and
[α] = ∅ in Eq. 1, while a variety of other responses can also
be obtained [34].

Matrix [R] in relation (4) is an interaction matrix that
depends on the yield function, given as:

[R] =
⎡

⎣

(
∂�

∂
{
σ h
}

)T

[E]

(
∂�

∂
{
σ h
}

)⎤

⎦

−1

×
⎡

⎣

(
∂�

∂
{
σ h
}

)(
∂�

∂
{
σ h
}

)T

[E]

⎤

⎦ (7)

The interaction matrix [R] is formally derived by taking
into account the consistency condition of associative plas-
ticity [6]. Equations 1 and 4, yield a versatile formulation
within the classical plasticity framework, where most of the
associative flow rules are expressed in the stress space [18].

3 Beam element formulation

3.1 Kinematic relations

A typical element of length L is considered (Fig. 1) in which
the nodal degrees of freedom in the local coordinate system
are:

{d} = {
u1 w1 θ1 u2 w2 θ2

}T
(8)

The following kinematic assumptions are considered
according to the Timoshenko theory of bending, i.e. plane
sections remain plane but not necessarily normal to the neu-

 ψ

Fig. 1 Nodal displacements and loads

Beam Axis

Fig. 2 Timoshenko kinematic assumption

tral axis (Fig. 2):

εu = ∂u

∂x
, εφ = ∂θ

∂x
, εγ = ∂w

∂x
− θ (9)

3.2 Exact shape functions

In the work presented herein, the shape functions imple-
mented are explicitly derived from the exact solution of the
homogeneous Timoshenko beam differential equations as
proposed in [28] and [11]. The Timoshenko beam differential
equations are defined as:

{
E I ∂

2θ
∂x2 + kG A

(
∂w
∂x − θ

) = 0

kG A
(
∂2w
∂x2 − ∂θ

∂x

)
= 0

(10)

where E I is the flexural rigidity of the cross-section, G A is
the shear rigidity of the cross-section and k is the shear correc-
tion coefficient of the cross-section [9]. Solving Eq. (10) as
proposed in [11] the following interpolation field is derived,
including also the axial displacements:

u (x) = N1u1 + N4u2

w (x) = N2w1 + N3θ1 + N5w2 + N6θ2 (11)

θ (x) = N7w1 + N8θ1 + N9w2 + N10θ2

where the interpolation functions Ni introduced in Eq. 11
assume the following form:

123



716 Comput Mech (2011) 48:713–727

N1 = 1 − x
L

N2 = 2μ
L3 x3 − 3μ

L2 x2 − 12λμ
L x + 1

N3 = μ

L2 x3 − 2(1+3λ)μ
L x2 + (6λ+ 1) μx

N4 = x
L

N5 = − 2μ
L3 x3 + 3μ

L2 x2 + 12λμ
L x

N6 = μ

L2 x3 − (−6λ+1)μ
L x2 − 6λμx

N7 = 6μ
L3 x2 − 6μ

L2 x

N8 = 3μ
L2 x2 − 4(1+3λ)μ

L x + μ (12λ+ 1)

N9 = − 6μ
L3 x2 + 6μ

L2 x

N10 = 3μ
L2 x2 − 2μ(1−6λ)

L x

(12)

with:

μ = 1

1 + 12λ
, λ = E I

kG AL2 (13)

The stiffness matrix of the element is then derived following
the standard procedure of the Finite Element Method, [4], as:

K = E I

L3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L2 A
I 0 0 − L2 A

I 0 0
0 12μ 6μL 0 −12μ 6μL
0 6μL 4μ (1 + 3λ) L2 0 −6μL 2μ (1 − 6λ) L2

− L2 A
I 0 0 L2 A

I 0 0
0 −12μ −6μL 0 12μ −6μL
0 6μL 2μ (1 − 6λ) L2 0 −6μL 4μ (1 + 3λ) L2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)

Contrary to the isoparametric finite element method, the ele-
ment material properties are naturally considered in the inter-
polation functions through the constants λ and μ. As λ tends
to zero, μ approaches unity, and the stiffness matrix of Eq.
14 degenerates into the Euler–Bernoulli stiffness matrix. The
stiffness matrix is identical to the stiffness matrix of the Tim-
oshenko beam element proposed by Macneal in [19] through
the residual bending flexibility method or RBF. The approach
adopted in the present work, as introduced in [11], offers an
interesting alternative with a better insight on the mechanics
of the locking phenomenon. Moreover, the derived stiffness
matrix is identical to the one derived by the exact, force based
Timoshenko beam element formulation as described in [39].

Taking into account the axial degrees of freedom the fol-
lowing, augmented, strain-displacement matrix is derived,
which corresponds to the 6x1 nodal displacement vector

presented in relation (8):

[B] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
L 0 0

0 − 12λμ
L − 6μ(−2x+L)

L3

0 −6λμ − 2μ
L

(−3 x
L + 2 (1 + 3λ)

)

1
L 0 0
0 12λμ

L
6μ(−2x+L)

L3

0 −6λμ 2μ
L

(
3 x

L − 1 + 6λ
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(15)

Throughout the work presented herein, axial and bending
deformations are considered to be uncoupled as implied by
the kinematic assumptions considered in Eq. 9.

3.3 The hysteretic degrees of freedom

Based on the previous results, the elastic deformation field is
extended herein by introducing an additional vector of cor-
responding hysteretic degrees of freedom:

ε={
εu εγ εφ

}T → ε̃={{ε} {z}}T ={
εu εγ εφ zu zγ zφ

}T

(16)

In Eq. 16, the elastic strain vector ε, consisting of the centr-
eline axial deformation εu , the shear deformation εγ and
the curvature εφ , is extended to its generalized counterpart
ε̃ comprising of the total strain vector {ε} and the hysteretic
strain vector {z}. In the latter, zu stands for the hysteretic part
of the total centreline axial deformation, zγ is the hysteretic
part of the total shear strain and zφ is the hysteretic part of
the total curvature. The following nonlinear hysteretic laws
are considered for the stress resultants:

N (x) = αu E Aεu (x)+ (1 − αu) E Azu (x)

Q (x) = αγG Asεγ (x)+ (
1 − αγ

)
G As zγ (x) , As = k A

M (x) = αφE Iεφ (x)+ (
1 − αφ

)
E I zφ (x) (17)

where αu, αγ , αφ are the axial, shear and bending inelastic
to elastic stiffness ratios respectively. If αi = 0, i = u, γ, φ
then the corresponding nonlinear relation assumes an elastic
perfectly plastic behaviour. If αi = 1 then the correspond-
ing behaviour is purely elastic. According to the generalized
hysteretic formulation presented in Sect. 2.1, relation (17)
can be cast in matrix form as:
⎧
⎨

⎩

N
Q
M

⎫
⎬

⎭
(x)

=
⎧
⎨

⎩

N e

Qe

Me

⎫
⎬

⎭
(x)

+
⎧
⎨

⎩

N h

Qh

Mh

⎫
⎬

⎭
(x)

(18)

where the elastic part is expressed as:

⎧
⎨

⎩

N e

Qe

Me

⎫
⎬

⎭
(x)

= [D]

⎧
⎨

⎩

εu

εγ
εφ

⎫
⎬

⎭
(x)

(19)
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and the hysteretic part is derived accordingly:
⎧
⎨

⎩

N h

Qh

Mh

⎫
⎬

⎭
(x)

=
[

Dh
]
⎧
⎨

⎩

zu

zγ
zφ

⎫
⎬

⎭
(x)

(20)

where (x) denotes dependence on the space variable. Matrix
[D] in Eq. 19 is defined as

[D] =
⎡

⎣
αu E A

αγG As

αφE I

⎤

⎦ (21)

while matrix
[
Dh

]
in Eq. 20 is defined as

[
Dh

]
=
⎡

⎣
(1 − αu) E A (

1 − αγ
)

G As (
1 − αφ

)
E I

⎤

⎦ (22)

The evolution equations of the hysteretic components are
defined in the form of Eq. 4 as follows:
⎧
⎨

⎩

Ṅ h

Q̇h

Ṁh

⎫
⎬

⎭
(x)

=
[

Dh
]
⎧
⎨

⎩

żu

żγ
żφ

⎫
⎬

⎭
(x)

=
[

Dh
]
([I ] − H1 H2 [R])

⎧
⎨

⎩

ε̇u

ε̇γ
ε̇φ

⎫
⎬

⎭
(x)

(23)

Equation 23 is expressed in terms of hysteretic deformations
as:
⎧
⎨

⎩

żu

żγ
żφ

⎫
⎬

⎭
(x)

= ([I ] − H1 H2 [R])

⎧
⎨

⎩

ε̇u

ε̇γ
ε̇φ

⎫
⎬

⎭
(x)

(24)

where according to Eq. 5 H1, H2 may assume the following
form:

H1 =
∥
∥
∥�

({
N h Qh Mh

}T
)

+ 1
∥
∥
∥

n
, n ≥ 2

H2 = γ sgn

⎛

⎝
{

N h Qh Mh
}T

⎧
⎨

⎩

ε̇u

ε̇γ
ε̇φ

⎫
⎬

⎭

⎞

⎠+ β

(25)

The yield surface � is expressed as a function of the hyster-
etic parts of the stress resultants defined in Eq. 20.

Furthermore, the interaction matrix [R] is now expressed
with respect to a stress-resultant based interaction surface as:

[R] =
⎡

⎣

(
∂�

∂
{

Ph
}

)T

[D]

(
∂�

∂
{

Ph
}

)⎤

⎦

−1

(26)

×
⎡

⎣

(
∂�

∂
{

Ph
}

)(
∂�

∂
{

Ph
}

)T

[D]

⎤

⎦

where
{

Ph
}
(x) = {

N h Qh Mh
}T
(x)

.

The definition of the yield surface� depends on the geo-
metric properties of the cross-section under consideration.
Different formulations exist for rectangular, hollow and
I-shaped, concrete or steel sections such as the Hodge’s
scheme [18] and the general yield function proposed by Neal
in [22]. The yield surface can also be derived numerically on
the grounds of a fiber analysis [7]. In this case, relation (26)
is also evaluated numerically. In the example Section of this
work several yield surface formulations are presented.

Usually the nonlinear interaction between moment and
shear is considered to be negligible, contrary to the axial–
moment interaction. In this case, relation (23) is reformu-
lated, to account for coupled axial–moment and uncoupled
shear plasticity patterns as follows:

{
Ṅ h

Ṁh

}

(x)
=
[
(1 − αu) E A (

1 − αφ
)

E I

]{
żu

żφ

}

(x)

=
[
(1 − αu) E A (

1 − αφ
)

E I

]
([I ] − H1 H2 [R])

{
ε̇u

ε̇φ

}

(x)

Q̇h = (
1 − αγ

)
G As żγ =(

1 − αγ
)

G As
(
1 − Hs

1 Hs
2

)
ε̇γ

(27)

or:

⎧
⎨

⎩

żu

żφ
żγ

⎫
⎬

⎭
(x)

=
⎡

⎣[I ] − H1 H2 [R]
0
0

0 0
(
1 − Hs

1 Hs
2

)

⎤

⎦

⎧
⎨

⎩

ε̇u

ε̇φ
ε̇γ

⎫
⎬

⎭
(x)

(28)

where in the first of Eq. 27 H1, H2 and [R], are functions of
the hysteretic axial force and the hysteretic moment. In the
second of Eq. 27:

Hs
1 =

∣
∣
∣
∣
∣

Qh

Qh
y

∣
∣
∣
∣
∣

n

, Hs
2 = βs + γssgn

(
Qh ε̇γ

)
(29)

and Qh
y = (

1 − αγ
)

Qy is the hysteretic yield shear force,
while Qy is the yield force of the cross-section in shear.

3.4 Additional shape functions

Based on the deformation vector defined in Eq. 16, the vec-
tor of nodal degrees of freedom introduced in Section 3.1 is

herein extended to the 12×1 vector
{

d̃
}

{
d̃
}
={{d} {z}}=

{
u1 w1 θ1 u2 w2 θ2 z1

u z2
u z1

γ z2
γ z1

φ z2
φ

}T

(30)

which consists of the total displacement vector {d} and the
hysteretic part of the total deformation {z}.
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Equation 17 are rewritten in the following equivalent
form:

N (x) = E A (αuεu (x)+ (1 − αu) zu (x)) = E Aε̃u (x)

(31)

Q (x) = G As
(
αγ εγ (x)+ (

1 − αγ
)

zγ (x)
) = G As ε̃γ (x)

(32)

M (x) = E I
(
αφεφ (x)+ (

1 − αφ
)

zφ (x)
) = E I ε̃φ (x)

(33)

where ε̃u (x), ε̃γ (x) and ε̃φ (x) can be considered as a mea-
sure of equivalent generalized centerline axial deformation,
shear deformation and curvature respectively.

The total part of the deformation component {ε} depends
solely on the total part of the displacement field as implied
by the compatibility relations introduced in Eq. 9. Thus, the
shape functions introduced in Eq. 12 are also used in the
nonlinear case for the interpolation of the total displacement
component {d}.

The definition of the hysteretic shape functions is explic-
itly derived from the equilibrium of the corresponding stress
resultants. Since the total moments at the ends of the element
are in equilibrium and there is no lateral intermediate loading
the following, equilibrium based, relations hold:

N (x) = ξN N1 + (1 − ξN )N2 (34)

Q (x) = ξQ Q1 + (1 − ξQ)Q2 (35)

M (x) =
(

1 − x

L

)
M1 + x

L
M2 (36)

where Ni , Qi ,Mi , i = 1, 2 are the values of the stress resul-
tants at the start and end node of the beam element respec-
tively (Fig. 1), while ξi ∈ [

0 1
]
, i = N , Q.

Since the proposed element is a constant axial and shear
force element, any value of ξi satisfies equilibrium in rela-
tions (34) and (35). Choosing ξi = 1, the axial and shear
force are considered only at the end node, thus reducing the
number of hysteretic degrees of freedom as proposed in [32].
However, since the proposed formulation highlights the ma-
croscopical hysteretic properties of skeletal structures a gen-
eral scheme would be preferable where different hysteretic
properties can be assigned at the end nodes of each beam
element. In this work the value of ξi = 1/2 is chosen that
results into a symmetric interpolation scheme.

Setting ξN = 1/2 in Eq. 34 and substituting into Eq. 31
the following relation is derived:

ε̃u (x) = 1

2

N1

E A
+ 1

2

N2

E A
= 1

2
ε̃1

u + 1

2
ε̃2

u (37)

Collocating the expression of the equivalent centerline axial
deformation equation ε̃u (x) from relation (31) at x = 0 and
x = L the following relations are also derived from Eq. 31:

ε̃1
u = αuε

1
u + (1 − αu) z1

u (38)

and

ε̃2
u = αuε

2
u + (1 − αu) z2

u (39)

Replacing Eqs. 38 and 39 into relation (37) and performing
the necessary algebraic manipulations, the following expres-
sion is obtained:

αuεu (x)+ (1 − αu) zu (x) = αu

(
1

2
ε1

u + 1

2
ε2

u

)

+ (1 − αu)

(
1

2
z1

u + 1

2
z2

u

)
(40)

Since relation (40) holds for every possible value of αu the
same interpolation field has to be adopted for both the total
axial centerline deformation εu and the hysteretic axial cen-
terline deformation zu . Following the same procedure for the
hysteretic shear deformation and the hysteretic curvature the
following exact interpolation functions are finally derived:

zu (x) = [
1/2 1/2

] {
z1

u z2
u

}T

zγ (x) = [
1/2 1/2

] {
z1
γ z2

γ

}T

zφ (x) = [
1 − x

L
x
L

] {
z1
φ z2

φ

}T
(41)

where z j
i , j = 1, 2, i = u, γ, φ are the nodal hysteretic

deformations. Thus, a hysteretic interpolation field is estab-
lished denoted herein as

[
Nz
]
:

[
Nz
] =

⎡

⎣
1/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0
0 0 0 0 1 − x

L
x
L

⎤

⎦ (42)

The interpolation field
[
Nz
]

maps the continuous hyster-
etic deformation components into their corresponding nodal
quantities. Accordingly, the interpolation equation is written
in the following form:

{
u(x) w(x) θ(x) zu(x) zγ (x) zφ(x)

}T =
[[N ] [∅]

[∅] [Nz]
] {

d̃
}

(43)

where [∅] is the 3x6 null matrix. Equation 43 can be used
to formulate the element’s hysteretic stiffness matrix as
described in the next Section.

3.5 Derivation of stiffness matrix

Taking into account bending, shear and axial deformations,
the principle of virtual work is formulated as:


e = {d}T {P} = δV =
L∫

0

(
Mδεφ + Qδεγ + Nδεu

)
dx

(44)
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where only nodal external loads are considered for the sake of
simplicity. Substituting Eq. 17 into 44 the following relation
is derived:

{d}T {P} = Iφ + Iγ + Iu (45)

where

Iφ =
L∫

0

(
αφE Iεφ + (

1 − αφ
)

E I zφ
)
δεφdx (46)

Iγ =
L∫

0

(
αγG Asεγ + (

1 − αγ
)

G As zγ
)
δεγ dx (47)

and

Iu =
L∫

0

(αu E Aεu + (1 − αu) E A) δεudx (48)

Collecting the hysteretic parts of the above integrals, Eq. 45
is reformulated as:

{d}T {P}

=
⎛

⎜
⎝

L∫

0

(
αφE Iεφ

)
δεφdx

+
L∫

0

αγG Asεγ δεγ dx +
L∫

0

αu E Aεuδεudx

⎞

⎟
⎠

+
⎛

⎜
⎝

L∫

0

((
1 − αφ

)
E I zφ

)
δεφdx +

L∫

0

(
1 − αγ

)
G As zγ δεγ dx

+
L∫

0

(1 − αu) E Azuδεudx

⎞

⎟
⎠ (49)

Writing the above integrals in matrix notation and substitut-
ing for the expression of the interpolated field introduced in
Eq. 43 the following relations are derived:

{δd}T {P} = {δd}T Ie {δd} + {δd}T Ih {z} (50)

where:

Ie =
L∫

0

[B]T [D] [B] dx (51)

and

Ih =
L∫

0

[B]T
[

Dh
] [

Nz
]

dx (52)

where Ie is the internal energy corresponding to the total
deformation components, Ih is the internal energy corre-
sponding to the hysteretic deformation components, [B] is

defined in Eq. 15,
[
Nz
]

in Eq. 42, {z} is the vector of hys-
teretic nodal degrees of freedom and matrices [D] and

[
Dh

]

are defined in Eqs. 21 and 22 respectively.
Equation 51 yields the elastic stiffness matrix of the beam

element:

[ke] = αφE I

L

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αu E A
αφ E I 0 0 − αu E A

αφ E I 0 0

0 12�3 6�3 0 −12�3 6�3

0 6 4�1 0 −6�3 2�2

− αu E A
αφ E I 0 0 αu E A

αφ E I 0 0

0 −12�3 −6�3 0 12�3 −6�3

0 6�3 2�2 0 −6�3 4�1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(53)

where:

�1 =
(

1 + 6λ+ 9
αγ

αφ
λ+ 36λ2

)
μ2

�2 =
(

1 − 12λ+ 18
αγ

αφ
λ− 72λ2

)
μ2

�3 = βG AL

(
1 + 12

αγ

αφ
λ

)
μ2

and λ,μ are defined in relation (13). When αu = αφ = αγ =
1 the stiffness matrix reduces to the elastic Timoshenko for-
mulation presented in relation (14).

The integral of Eq. 52 yields the nonlinear hysteretic stiff-
ness matrix of the element:

[
kh
] = E I

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−μu −μu 0 0 0 0
0 0 −6μγ 6μγ −μφ

/
L μφ

/
L

0 0 −3μγ L 3μγ L −μφ (1 + 6λ) −6μφλ
μu μu 0 0 0 0
0 0 6μγ −6μγ μφ

/
L −μφ

/
L

0 0 −3μγ L 3μγ L 6μφλ μφ (1 + 6λ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(54)

where:

μu = (1 − αu)
E A
2E I

μγ = (
1 − αγ

)
μ

μφ = (
1 − αφ

)
μ

(55)

Similarly to the elastic case, as λ tends to zero, μ tends to
unity and the hysteretic matrix coincides with the one derived
for the Euler–Bernoulli case [40]. Substituting the expres-
sions derived back to the principle of virtual work (Eq. 50),
the following constitutive equation is derived at the element
level:

{P} = [ke] {d} + [kh] {z} = [
[ke] [kh]

] {
d̃
}

(56)

Eq. 56 together with the set of Bouc–Wen evolution equa-
tions defined either in relation (24) or relation (28) at x = 0
and x = L smoothly describe the nonlinear cyclic response
of a Timoshenko beam element. Considering for example
relation (28), the corresponding nodal hysteretic quantities
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are expressed as:

⎧
⎨

⎩

żu

żφ
żγ

⎫
⎬

⎭
x=0,L

=

⎧
⎪⎨

⎪⎩

ż1,2
u

ż1,2
φ

ż1,2
γ

⎫
⎪⎬

⎪⎭

=
⎡

⎣[I ] − H1 H2 [R]
0
0

0 0
(
1 − Hs

1 Hs
2

)

⎤

⎦

x=0,L

[
B̄
]

x=0,L {d}

(57)

where
[
B̄
]

is the strain displacement matrix introduced (15),
properly reordered to account for the strain vector in rela-
tion (28).

4 Solution procedure

4.1 Standard second order formulation

For a specific plane frame structure with n f degrees of free-
dom and given connectivity of nel elements, mass distribu-
tion and boundary conditions, dynamic equilibrium can be
established in terms of nodal displacements, velocities and
accelerations as follows:

[M]S
{
Ü
}+ [C]S

{
U̇
}+ [K ]S {U } + [H ]S {Z} = {P(t)}

(58)

where [M]S, [C]S, [K ]S are the mass, viscous damping and
stiffness square symmetric (n f x n f ) matrices respectively
and [H ]S is the orthogonal

(
n f x 6nel

)
hysteretic matrix of

the structure, while {P(t)} is the (n f x1) vector of exter-
nal forces. Both [K ]S and [H]S are assembled by their cor-
responding elemental contributions defined in Eq. 53 and
54 respectively, following the direct stiffness method, Bathe
(2007). The mass matrix may correspond to a lumped mass
diagonal matrix or a consistent mass matrix [4]. The viscous
damping matrix in general may be of the form of a Rayleigh
damping matrix [8].

The unknown vectors, namely the nodal displacement vec-
tor {U } and the elemental hysteretic deformation vector {Z},
with dimensions

(
n f x1

)
and (6nel x1) respectively, dictate

the structure of the hysteretic matrix [H ]S . The hysteretic
behaviour is defined at the element level in terms of hysteretic
curvatures, centreline axial deformations and shear strains.
The contribution of the hysteretic matrix of each element
expressed in global terms is appended to form the corre-
sponding hysteretic matrix [H ]S , which expresses the hys-
teretic contribution that corresponds to the total degrees of
freedom of the structure. Equation 58, together with the evo-
lution equations for the entire set of the introduced hysteretic
parameters, fully describe the response of the system to a
given external excitation and initial conditions.

The necessary modifications in a standard FEM code, so
as to comply with the formulation presented herein mainly
concern the evaluation of the hysteretic matrix [H ]S and the
establishment of the evolution equations. Moreover, the ele-
ment proposed herein can be easily incorporated in a joined
analysis–identification software, as proposed in [26]. Any
type of integrator can be used to solve the system of non-
linear equations of motion such as the Newmark family of
solvers. In this work, the Livermore family of solvers is used,
[27], as described in the next Section.

4.2 State space formulation

By introducing as auxiliary unknown the vector of nodal
velocities

{
U̇
}
, the dynamic equilibrium Eq. 58 is expressed

in the form of 2n f linear differential equations of first order
as follows:

{{
U̇
}

{
Ü
}
}

= [S]
⎧
⎨

⎩

{U }{
U̇
}

{Z}

⎫
⎬

⎭
+
{

0
{P(t)}

}
(59)

where the state matrix [S] is defined as:

[S] =
[

0 I 0
−[M]−1 [K ] −[M]−1 [C] −[M]−1 [H ]

]
(60)

These are coupled with the nonlinear set of 6nel evolution
equations of the form:
{

Ż
} = f (

{
U̇
}
, {Z}) (61)

Equation 61 is formulated as 3 sets of pairs of coupled equa-
tions for each element defined in relations (57).

Equation 59 depends on global system matrices, which
are defined once at the beginning of the analysis and remain
constant in all subsequent steps. Moreover, the evolution of
the elastoplastic behaviour is treated at the element level in
a decoupled and thus implicitly parallel form considering an
interaction scheme for the bending shear and axial compo-
nents through relation (24) or the interaction of bending and
axial components through relation (28).

Equation 59 are written into a non-autonomous state–
space formulation of the following form:

{ẋ} = G ({x}) {x} + {P (t)} (62)

where the vector {x} is defined as:

{x}T =
[
{U }T

{
U̇
}T {Z}T ]

(63)

and G ({x}) is defined as follows:

G ({x}) =
⎡

⎣
0 I 0

[M]−1 [K ] [M]−1 [K ] [M]−1 [H ]
0 Y

({
U̇
}
, {Z}) 0

⎤

⎦ (64)

The operator G is a state dependent operator since Y holds
the evolution equations for each beam element i and beam
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Fig. 3 Cantilever beam

end j , e.g. considering the interaction scheme of relation
(28), vector Y is defined as:

Y i
j

(
{u̇}i , {z}i

)
=
⎡

⎣[I ]−H1 H2 [R]
0
0

0 0
(
1 − Hs

1 Hs
2

)

⎤

⎦

j

[
B̄
]

j {ḋ}

(65)

where {ḋ} = [�] {u̇}i and [�] is the transformation matrix of
the 2D beam element from the global to the local coordinate
system defined in equation.

[�] =
⎡

⎣
cosψ sinψ 0

− sinψ cosψ 0
0 0 1

⎤

⎦ (66)

where ψ is the angle between the local x axis and the global
x axis, as presented in Fig. 1.

5 Numerical verification

5.1 Example 1: cantilever beam

In this example, an aluminum cantilever beam presented in
Fig. 3 is examined. At first, a horizontal load is applied at the
tip and the elastic response of the cantilever is compared to
the analytical solution to validate the behaviour of the ele-
ment in terms of shear-locking. Next, a nonlinear static anal-
ysis is conducted and the load–tip deflection curve is plotted
for different values of the vertical load Py.

For the nonlinear analysis, full interaction between axial,
shear and bending is considered through relations (23) to
(26). The yield criterion proposed by Simo et al. [33] is
implemented:

� =
∣
∣
∣
∣

Mh

Mh
u

∣
∣
∣
∣+

(
N h

N h
u

)2
(

1 +
(

V h

V h
u

)2
)

+
(

V h

V h
u

)4

(67)
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Fig. 4 Effect of the axial force on the bearing capacity of the element

where for the rectangular cross-section N h
u = (1 − αu) σybh,

V h
u = (

1 − αγ
)
σy

/√
3bh, Mh

u = (
1 − αφ

)
σybh2

/
4, σy

being the yield stress under uniaxial tension. The mate-
rial properties considered are E = 69 GPa, G = 26 GPa,
αu = αγ = αφ = 0.0, n = 25, β = γ = 0.5, σy = 275
MPa. The shear coefficient for the rectangular cross-section
is k = 5

/
6. The tip horizontal displacement and the tip rota-

tion are evaluated analytically as:

ux,exact = PxL3

3E I
+ PxL

βG A

θexact = −PxL2

2E I

Considering the stiffness matrix of the proposed beam ele-
ment presented in relations (53) to (55) and under the assump-
tion of elasticity, the tip displacement of the cantilever beam
discretized into one element is evaluated as [41]:

kel
55ux + kel

56θ = Px

kel
65ux + kel

66θ = 0

⎫
⎬

⎭
⇒ ux = Px L3

3E I + Px L
βG A = ux,exact

θ = −Px L2

2E I = θexact

The formulation adopted yields an exact solution and no
shear locking is developed, contrary to the Reduced Inte-
gration Timoshenko beam Element (RIE) and the Consis-
tent Interpolation Beam Element (CIE) that both yield the
following results [30]:

u RI E,C I E
x = PxL3

4E I
+ PxL

βG A
	= ux,exact

θ RI E,C I E = −PxL2

2E I
= θexact

in which, the rotation evaluated is exact but the translation is
smaller.

Next, a monotonically increasing horizontal load Px is
imposed at the tip of the cantilever and a nonlinear static
analysis is performed. In Fig. 4, the effect of the normalized
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Fig. 5 Comparison of proposed formulation with plane stress solution

axial load n p = N h
/

N h
u on the nonlinear response of the

cantilever is presented. The results obtained with the pro-
posed formulation are compared with results obtained from
Abaqus code [16]. In the latter, the cantilever is discretized
with 160 quadrilateral plane stress elements considering a
J2 plasticity model, namely an elastic-perfectly plastic von-
Mises material. Two cases are considered in Fig. 5 for
n p = 0 and n p = 0.9 and the corresponding results from
the proposed formulation and the Abaqus code are pre-
sented. Though in both cases, the ultimate load predicted
by the proposed formulation is overestimated, the relative
error is in both cases less than 1%. The ultimate load pre-
dicted from plasticity theory [18] for zero axial load is
PU = σybh2

/
4L = 440K N . The value predicted by the

proposed formulation is PU = 440.8K N , while Abaqus pre-
dicts a value of PU = 439.2K N . The differences observed
are due to the approximate nature of relation (67) as compared
to the exact FEM solution. Nevertheless, the deviation of the
proposed formulation from the exact solution for n p = 0.9 is
2.6%. Moreover, the analysis with the proposed formulation
completed in 1 sec, since only one beam element was used,
while the analysis in the Abaqus code completed in 20 sec.
All analyses were conducted in a PC fitted with a Pentium
Core Duo processor and 4 GB of RAM.

5.2 Cyclically loaded shear beam

A 70 cm shear link of an IPE400 cross-section is exam-
ined in this paragraph. An S275 grade material is consid-
ered [2] with an elastic modulus of 210 GPa and a yield
stress equal to 275 MPa. The solution obtained with the pro-
posed formulation is compared against a solution obtained
using Abaqus. The computational model implemented in the
proposed formulation is presented in Fig. 6a. The structural

P

(a) (b)

Fig. 6 a Idealized beam model. b Abaqus FEM mesh
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Fig. 7 Quasi-static loading

model implemented in Abaqus consists of 3712 quadrilateral
shell elements and is presented in Fig. 6b. An elastic perfectly
plastic material behaviour is considered in the Abaqus model.
The parameters chosen for the Bouc–Wen model are n = 6,
β = γ = 0.5, αi = 0.025. Due to the gradual yielding of the
web, the elastic perfectly plastic stress-strain material law,
attributed at the element level in the Abaqus discretization,
gives rise to a hardening load-displacement path as presented
in Fig. 8a, b. Therefore a nonzero kinematic hardening con-
stant is assigned in the proposed macroelement to accurately
simulate the actual behaviour.

The Orbison criterion is considered [23] defined by the
following relation:

� = 1.15n2 + m2
y + m4

z + 3.67n2m2
y + 3.0n6m2

z

+ 4.65m4
ym2

z (68)

where n = Ph

Ph
u

, my = My
h

Mh
yu

, mz = Mz
h

Mh
zu

while y refers to the

strong axis and z refers to the weak axis of the cross-section.
In this work, where only plane structures are considered mz

is equal to zero. Yielding in shear is defined by the following
relation:

Qy
h = (1 − αγ )

Asσy√
3

(69)
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Fig. 9 a Moment–curvature diagram. b Shear force–Shear strain diagram

where As is the shear area of the cross-section and σy is
the yield stress of the material under uniaxial tension. The
plastic moment implemented into the Orbison criterion is
considered a function of the shear force as defined by the
following relation [14]:

Mh
yu = (

1 − αφ
)
Mp

⎡

⎣1 − Mw

Mp

⎛

⎝1 −
√

1 −
(

Q

Q p

)2
⎞

⎠

⎤

⎦

where Mp is the plastic moment of a I section and Mw is
the portion of bending retrieved from the web. A quasi-static
analysis is performed under a cyclic excitation, presented in
Fig. 7.

The response of the shear link is presented in Fig. 8a. Since
the link yields in shear, the Bernoulli formulation fails to
predict the nonlinear behaviour of the specimen. On the oppo-
site, the Timoshenko formulation agrees well with the Aba-
qus results. The minor deviation both in the reloading phase
and in the residual displacements is due to the inability of the
proposed formulation to accurately predict the exact distribu-
tion of residual stresses on the cross-section that would give

rise to a smoother transition from the elastic to the inelastic
regime. However, allowing for a different set of parameters
in the Bouc–Wen model, namely n = 3, β = γ = 0.5,
αi = 0.025, the plot presented in Fig. 8b is produced.

The versatility of the implemented Bouc–Wen hysteretic
rule on macro-modeling overcomes the inherent inability of
the concentrated plasticity formulation to predict the smooth
transition from the elastic to the inelastic regime due to the
gradual yielding of the web. In Fig. 9a, b the moment–
curvature and shear force–shear strain hysteresis loops are
presented respectively. As concluded from the comparison
of the Bernoulli and Timoshenko solutions, the shear link
yields in shear since the ultimate moment asserted onto the
element is less than the plastic moment of the IPE400 section
(359 kNm).

5.3 Example 2: Woodland Hills Hospital—moment frame

In this example, a typical 6 story frame of a hospital building
located at Woodland Hills, California is subjected to the
El Centro accelerogram, scaled up with a factor of 1.8.
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Fig. 11 Scaled El Centro ground motion record

The structure and the scaled accelerogram are presented
in Figs. 10 and 11 respectively. Two analysis cases are
considered.

In the first one the Euler–Bernoulli theory of bending
is considered (setting λ = 0) and axial and bending plas-
tic deformations are coupled through the Orbison criterion
defined in Eq. 68. In the second, the Timoshenko formulation
is used where yielding in shear is again defined by relation
(69). The hysteretic axial, shear and moment resistance of

Table 1 Hysteretic member resistance

Cross-Section Np Qy
h Mp

[−] [K N ] [K N ] [k Nm]
W36×210 9,888 1,456 3,383

W36×150 7,063 1,040 2,360

W36×135 6,344 934 2,067

W27×94 4,436 653 1,129

W14×283 13,308 1,959 2,201

W14×257 12,093 1,781 1,977

W14×193 9,071 1,335 1,442

W14×500 23,494 3,458 4,262

W14×455 21,437 3,156 3,791

W14×342 16,158 2,379 2,726

Table 2 Material parameters
Parameter Value

n 25

αcol 0.0015

αbeam 0.0015

β 0.5

γ 0.5

σy 248,200 kPa

the members are evaluated according to the cross-sectional
data and presented in Table 1.

To prove the validity of the proposed formulation, results
obtained from the Euler–Bernoulli analysis are compared
to results obtained from the OpenSees code [21]. The fiber
force-based element [36] is implemented in OpenSees while
plasticity is introduced into the element through a fiber
approach, at integration points defined along the element’s
length. In this way, the interaction between axial and bending
plastic deformations is accurately attributed, while plasticity
in shear is considered uncoupled. For the sake of compari-
son, two models are considered in OpenSees, with three and
ten integration points per member respectively. The mod-
ified Newton scheme is utilized with an average accelera-
tion Newmark integrator. A uniaxial elastic-plastic material
model with kinematic hardening is used in the OpenSees code
with the hardening constant being equal to H_kin = 45GPa.
This corresponds to a post-elastic to elastic stiffness ratio
a = 0.0015. Viscous damping is not considered in both
cases. The value of the shear correction factor is equal to
0.255 for all sections.

The parameters of the Bouc–Wen model and the floor
masses are presented in Tables 2 and 3 respectively. The
derived moment–curvature diagrams are bilinear with a sharp
transition from the elastic to the inelastic regime. The mass
of the structure is considered lumped at the floor levels.
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Table 3 Floor Masses
Floor Mass (tn)

1 402.8

2 231.2

3 180.4

4 180.4

5 180.4

6 182.1
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Fig. 12 Top story horizontal displacement time history (Euler Theory)

The dynamic analysis is carried out for a time period of 20
seconds with a time integration step of 0.02 sec. The funda-
mental eigenperiod of the structure is TEuler = 0.94 sec and
TT I M = 1.05 for the Euler and Timoshenko formulations
respectively.

For the first analysis case, the time history of the top
story horizontal displacement (node 28) is plotted in Fig. 12
where the results from OpenSees and the proposed formula-
tion are compared. The results obtained from the proposed
method and OpenSees are in perfect agreement. The minor
differences observed are attributed to the different solution
procedures implemented.

In the second analysis case, where the Timoshenko beam
theory is considered, the dynamic response of the structure
is considerably different. In Fig. 13, the time-history of the
top-story horizontal displacement is again compared to the
results obtained from OpenSees. The solution obtained from
the proposed formulation agrees with the force-based scheme
implemented in OpenSees.

As expected, the results obtained from the Euler–Bernoulli
and Timoshenko formulation differ. In the first 4 seconds
of the excitation the response of the structure is practically
the same. However, as plastic deformations accumulate,
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Fig. 13 Top story horizontal displacement time history (Timoshenko
Theory)

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00

S
to

re
y

Maximum drift ratio (%)  

Timoshenko Euler

Fig. 14 Maximum drift ratios

both in bending and in shear, the flexibility of the struc-
ture is further increased. Thus, larger displacements are
observed, especially towards the last 10 seconds of the
response when plastic deformations accumulate, while the
max and min response differ by 20–25%. In Fig. 14 the
maximum interstorey drift ratios (IDRs) are presented for
the two analysis cases. IDR is defined as the relative hor-
izontal displacement of two subsequent storeys normal-
ized to the storey height. It is concluded that the dynamics
of the structure are not significantly altered considering
either the Euler–Bernoulli or Timoshenko formulation, since
the distribution of the maximum shear drifts remains the
same. Plastic deformations in both cases are concentrated
in the first storey columns. Thus, the differences observed
between Figs. 12 and 13 are due to the shear plastic
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Fig. 15 a Axial force–axial deformation. b Normalized axial–moment dynamic interaction. c Moment–curvature. d Shear force–shear deformation

deformations being developed in the first storey-columns
leading to a more flexible structure in the Timoshenko
formulation.

In the next figures, the efficiency of the proposed hysteretic
interaction scheme is presented. The axial force–axial defor-
mation and moment–curvature diagrams of element #1
(Fig. 10) are presented in Fig. 15a, c respectively. In the
latter, the moment–curvature hysteretic loop derived fol-
lowing Timoshenko formulation is compared against the
Euler–Bernoulli formulation derived loop. Though the elas-
tic stiffness of the member does not vary significantly, the
maximum bending plastic deformations in the first case
are smaller. In Fig. 15d the shear force–shear deformation
hysteretic loop is plotted. Contrary to the Euler–Bernoulli
case where energy is dissipated only through the hyster-
etic moment-curvature mechanism, in this case the shear
hysteretic energy is also considered. Correct estimation of
the actual section deformations is important in displacement
based design where the capacity of a member is measured in
terms of deformation potential.

In Fig. 15b, the normalized axial force and the normalized
bending moment are plotted when yielding has occurred.

These points foliate the corresponding space and do not
lay on a single curve due to kinematic hardening. For the
same reason normalized values exceed unity in the figure. As
expected, yielding in bending is predominant in the nonlin-
ear behaviour of the frame member. However, the interaction
scheme significantly alters its plastic deformation potential.

A Fortran code has been developed for the analysis of skel-
etal structures with the proposed formulation. All the analy-
ses were performed in a PC fitted with a Core Duo Quad CPU
and 4 GBs of RAM. The analysis time with the proposed for-
mulation was 67 sec. The analysis time of OpenSees was 118
sec for three integration points.

6 Conclusions

In this work, a new nonlinear beam element is presented,
together with efficient methods for the solution of the equa-
tions of motion treating nonlinearities at the element level.
The beam element is formulated within the framework of
the Timoshenko beam theory by adding six new degrees of
freedom accounting for the hysteretic part of the curvature,
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axial centreline deformation and shear strain. Exact shape
functions are utilized. As a consequence, shear locking is
alleviated. The Bouc–Wen hysteretic model is implemented
to simulate the nonlinear constitutive behaviour of the mate-
rial. A wide range of hysteretic behaviour can be modeled
by properly controlling the parameters of the hysteresis law,
namely the “yield” parameter, the smoothness parameter n,
and the shape factors, while existing extended models could
be used to account for stiffness degradation, strength deteri-
oration and pinching phenomena. The proposed element can
be extended into 3D space in a concise and straightforward
manner.
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