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Abstract In this paper, the finite point method (FPM) is
presented for solving the 2D, nonlinear, elliptic p-Laplace
or p-harmonic equation. The FPM is a truly meshfree tech-
nique based on the combination of the moving least squares
approximation on a cloud of points with the point colloca-
tion method to discretize the governing equation. The lack
of dependence on a mesh or integration procedure is an
important feature, which makes the FPM simple, efficient
and applicable to solve nonlinear problems. Applications are
demonstrated through illustrative examples.

Keywords Meshfree method · Finite point method ·
p-Laplace equation · Injection molding · MLS
approximation

1 Introduction

1.1 The model investigated

The p-Laplace operator

�pu := div(|∇u|p−2∇u), (1.1)
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has been regarded as a counterpart to the Laplace operator
(p = 2) for the nonlinear phenomena. The p-Laplace equa-
tion, �pu = 0, plays an important role in the modeling
of many phenomena in several areas such as glaciology,
non-Newtonian rheology or edge-preserving image deblur-
ring [22].

The motivation for this work is the numerical simulation of
injection molding, a process of industrial relevance whereby
molten polymer is driven into a cavity (the mold) in order
to manufacture small plastic parts. If the polymer viscosity
obeys a power law and the mold is thin compared to its planar
dimensions, the classical mathematical model of the injection
molding is the Hele-Shaw approximation [1,12].

As mentioned in [4–6], if we consider the isothermal
Hele-Shaw flows, which physically arise whenever the fluid
viscosity does not depend on temperature, the problems are
related to solve the following 2D, non-linear, elliptic equation

div(|∇u|γ ∇u) = 0, (1.2)

which is [22] a p-Laplace equation of index p = γ + 2. The
solution yields the pressure distribution u(x, y) in the filled
region of the mould � with boundary �. The boundary of
the domain is divided in to three parts: injection gate, walls,
and front. As is said in [4] the exponent γ completely char-
acterizes the polymer rheology, and is typically γ ≈ 1/2. If
the pressure profile pin is set along the injection gate by the
injection machine, the boundary conditions are

⎧
⎨

⎩

u = pin, x ∈ �in (injection),
∂u
∂n = 0, x ∈ �w (walls),
u = 0, x ∈ � f (front).

(1.3)

From this pressure field, the average planar velocity �v can
be computed and the location of the advancing front can be
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updated:

�v = −|∇u|γ ∇u.

The boundary conditions (1.3) are the most usual in the com-
mercial software, also the following nonlinear boundary con-
ditions are proper [4]
⎧
⎨

⎩

−|∇u|γ ∂u
∂n = qin, x ∈ �in (injection),

∂u
∂n = 0, x ∈ �w (walls),
u = 0, x ∈ � f (front),

(1.4)

where qin is the profile of the velocity field �v along the injec-
tion segment and it is a known function. We will refer to
(1.3) and (1.4) as Dirichlet-injection and Neumann-injection
boundary conditions, respectively.

The numerical simulation of the Hele-Shaw flow requires
some methods [22] for solving equation (1.2) at every time
step with some techniques to advance the front to its new posi-
tion, until the mould domain has been completely filled [4,5].
Once the pressure is known by solving the above equations,
the velocity at each point in the moving front is computed as

�v = (v1, v2) = −|∇u|γ
(

∂u

∂x
,
∂u

∂y

)

. (1.5)

The main purpose of this article is computing the pressure
u from the p-Laplace equation, and we do not concern to
update the location of the front. For more details of model-
ing the flow of an injected fluid in a mould see Section 3 of
[4].

This problem features a nonlinear, unsteady, and free-
boundary flow confined inside a potentially irregular 2D
geometry, and therefore is well suited to meshfree discret-
izations. In [5], an alternative, meshfree framework was pro-
posed for solving this problem combining the method of
asymmetric radial basis function (RBF) collocation for pres-
sure with the level sets for capturing the front motion. In [6]
the authors were linearized the equation and applied a mesh-
free technique based on RBF approximation introduced by
G. Fasshauer which allows to solve it in the framework of
Kansa method. In [22] the meshfree local Petrov Galerkin
(MLPG) technique is developed for solving the p-Laplace
equation.

1.2 A brief review of meshfree methods

Meshfree methods have become quite popular for solving
PDEs appear in physics and engineering. The motivation is
to cut down modeling costs in the industrial applications by
avoiding the labor intensive step of mesh generation. These
methods are particularly attractive in problems with moving
interfaces since no remeshing is necessary.

A family of meshfree methods is based on smooth par-
ticle hydrodynamic procedures [24,32]. A second class of
meshfree methods derived from the generalized [19,31]

finite difference (GFD) techniques [8]. Here the approxima-
tion around each point is typically defined in terms of Taylor
series expansions and the discrete equations are found using
the point collocation. Among a third class of meshfree tech-
niques we find the so called diffuse element (DE) method
[25], the element free Galerkin (EFG) method [3,11] and the
reproducing kernel particle (RKP) method [20,21]. These
three methods use the local interpolations for defining the
approximate field around a point in terms of the values in
adjacent points, whereas the discretized system of equations
is typically obtained by integrating the Galerkin variational
form over a suitable background grid.

The finite point method (FPM) proposed in [7,26–29] is
a truly meshfree procedure. The approximation around each
point is obtained using the standard moving least squares
techniques similarly as in DE and EFG methods. The discrete
system of equations is obtained by sampling the govern-
ing differential equations at each point as in GFD methods.
We refer the interested reader to [9,10,13–18,23] for more
research works on meshfree methods.

1.3 The main aim and the organization of the paper

In this paper we use the FPM for solving the nonlinear
p-Laplace equation. We believe that this approach could also
be applied to other typical two dimensional PDEs involving
the p-Laplace operator as the core nonlinearity, such as the
Perona-Malik equation for the nonlinear (edge-preserving)
image denoising [30], or the problem of finding the minimal
surface resting on a given boundary.

The content of the paper is structured as follows. In Sect. 2,
the basis of the FPM is described. In Sect. 3, the lineariza-
tion and the numerical implementation are discussed. In order
to confirm the validity of the approach, some problems are
solved in Sect. 4. The convergence and accuracy of the new
method are discussed too.

2 The finite point method

The FPM employs a weighted least squares technique to con-
struct the meshfree approximation function and a point col-
location procedure in order to discretize the governing partial
differential equations (PDE).

To approximate a function u(x) in the problem domain
�, over a number of randomly located nodes {xi }, i =
1, 2, . . . , n, the moving least squares approximation uh(x)

of u(x),∀x ∈ �̄, can be defined by

uh(x) = pT (x)a(x), ∀x ∈ �̄, (2.1)

where pT (x) = [p1(x), p2(x), . . . , pm(x)] is a complete
monomial basis of order m and a(x) is a vector containing
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coefficients a j (x), j = 1, 2, . . . , m which are functions of
the space coordinates x. For example for a 2-D problem,

pT (x) = [1, x, y], linear basis, m = 3,
pT (x) = [1, x, y, x2, xy, y2], quadratic basis, m = 6.
The unknown parameters a j (x) are determined at any

point x, by minimizing a functional J (x) defined by

J (x) =
n∑

i=1

w(x − xi )(u
h(xi ) − ui )

2

=
n∑

i=1

w(x − xi )(pT (xi )a(x) − ui )
2, (2.2)

where w(x − xi ) is the weight function with compact sup-
port associated with node i, n is the number of nodes in �̄ for
which the weight function w(x−xi ) > 0 and the parameters
ui are specified. Eq. (2.2) can be written as

J (x) = [P.a(x) − u]T .W.[P.a(x) − u], (2.3)

where

P=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pT (x1)

pT (x2)

...

pT (xn)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×m

, W=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

w(x − x1) · · · 0

· · · . . . · · ·

0 · · · w(x − xn)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

n×n

.

The standard minimization of (2.3) with respect to a(x) can
be obtained by setting the derivative of J with respect to
a(x) equal to zero. The following linear system results:

A(x)a(x) = B(x)u, (2.4)

where matrices A(x) and B(x) are defined by

A(x) = PT WP =
n∑

i=1

w(x − xi )p(xi )p
T (xi ), (2.5)

B(x) = PT W

= [w(x − x1)p(x1), w(x − x2)p(x2), . . . , w(x − xn)p(xn)].
(2.6)

Solving for a(x) from Eq. (2.4) and substituting it into Eq.
(2.1), the MLS approximation can be defined as

uh(x) =
n∑

i=1

φi (x)ui = �T (x)u, x ∈ �̄, (2.7)

where

�T (x) = pT (x)A−1(x)B(x), (2.8)

or for the shape function φi (x) associated with node i at a
point x we have

φi (x) =
m∑

j=1

p j (x)(A−1(x)B(x)) j i . (2.9)

The matrix A(x) is often called the moment matrix, it is of
size m ×m. This matrix must be inverted whenever the MLS
shape functions are to be evaluated. It can be seen that this
is the case if and only if the rank of P equals m. A necessary
condition for a well-defined MLS approximation is that at
least m weight functions are non-zero (i.e. n ≥ m) for each
sample point x ∈ � [33].

The smoothness of the shape functions φi (x) is deter-
mined by that of the basis functions and of the weight func-
tions. If w(x − xi ) ∈ Ck(�) and p j (x) ∈ Cl(�), i =
1, 2, . . . , n, j = 1, 2, . . . , m, then φi (x) ∈ Cmin(k,l)(�).
The partial derivatives of φi (x) are obtained as

φi,k(x) =
m∑

j=1

(p j,k(A−1B) j i + p j (A−1B,k + A−1
,k B) j i ),

(2.10)

and

φi,kl(x) =
m∑

j=1

(
p j,kl(A−1B) j i + p j (A

−1
,l B,k + A−1B,kl

+A−1
,kl B + A−1

,k B,l) j i

+p j,k(A−1B,l + A−1
,l B) j i

+ p j,l(A−1B,k + A−1
,k B) j i

)
, (2.11)

where, ( ),k and ( ),kl denote ∂( )/∂xk and ∂2( )/∂xkl , respec-
tively. Also A−1

,k = (A−1),k represents the derivative of the
inverse of A with respect to xk , which is given by

A−1
,k = −A−1A,kA−1, (2.12)

where

A,k(x) =
n∑

i=1

w,k(x − xi )p(xi )pT (xi ). (2.13)

So the first order and the second order partial derivatives of
uh(x) are obtained by

uh
,k(x) =

n∑

i=1

φi,k(x)ui , x ∈ �̄, (2.14)

and

uh
,kl(x) =

n∑

i=1

φi,kl(x)ui , x ∈ �̄, (2.15)

respectively.
When the meshfree approximation functions are con-

structed, the FPM uses a point collocation technique to
discretize the governing equation. The point collocation
approach gives rise to a linear system of equations, the solu-
tion of which provides the nodal parameters at the nodes.
Once the nodal parameters are computed, the unknown solu-
tion at each node can be computed from Eq. (2.7).
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Let � be the solution domain of a boundary value problem
and � = �t ∪ �u be the boundary. Assume that the problem
is governed by the following set of equations:

A(u) = 0, in �,

B(u) = 0, on �t (Neumann’s condition),
u − u p = 0, on �u (Dirichlet’s condition),

(2.16)

where A and B are the linear differential operators, u is the
unknown function and u p is the prescribed value of u in �u .

The discretized system of equations in the FPM is found
by substituting Eq. (2.7) into Eq. (2.16) and collocating the
differential equation at each point in the analysis domain.
This gives the set of equations

A(uh(x j )) = 0, j = 1, . . . , N ,

B(uh(x j )) = 0, j = N + 1, . . . , N + Nt ,

uh(x j ) − u j = 0, j = N + Nt + 1, . . . , n,

(2.17)

in which N , Nt , and Nu are the number of collocation points
located in domain � and on the boundary �t and �u , respec-
tively and n = N + Nt + Nu . The system of Eqs. (2.17) leads
to a system of algebraic equations of the form

Ku = f, (2.18)

where K is the stiffness matrix, u is the vector collecting the
point parameters ui , i = 1, . . . , n, where n is the total num-
ber of nodes located in the interior of � and its boundary and
f is a vector of the known forces acting at the points.

If the differential operator A be nonlinear, a nonlinear
system of equations will result. In this case, we use a predic-
tor–corrector scheme based on the solution of the successive
linear systems.

3 The discretization and numerical implementation

We start with Eq. (1.2) which can be simplified to

∂

∂x

(

|∇u|p−2 ∂u

∂x

)

+ ∂

∂y

(

|∇u|p−2 ∂u

∂y

)

= 0. (3.1)

For convenience Eq. (3.1) can be rewritten as

|∇u|p−2�u + ∂|∇u|p−2

∂x

∂u

∂x
+ ∂|∇u|p−2

∂y

∂u

∂y
= 0. (3.2)

To apply the scheme we consider n nodal points {x j }n
j=1 on

the domain of the problem and its boundary as MLS nodal
points. Substituting (2.7) into (3.2) and using the collocation
at each interior node x j [i.e. x j ∈ int (�)], result in

|∇u j |p−2�u j + ∂|∇u j |p−2

∂x

∂u j

∂x
+ ∂|∇u j |p−2

∂y

∂u j

∂y
= 0,

(3.3)

where

u j =
n∑

i=1

φi (x j )ui ,

∂u j

∂x
=

n∑

i=1

∂φi

∂x
(x j )ui ,

∂u j

∂y
=

n∑

i=1

∂φi

∂y
(x j )ui ,

�u j =
n∑

i=1

(
∂2φi

∂x2 (x j ) + ∂2φi

∂y2 (x j )

)

ui ,

|∇u j |p−2 =
⎡

⎣

(
n∑

i=1

∂φi

∂x
(x j )ui

)2

+
(

n∑

i=1

∂φi

∂y
(x j )ui

)2
⎤

⎦

(p−2)/2

,

∂|∇u j |p−2

∂x
= (p − 2)

⎡

⎣

(
n∑

i=1

∂φi

∂x
(x j )ui

)2

+
(

n∑

i=1

∂φi

∂y
(x j )ui

)2
⎤

⎦

(p−2)/2−1

×
[(

n∑

i=1

∂φi

∂x
(x j )ui

) (
n∑

i=1

∂2φi

∂x2 (x j )ui

)

+
(

n∑

i=1

∂φi

∂y
(x j )ui

) (
n∑

i=1

∂2φi

∂y∂x
(x j )ui

)]

,

∂|∇u j |p−2

∂y
= (p − 2)

⎡

⎣

(
n∑

i=1

∂φi

∂x
(x j )ui

)2

+
(

n∑

i=1

∂φi

∂y
(x j )ui

)2
⎤

⎦

(p−2)/2−1

×
[(

n∑

i=1

∂φi

∂x
(x j )ui

) (
n∑

i=1

∂2φi

∂x∂y
(x j )ui

)

+
(

n∑

i=1

∂φi

∂y
(x j )ui

) (
n∑

i=1

∂2φi

∂y2 (x j )ui

)]

.

Thus Eq. (3.3) is a nonlinear algebraic equation on the
unknowns ui . We use an iteration procedure based on lin-
earizing Eq. (3.3) according to

|∇u(k)
j |p−2�u(k+1)

j + ∂|∇u(k)
j |p−2

∂x

∂u(k+1)
j

∂x

+∂|∇u(k)
j |p−2

∂y

∂u(k+1)
j

∂y
=0, (3.4)

where the superscript(k) refers to the iteration number.
Putting

g(k)
j = |∇u(k)

j |p−2, (3.5)

Eq. (3.4) is simplified to

g(k)
j �u(k+1)

j + ∂g(k)
j

∂x

∂u(k+1)
j

∂x
+ ∂g(k)

j

∂y

∂u(k+1)
j

∂y
= 0, (3.6)
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or

n∑

i=1

[

g(k)
j

(
∂2φi

∂x2 (x j ) + ∂2φi

∂y2 (x j )

)

+∂g(k)
j

∂x

∂φi

∂x
(x j )+

∂g(k)
j

∂y

∂φi

∂y
(x j )

]

u(k+1)
i =0,

x j ∈ int(�). (3.7)

Using Eqs. (1.3) [or (1.4)] for those nodes lie on the boundary
�w (walls), we have

n∑

i=1

∂φi

∂n
(x j )u

(k+1)
i = 0, x j ∈ �w. (3.8)

To impose the Dirichlet boundary conditions on � f (front)
we write

n∑

i=1

φi (x j )u
(k+1)
i = 0, x j ∈ � f . (3.9)

Also the Dirichlet boundary conditions in injection gate �in

in (1.3) are enforced directly as

n∑

i=1

φi (x j )u
(k+1)
i = pin(x j ), x j ∈ �in, (3.10)

and the nonlinear Neumann boundary conditions in injection
gate �in in (1.4) are imposed by the following equations:

n∑

i=1

(

g(k)
j

∂φi

∂n
(x j )

)

u(k+1)
i = −qin(x j ), x j ∈ �in . (3.11)

Equations (3.7)–(3.10) [or (3.7)–(3.9) and (3.11)] construct
the following linear system of equations

K(k)u(k+1) = f, k = 0, 1, 2, . . . , (3.12)

where u(k) = [u(k)
1 , u(k)

2 , . . . , u(k)
n ]T , K (k) is a n by n matrix,

must be updated in each step using the current u(k) and f
is a fixed right hand side. To start the iterations we use the
solution of the Laplace equation (p = 2) as an initial guess
u(0). Then we proceed with the iterations checking the con-
vergence of the procedure by computing the residual at the
interior collocation nodes

R(k+1)(x j ) = |∇u(k+1)
j |p−2�u(k+1)

j

+∂|∇u(k+1)
j |p−2

∂x

∂u(k+1)
j

∂x

+∂|∇u(k+1)
j |p−2

∂y

∂u(k+1)
j

∂y
. (3.13)

The residual of the Neumann boundary conditions is simi-
larly computed

R(k+1)(x j ) = |∇u(k+1)
j |p−2

∂u(k+1)
j

∂n
+ qin(x j ). (3.14)

We stop the iteration when max(|R(k+1)(x j )|) ≤ ε, j =
1, 2, . . . , n.

After the iterations end, we put u = u(k+1). Then the
values of u(x) at any point x ∈ � can be approximated by
Eq. (2.7) as:

u(x) ≈
n∑

i=1

φi (x)ui , x ∈ �̄. (3.15)

Also the derivatives can be approximated using Eq. (2.14)
as:

uh
,k(x) ≈

n∑

i=1

φi,k(x)ui , x ∈ �̄,

and the velocity field can easily be computed using Eq. (1.5).

Remark 3.1 As another criterion to check the convergence
of the iteration scheme, it should be noted that Eq. (3.12) can
be simplified to

u(k+1) = G(u(k)), k = 0, 1, 2, . . . ,

in which G(u(k)) = (K(k))−1f . Therefore the proposed
method can be regarded as a fixed point method with the
iteration function G(u(k)).

Let u∗ be the fixed point for the function G : D ⊆ R
n →

R
n , by the Taylor expansion of G at u∗ we have

u∗ − uk+1 = JG(c(k))(u∗ − uk), k = 0, 1, 2, . . . , (3.16)

in which JG is the Jacobian matrix of G and c(k) lies some-
where between u(k) and u(k+1). Equation (3.16) implies that

u∗ − uk+1 = (JG(c(k)))k+1(u∗ − u0), k = 0, 1, 2, . . . .

Denote by ρ(JG) the spectral radius of JG. ρ(JG(c(k))) < 1
provides a necessary and sufficient condition for (u∗ −uk) to
converge to zero. Thus for convergence, it suffices to check
that ρ(JG) remains less than 1 in a suitable domain D0 ⊆ D.
For more details see [2].

4 The numerical results

In this section, the FPM is applied to some examples, in order
to validate the proposed method. The examples are chosen
for comparison with the results of [6,22]. In both cases we
have used the quartic spline weight function:

w(r) =
{

1 − 6r2 + 8r3 − 3r4 r ≤ 1,

0 r > 1,
(4.1)

with r = ‖x−xi ‖
di

, where di is the support size of node i .
The numbers of boundary and interior nodes have stated

in each case. Also in the proposed method, the second order
approximation derivatives are needed. Thus, we have chosen
m = 6 in our computations.
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Fig. 1 Node distribution (left)
and initial guess (right)
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Fig. 2 FPM solution at a fine
regular mesh (left) and residuals
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0
0.5

1 −0.5
0

0.5
0

0.1

0.2

0.3

0.4

0.5

yx

u

0

0.5

1 −0.5

0

0.5
−2

−1

0

1

2

x 10
−4

yx

R

4.1 Problem 1

As a first numerical experiment we consider Eqs. (1.2) and
(1.4) in a square box [0, 1] × [−1/2, 1/2] with an elliptical

insert
(

x−1/2
a

)2 + ( y
b

)2 = 1, with a = 0.2 and b = 0.3.

This problem has been taken from the literature [6]. The
distribution of collocation nodes of such domain is shown
in the left part of Fig. 1. Here we use 80 + 302 bound-
ary and interior collocation points. The exponent γ is 0.6
(which models polyethylene). The injection gate is the seg-
ment x = 0, − ξ ≤ y ≤ ξ, ξ = 0.15, highlighted with an
arrow in Fig. 1.

Along it we have enforced the Neumann injection bound-
ary condition. The profile qin is

qin(y) = 0.9(1 − 3(y/ξ)2 + 2(|y|/ξ)3), (4.2)

such that the exact solution is smooth at both ends (0,±ξ)

of the injection segment. In order to start the iterations, we
have used the solution of the Laplace equation on the same
domain as an initial guess. Such an initial guess is shown in
the right part of Fig. 1. However, using a constant function as
an initial guess also leads to final result after more iterations.
In the computations we put di = 2.1 × δ, in order to ensure
the regularity of matrix A in MLS, in which δ = 0.05 is an
approximate distance between nodes. Figures 2 and 3 show
the pressure function u at a fine regular mesh (left parts) and
the corresponding residuals (right parts) after 5 and 30 iter-
ations, respectively. Note that the values of u are calculated
using Eq. (3.15). The residual of the nonlinear PDE drops
to about 10−8 after 50 iterations. The condition number of
the coefficient matrix K in Eq. (3.12) is about 103 and its
sparseness structure is shown in the left part of Fig. 4. For
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Fig. 4 Sparseness structure of
coefficient matrix (left) and
convergence of the iterative
solution procedure for Eq. (3.4)
(right)
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Fig. 5 Node distribution (left)
and initial guess (right)
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the three–point collocation sets with δ = 0.025, 0.05, 0.075,

the maximum residual at the mesh points for the iterative pro-
cedure is shown in the right part of Fig. 4. It is observed that
the maximum residual decreases linearly for the iterations
for two cases δ = 0.025, 0.05 and the numerical solution for
δ = 0.05 is as good as for the case of δ = 0.025, while for
the case δ = 0.075, the maximum residual does not drop
to zero. Moreover we have checked ρ(JG) < 1 as another
criterion for convergence. For the iterative scheme ρ(JG) is
about 0.8 for δ ≤ 0.05 while ρ(JG) = 7.3 for δ = 0.075.

4.2 Problem 2

In this problem, Eqs. (1.2) and (1.3) are solved in a semi-
disk x2 + (y − 0.5)2 ≤ 0.52, x ≥ 0 depicted in Fig. 5. The
injection gate is 0.5 − ξ ≤ y ≤ 0.5 + ξ, x = 0, ξ = 0.15.
The node distribution of such domain is depicted in the left
part of the Fig. 5. We use 50 + 137 boundary and interior
points, respectively. The pressure profile is pin = 1 and the
exponent γ is 0.6 as before.

The problem of this kind is investigated in [5]. All param-
eters are chosen as before. Figures 6 and 7 show the pressure
function u at a fine regular mesh (left parts) and the cor-
responding residuals (right parts) after 5 and 30 iterations,
respectively. However the difference is not apparent to the
naked eye but ‖u(30) − u(5)‖∞ is about 10−3. As can be
seen from Fig. 8, the maximum residual at the mesh points
decreases linearly for the iterative process for the three col-
location point sets with δ = 0.025, 0.05, 0.075. Also in
this case ρ(JG) is about 0.7 for the iterative scheme for
δ ≤ 0.05, while ρ(JG) = 0.92 for the case of δ = 0.075.
Moreover it should be noted that in this case the residuals
drop to zero faster than in the case of Nuemann boundary
condition in the inlet gate. This should be expected, since
in the case of Dirichlet boundary condition no linearization
is needed and the boundary conditions have been enforced
directly.

Also in [5] an oscillation appears in the solution at the
injection gate while there is no oscillation in the numerical
results obtained by the method proposed in the current paper.
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Fig. 6 FPM solution at a fine
regular mesh (left) and residuals
(right), it = 5
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Fig. 7 FPM solution at a fine
regular mesh (left) and residuals
(right), it = 30
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Fig. 8 Convergence of iterative solution procedure for Eq. (3.4)

5 Conclusion

In this paper the numerical solution of the two-dimensional
nonlinear, elliptic p-Laplace equation has been obtained
using the FPM. The proposed technique reduces the given
nonlinear PDE into a sequence of linear ones. These

equations are solved using a simple iterative procedure that
employs the solution of the Laplace equation with the same
boundary conditions as an initial guess. The method is a
truly meshfree method, which requires neither domain ele-
ments nor integrations and our numerical examples show
good results, with the accuracy of solving the nonlinear PDE.
The simplicity in the implementation shows the efficiency of
the FPM. In this method we have found no oscillation near
the injection gate that was appeared in some previous works.
We believe that the new approach can also be applied to other
typical two dimensional PDEs involving the p-Laplace oper-
ator as the core nonlinearity.
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