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Abstract The corotational method for frame-invariant
elements is generalized to obtain a consistent large-strain
shell element incorporating thickness extensibility. The
resulting element allows arbitrary in-plane deformations
and is distinct from the traditional corotational methods
(either quadrature-based or element-based) in the sense that
the corotational frame is exact. The polar decomposition
operation is performed in two parts, greatly simplifying the
linearization calculations. Expressions for the strain-degrees-
of-freedom matrices are given for the first time. The symbolic
calculations are performed with a well-known algebraic sys-
tem with a code generation package. Classical linear bench-
marks are shown with excellent results. Applications with
hyperelasticity and finite strain plasticity are presented, with
asymptotically quadratic convergence and very good bench-
mark results. An example of finite strain plasticity with frac-
ture is solved successfully, showing remarkable robustness
without the need of enrichment techniques.
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1 Introduction

Low-order triangular elements are computationally conve-
nient in finite-strain applications since they remain relatively
immune to severe mesh distortion;1 in addition, very effi-
cient algorithms are available to perform remeshing with
these elements and the contact detection algorithms are
greatly simplified when compared with quadrilaterals. Frac-
ture applications take advantage of the triangular geometry so
that robust fracture propagation algorithms are devised [5].
The fracture algorithm is substantially more robust and
general than what was long ago performed with intricate
extended finite element methods.

High-performance (in the sense of Felippa [20]) small-
strain triangles have been devised in the past for both mem-
brane and bending applications [2,10]. Triangle element
technology for finite strain elements is comparatively less
developed and out-of-plane shell bending applications are
also less common. Traditionally, finite-strain triangle ele-
ments are created using collapsed four-node elements. In con-
trast, more disseminated corotational elements are typically
applied to problems with large rotations and displacements
but small strains. The corotational technique takes advan-
tage of the constant deformation gradient of a membrane
triangle to extract the rigid-body displacements from a given
element regardless of the underlying element technology.
Changes in the element formulation are therefore decoupled
from the rigid-body treatment. This favors the encapsula-

1 Mesh distortion may be caused either by large deformation or by
element subdivision in fracture algorithms.
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tion of small-strain triangles and the systematic development
of high performance procedures without concerns of frame
invariance and constitutive modeling with rotations. Further-
more, computational savings are possible without compro-
mise in the applicability in complex problems. Recently, we
developed a quadrilateral element with thickness extensibil-
ity [7] and attempted to solve finite-strain fracture problems
with it.2 However, it was soon found that algorithm simplicity
was greater for triangles, with a moderate accuracy penalty.

Previous limitations of standard corotational techniques
are:

• Inadequacy for solving finite strain problems (only finite
displacements are allowed).

• Arbitrariness in the choice of the corotational matrix [22].

This work removes these limitations. The paper is organized
as follows: we start by deriving the exact corotational kine-
matics for a 3 node triangle in Sect. 2; then the bending
and membrane formulations of the core element are derived
in Sect. 3. A simplified version of our recent work [7] for
thickness variation is presented in Sect. 4. Finally, we pres-
ent two verification tests showing the exactness of the pro-
posed corotational frame and a number of benchmark tests,
including one involving multiple fracture of a simply-sup-
ported square plate with finite strain plasticity. Conclusions
are drawn in Sect. 6.

2 Governing equations and exact corotational
kinematics for a 3 node triangle

The problem under study is the equilibrium problem of a con-
tinuous medium (see, e.g. [3]). The specific shell kinematics
(see for example [7,13]) do not impose distinction with the
continuum. In the present context, director constraints are
satisfied at the discrete level. The equations in weak form are
given by [25]:

Given b : � → R
3, t : �t → R

3 and u : �u → R
3,

find u ∈ D | ∀δu ∈ V solving:∫

�

σ : ∇δud� =
∫

�

b · δud�+
∫

�t

t · δud� (1)

u = u on �u (2)

δu = 0 on �u (3)

where u is the unknown displacement vector field, δu
is the test field and σ is the Cauchy stress tensor. � (the
body) is a open set where b (the body forces) and σ (the

2 Note that director kinematics is, in general, dependent on the consti-
tutive law, as shown in that work.

Cauchy stress) are defined. The gradient operator ∇ is
taken with respect to deformed coordinates.
The boundary of� is the union of�t (the natural bound-
ary, with t known) and �u (the essential boundary with
u known). The set D of the trial functions is defined
as: D = {u|u ∈ [H 1(�)]3, u = u on �u}. The
set of the test functions is defined as V = {δu|δu ∈
[H 1(�)]3, δu = 0 on �u}. [H 1(�)]3 is the product
of Sobolev spaces of order 1.

The weak form of equilibrium (1) is approximately satisfied
by discretization with triangular shell elements. The director
constraints and the discrete form of equilibrium are formu-
lated in a corotational frame, in the sense of Felippa and
Haugen [22].

For a three-node triangle embedded in R
3 it is possible to

calculate the unique rotation matrix from the polar decom-
position, avoiding ad-hoc corotational frames. This fact is
well known by the element technology community, but for
a 3 × 3 deformation gradient it becomes too costly, partic-
ularly if second derivatives (with respect to u) are required
for application with Newton’s method of solution. Since a
simple closed-form solution exists for 2× 2 matrices, a less
costly (but producing the exact result) derivation is presented
here. It is discontinuity free and well-posed. It consists of a
geometrical construction which in the end allows a bidimen-
sional polar decomposition. This geometrical construction is
exact and greatly reduces the effort required to perform a
full 3D polar decomposition. It is worth realizing that it is
common to estimate the rotation matrix by empirical meth-
ods. During the last three decades there have been several
proposals, some of which can lead to spurious loss of sym-
metry, fictitious rotations and energy dissipation in closed
cycle. The latest corotational frames, widely used in more
recent papers and commercial codes, are the ones obtained
by either:

• Minimizing the average distance between rigidly rotated
and deformed nodes. It can be shown that it is exact for
rigid body motions, it is independent of node numbering
and retains isotropy. However it produces fictitious rota-
tions, as we shall see (also demonstrated in [11]).

• Making use of the null drilling part of the local spin as a
replacement of the exact polar decomposition [17].

both are unsatisfactory. Often they appear to work flaw-
lessly in one or two-element tests since for certain nodal
arrangements the defects will not surface. In Sect. 5.1 we
show a specific nodal arrangement exposing the deficiencies
of these two corotational frames. Our alternative approach
to corotational kinematics has the goal of solving finite
strain problems with triangular shells. Exact derivatives are
used (separately calculated with Mathematica [32] and the
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AceGen add-on [29]) and therefore quadratic convergence is
obtained.

Let us consider the pseudo-time t ∈ R
+
0 as a scale to reg-

ister motion events. Given a triangle (for practical purposes
identified as T ) subject to a homogeneous deformation, let
us consider a given point X ∈ T and the associated deformed
xX and undeformed X X positions. The undeformed position
is a specialization of the deformed one, since X X = xX |t=0.
The difference between these positions is the displacement
vector, uX which can be decomposed into deformation (d)
and rigid (r ) terms. The deformation displacement ud

X is
given by the difference between the total displacement uX

and the rigid body displacement ur
X :

ud
X = uX − ur

X (4)

Since the deformation gradient is unaltered by a rigid body
translation, we can arbitrarily select a point as a frame origin.
We use the triangle centroid in a given configuration as the
frame origin. The centroid has deformed coordinates xC and
undeformed coordinates XC = xC |t=0; the difference is the
centroid’s displacement vector uC = xC − XC . Therefore,
we establish, for a given point X , the shifted undeformed
coordinates and deformed coordinates as:

Xs X = X X − XC (5)

xs X = xX − xC (6)

The corresponding shifted displacement, us X is therefore
determined by their difference:

us X = xs X − Xs X = uX − uC (7)

According to its definition, the deformation gradient is the
derivative of xs X with respect to Xs X :

F = ∂xs X

∂ Xs X
(8)

The deformed position xX (and similarly the total dis-
placement uX ) of any point X ∈ T can be obtained by a
linear combination of the triangle corner positions xi or dis-
placements ui , i = 1, 2, 3. Consequently the deformation
gradient F is constant and can be written solely in terms of
the triangle corner positions xi , Xi (or displacements ui ).

Introducing the rotation matrix, R = F
(
FT F

)−1/2
result-

ing from the polar decomposition, and using Chasles corol-
lary (cf. [24]), the rigid body displacement is obtained by the
rotation of Xs X

3:

ur
s X = (R − I) Xs X (9)

The validity of equation (9) stems from F and therefore
R being uniform in each element. With this conclusion, we

3 Note that the displacement of the centroid is included in us X and
ur

s X = ur
X − uC .

Fig. 1 General notation for the corotational decomposition, using a
beam to facilitate the interpretation

calculate the deformation displacement as a difference:

ud
s X = us X − (R − I)Xs X (10)

The rotation matrix, R, which is uniform for the given
triangle, is the non-deformation part of the total rotation. In
beams and shells, mid-surface and drilling rotation are strain-
producing and will also be accounted for. In particular, for an
element with nodal rotation degrees of freedom, the corre-
sponding deformation from the reference configuration can
be expressed using a total rotation tensor RI . The rotation-
induced deformation that an element actually experiences
is here designated by RD which also depends in general of
the point considered. Using the notation shown in Fig. 1 we
obtain the rigid body rotation by extracting the deformation
rotation (RD) from the total rotation RI :

R = RT
D RI (11)

This establishes the rigid body rotation R, which is uni-
form,4 as a product of two non-uniform matrices. To the
rotated frame we associate the rotation matrix RR = RR0

which is also uniform. Using the transpose of this matrix
as a transformation along with decomposition (11) we can
write the uniform membrane deformation displacement in
the frame BR by pre-multiplying ud

X by RT
R :

ud
s X = RT

R xs X − RT
0 Xs X (12)

where use was made of the alibi-alias duality and matrix
orthogonality. Corresponding to this deformational displace-
ment we have the undeformed and deformed coordinates in
the same frame BR :

Xs X = RT
0 Xs X (13)

xs X = RT
R xs X (14)

4 In the sense that their components do not vary in each triangle.
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This differs from the classical approach for deriving
corotational elements since the nodal positions allow the use
of large strain formulations based on a rotation-free defor-
mation gradient. It is only possible to perform that operation
if RR is exactly calculated. To the Authors’ knowledge, this
calculation is performed here for the first time. The defor-
mational rotation matrix (RD in Fig. 1) can also be given by
RD = RI R0 RT

R or in the frame BR , as the back-rotated RD:

RD = RT
R RI R0 (15)

The quantities ud
s X and RD are used by the encapsulated

(linear) element as measures of deformational displacement
and rotation, respectively. Thus the corotational derivation is
defined in terms of:

1. The total rotation matrix for frame BR, RR and the spe-
cialization for frame B0, R0.

2. The nodal rotation matrix RI .

Since other relevant quantities lie solely on these two rota-
tion matrices, it becomes clear the importance given to the
topic in the literature (see, e.g. [17]).

2.1 Calculation of RR

Matrix RR defines BR , which is often identified as the
“local element frame” in the literature. The calculation of
RR involves a number of steps which we now show in detail.
Matrix R0 can be obtained by a frame attached to B0 and
does not affect the results, since the reference configuration
is arbitrary. For simplicity, one of the frame’s axis is orthogo-
nal to the triangle (Fig. 2). Given R0, the total rotation matrix
RR can be obtained as:

RR = RR0 (16)

with R being generally provided in other works [11,17] by an
approximation to the polar decomposition of F. The rotation
matrix RR can also be given by the following relation:

RR = RE RF (17)

where RE is a rotation matrix derived from the deformed cor-
ner nodal positions xi and RF is a rotation matrix obtained by
polar decomposition of a local BR two-dimensional defor-
mation gradient F�. The columns of the rotation matrix RE

are the basis vectors of frame BE (see Fig. 2):

RE =
[
e′1|e′2|e′3

]
(18)

so that x′s X = RT
E xs X . The basis vectors e′i , i = 1, 2, 3 are

obtained by the following relations (analogous relations are
used in the determination of R0 but using the undeformed

corner nodal positions Xi ):

e′1 = (x2 − x1) /‖x2 − x1‖ (19)

e′2 = e′3 × e′1 (20)

e′3 = (x2 − x1)× (x3 − x1) / ‖(x2 − x1)× (x3 − x1)‖
(21)

Since the choice of e′i (and therefore RE ) is arbitrary and
the calculation of RR is not, RF will depend on this choice.
If three configurations are drawn with coincident frames (see
Fig. 2) we obtain the rotation matrix RF as an extension of
a 2 × 2 rotation matrix obtained by polar decomposition of
the local deformation gradient:

RF =
[

R� 0
0 1

]
(22)

R� = F�
(

F�T
F�

)− 1
2

(23)

With the notation depicted in Fig. 2 we calculate the unde-
formed J0 and deformed J Jacobians, using a three node
linear parametrization (2 × 2 matrices whose columns are
corner nodes relative position vectors aligned to the element
edges). For the in-plane motion, the 2× 2 matrices J0 and J
are given by:

J0 =
[
Xs1 − Xs3|Xs2 − Xs3

]
(24)

J = [
x′s1 − x′s3|x′s2 − x′s3

]
(25)

The local 2 × 2 deformation gradient F� is calculated
using the definition and the chain rule of derivation:

F� = J J−1
0 (26)

Given the bidimensional part of the deformation gradient
F�, det F� > 0 we perform a polar decomposition which
reads:

F� = R�U� (27)

where R� is a proper orthogonal matrix and U� is a symmet-
ric positive-definite matrix. Standard arithmetic provides the
rotation angle as5:

γ = arctan

(
F�

21 − F�
12

F�
11 + F�

22

)
(28)

with

R� =
[

cos γ − sin γ

sin γ cos γ

]
(29)

Therefore, the polar decomposition is performed in two parts:

1. Mapping to a frame where 2 × 2 matrices suffice (after
(16) and (17)).

5 The two-argument arctan function is used.
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Fig. 2 Corotational notation
for a triangle. Note that the
frames are provided by the
orthogonal matrices RE =
[e′1|e′2|e′3], R0 = [E1|E2|E3]
and RR = [e1|e2|e3]. In the
lower part of the Figure, we
overlap the configurations by
imposing Ei ≡ e′i so that
relative stretches and rotations
can be observed

2. Calculation of a single angle in 2D, which is sufficient
to determine the rotation matrix in that frame (equations
(27), (28) and (29)). These quantities are then used to
obtain R.

To prove the exactness of equation (17) we start by mak-
ing use of two auxiliary vectors, say w0 and wn where wn =
Rw0, i.e. wn is the image of w0 under a rotation (the alibi).
Performing the change of frame of representation (alias) we
obtain:

w0 = RT
0 w0 (30)

w′n = RT
Ewn (31)

Rotating w′n by RF and transposing we isolate wn in the
left-hand-side:

wn = RE RF RT
0 w0 (32)

Using definition (16) we write (32) as:

wn = Rw0 (33)

which implies that RR = RE RF . This equation is exact and
therefore RR is also the exact rotation. Our first example fur-
ther verifies this statement. The first and second variations of

RR are given by:

δRR = δRE RF + REδRF (34)

dδRR = dδRE RF + δRE dRF (35)

+RE dδRF + dREδRF (36)

these are exactly calculated using Mathematica [32] with the
Acegen add-on [29].

2.2 Membrane stretch

The polar decomposition of the membrane deformation gra-
dient is written as F = RU with U being the right stretch
tensor. Writing F in terms of the local B0 and BR frames
provides:

F = RT
R F R0 = RT

0 U R0

⇔ F = U (37)

therefore the deformation gradient in frame B0 is rotation-
free and equals the stretch. Analogous arguments lead to F =
RT

R V RR = V , so that:

F =
{

U in B0

V in BR
(38)
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Fig. 3 Notation for the edge interpolation of the membrane part. Edge
a is detailed

Consequently, for the element embedded in the corotated
frame, just the membrane stretch is visible. The long standing
restriction to small strains is definitely removed.

Remark 1 Given a triangle T embedded in R
3 with two con-

figurations B0 and BD , whose deformation deformation gra-
dient is F in the frame BG , then there are two frames, B0 and
BR in which F is reduced to a right and left stretch, respec-
tively: U = R0 F RT

0 , V = RR F RT
R .

2.3 Displacement calculation

If the undeformed triangle coordinates (in BG) are organized
as lines of matrices (here Tx and TX ) then we will obtain the
transformed coordinates (in BR) by matrix multiplication.
Let us introduce the two matrices in BG :

Tx =
⎡
⎣ x1

x2

x3

⎤
⎦ (39)

TX =
⎡
⎣ X1

X2

X3

⎤
⎦ (40)

then the shifted (s) coordinate coordinate matrices for BR

are simply given by:

Tsx =
⎡
⎣ xs1

xs2

xs3

⎤
⎦ = Tx P RR (41)

Ts X =
⎡
⎣ Xs1

Xs2

Xs3

⎤
⎦ = TX P R0 (42)

with the projection linear transformation:

P = 1

3

⎡
⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤
⎦ (43)

providing the element centroid coordinates.6 Making use of
Tsu = Tsx − Ts X , the nodal deformation displacements are
calculated by linear algebra in the local corotated frame. The
first and second variation of Tsx , required for the Newton’s
method of solution, are consequences of these results:

δTsx = δTx P RR + Tx PδRR (44)

dδTsx = dδTx P RR + δTx PdRR (45)

+dTx PδRR + Tx PdδRR (46)

2.4 Calculation of RI

The non-uniform part of RD , which we denote RI , is
obtained at each node K from four nodal Euler parameters
qK = {qK 0, qK 1, qK 2, qK 3}T ; RI (qK ) is the following func-
tion:

RI (qK )

=
⎡
⎢⎣

1− 2
(

q2
K 2 + q2

K 3

)
2(qK 1qK 2 − qK 0qK 3) 2(qK 0qK 2 + qK 1qK 3)

2(qK 1qK 2 + qK 0qK 3) 1− 2(q2
K 1 + q2

K 3) 2(qK 2qK 3 − qK 0qK 1)

2(qK 1qK 3 − qK 0qK 2) 2(qK 0qK 1 + qK 2qK 3) 1− 2(q2
K 1 + q2

K 2)

⎤
⎥⎦

(47)

with q2
K 0+q2

K 1+q2
K 2+q2

K 3 = 1 being the Euler parameters’
constraint. From the alternative rotation parametrizations,
this has several known advantages, discussed at length in var-
ious papers (see, e.g. [16]). First and second derivatives of RI

with respect to qK are straightforward and were performed by
Mathematica [32] with the Acegen add-on [29]. The matrices
RI (qK ), K = 1, 2, 3 and RD(qK ), K = 1, 2, 3 are calcu-
lated from (47) and (15) after the calculation of RR in (17).
We calculate the local nodal deformational displacement ud

K

and deformational rotation θ
d
K in the frame BR . From the

deformational rotation matrix we extract the rotation vector
by well-known eigenvalue analysis (cf. [24]):

2 cos(θ
d
K )+ 1 = tr(RD) (48)

θ
d
K =

θ
d
K

2 sin θ̄d
K

⎧⎨
⎩

RD32(qK ) −RD23(qK )

RD13(qK ) −RD31(qK )

RD21(qK ) −RD12(qK )

⎫⎬
⎭ (49)

6 This linear transformation is analogous to the deviatoric projection
in small strain elasticity.
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The first and second variation of θ
d
K are given by the appli-

cation of the chain rule (now omitting the nodal unknowns):

δθ
d
K = θ

d ′
K :

[
δRT

R RI R0 + RT
RδRI R0

]
(50)

dδθ
d
K = θ

d ′
K :

[
dδRT

R RI R0 + RT
R dδRI R0

+δRT
R dRI R0 + dRT

RδRI R0

]

+
[
δRT

R RI R0 + RT
RδRI R0

]
: θd ′′

K :
[
dRT

R RI R0

+RT
R dRI R0

]
(51)

In addition, we also adopt the exact incremental proce-
dure proposed by Brank and Ibrahimbegovic [16] to avoid
the undefined sign for large values of the Euler parameters.
This requires storage of previous rotation matrices.

2.5 Complete transformation map and consistent
linearization

Each node is associated with three displacement degrees of
freedom and three rotation parameters in the frame BG . We
group these as

vK = {uK 1, uK 2, uK 3, qK 1, qK 2, qK 3}T , K = 1, 2, 3

(52)

Juxtaposing each nodal set of degrees of freedom we
obtain:

v = {v1, v2, v3}T (53)

In the frame BR we can write:

vK = {ud K 1, ud K 2, ud K 3, q K 1, q K 2, q K 3}T (54)

and

v = {v1, v2, v3}T (55)

Using the mapping R
16 � v → ϕ(v) = v ∈ R

16 we can
write:

v = ϕ(v) (56)

Given the force in frame BR , f , we can use energy con-
jugacy to obtain the force in frame B0, denoted as f :

f =
(

dϕ(v)

dv

)T

f (57)

or, in index notation,

f j = dϕi

dv j
f i (58)

and the stiffness in frame B0 is given, in index notation, by:

Kik = dϕ j (v)

dvi

dϕl(v)

dvk
K jl + f j

d2ϕ j (v)

dvi dvk
(59)

where K jl is the local stiffness matrix. Optimized expres-
sions for the first and second derivatives of ϕ(v) were calcu-
lated using Mathematica with the AceGen add-on. We omit
these here for conciseness, but the generated code can be
obtained from the first Author. Part of the the calculations
correspond to equations (34) and (44). The Cauchy stress in
frame B0 is determined by the corotational transformation
of the rotated stress σ 7:

σ = R0σ RT
0 (60)

3 Core element matrices

Here we adopted a flat 3 node shell triangle constructed
by assembling a modified membrane element (OPT) with
drilling degrees of freedom, with a re-derived plate element
(DKT). These are generalized for arbitrarily large strains and
can cope with hyperelastic and hyperelastic/plastic materials.
Besides the in-plane bending mode, the drilling degrees-of-
freedom allow the treatment of general shell intersections
and also connections to beam elements, making the element
adequate to model an extended range of structures. Since the
rotation tensor R was removed by the use of frame BR , the
right stretch can be written in the frame BR as:

U = I +∇Xd
us

d (61)

where

∇Xd
us

d =
1

2

[
∇Xd

ud +
(
∇Xd

ud

)T
]

(62)

We write ∇Xd
us

d in Voigt form as ε. Since ε is a function

of ud(Xd) and this is a function of v, we can write:

ε = Bv (63)

where B is a 3×18 matrix relating the strain at a given point
in the element with the nodal unknowns in frame BR . Since
the element is coupled, the B matrix can be written as a sum
of three B contributions:

B = Bb + B0
m + B1

m (64)

where the superscripts b and m indicate bending and plane
terms, respectively. The membrane term is split in two parts
(the constant stress part, B0

m and the high order stress part
B1

m). The element forces and stiffness are given by:

f =
∫

B0

(
BT σ

)
dB0 (65)

K =
∫

B0

(
BT DB

)
dB0 (66)

7 A linear least-square application of σ is used for output.
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Fig. 4 Two-element pure
deformation test

Fig. 5 Small strain and finite
strain patch test: 10 irregular
elements are used

Fig. 6 Finite strain indentation
test: comparison of three mesh
arrangements, see also [38]
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Fig. 7 Pinched hemisphere (linear elastic test): geometry, boundary conditions, material properties and convergence of the displacement under
the point-loads

since

dB
du
= 0 (67)

dσ

dε
= D (68)

3.1 Bending part

We use a combination of the classical discrete Kirchhoff plate
triangle (DKT) and the quadratic interpolation proposed by
Felippa and Haugen [22]. The ingredients of the original
developments of the DKT triangle are:

• Transverse displacement obtained by cubic Hermite inter-
polation on the triangle’s edges.

• Quadratic deformational rotations defined on the triangle.
• Kirchhoff conditions satisfied at the three corner nodes and

mid-edge points.

We arrive at a new, much more concise form of the strain-
displacement matrices. The deformational rotation field is
characterized by two angles (βx and βy), after substitution
of the Kirchhoff-Love conditions:

βx = βx0+ p(ξ)T Tβx u uN (69)

βy = βy0+ p(ξ)T Tβyu uN (70)

with p(ξ)T = {ξ1, ξ2, ξ1ξ2, ξ
2
1 , ξ2

2 } being the quadratic poly-
nomial basis vector. We use area coordinates ξ = {ξ1, ξ2} ∈
[0, 1]2. The uniform terms βx0 and βy0 in (69,70) do not con-
tribute to the curvature, and hence are left unspecified. The
core nodal degrees-of-freedom correspond to two in-plane
rotation angles at each node and are grouped as:

uT
N = {θ x

1 , θ
y
1 , θ x

2 , θ
y
2 , θ x

3 , θ
y
3 } (71)

A comparison with classical formulations shows that the
transverse displacement is absent from the list of nodal
unknowns. It is simply filtered by the corotational frame and
therefore only deformational parts are present. This, along
with careful coding, allows some computational savings. The
matrices Tβx u and Tβyu in (69,70) are calculated after con-
straints tying the transverse displacement and the quadratic
rotation field are imposed:
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Fig. 8 Twisted beam (linear elastic test): geometry, boundary conditions, material properties and convergence of the displacement for two load
cases (see also [35])

Tβx u =

⎡
⎢⎢⎢⎢⎣

3x̂c ŷc 1− 3x̂2
c 0 0 3x̂c ŷc −1− 3x̂2

c
0 0 3x̂b ŷb 1− 3x̂2

b 3x̂b ŷb −1− 3x̂2
b

3x̂a ŷa − 3x̂c ŷc 3x̂2
c − 3x̂2

a 3x̂a ŷa − 3x̂b ŷb 3x̂2
b − 3x̂2

a −3x̂b ŷb − 3x̂c ŷc 3x̂2
b + 3x̂2

c
−3x̂c ŷc 3x̂2

c 0 0 −3x̂c ŷc 3x̂2
c

0 0 −3x̂b ŷb 3x̂2
b −3x̂b ŷb 3x̂2

b

⎤
⎥⎥⎥⎥⎦ (72)

Tβyu =

⎡
⎢⎢⎢⎢⎣

−1+ 3ŷ2
c −3x̂c ŷc 0 0 1+ 3ŷ2

c −x̂c ŷc

0 0 −1+ 3ŷ2
b −3x̂b ŷb 1+ 3ŷ2

b −3x̂b ŷb

3x̂2
c − 3x̂2

a 3x̂c ŷc − 3x̂a ŷa 3x̂2
b − 3x̂2

a 3x̂b ŷb − 3x̂a ŷa −3(ŷ2
c + ŷ2

b ) 3x̂b ŷb + 3x̂c ŷc

−3ŷ2
c 3x̂c ŷc 0 0 −3ŷ2

c 3x̂c ŷc

0 0 −3ŷ2
b 3x̂b ŷb −3ŷ2

b 3x̂b ŷb

⎤
⎥⎥⎥⎥⎦ (73)

where the following notation was used:

x̂a = x2 − x1

‖x2 − x1‖2 = −
xa

la

ŷa = y2 − y1

‖x2 − x2‖2 = −
ya

la

x̂b = x3 − x2

‖x3 − x2‖2 = −
xb

lb

ŷb = y3 − y2

‖x3 − x2‖2 = −
yb

lb

x̂c = x1 − x3

‖x1 − x3‖2 = −
xc

lc

ŷc = y1 − y3

‖x1 − x3‖2 = −
yc

lc
(74)

This is not the standard form adopted for the DKT and
requires fewer operations, since the strain-displacement
matrix depends on six edge coordinates and area coordinates.
Note that matrices Tβx u and Tβyu contain the complete low
and high order terms and no decoupling was adopted. The
planar triangle area is determined from la, lb and lc using
Heron’s formula:

A� = 1

4

√
(lc − la − lb)(la − lb − lc)(la − lb + lc)(la + lb + lc) (75)
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Fig. 9 Cantilever beam:
experimental arrangement,
cross-section dimensions and
material properties

The derivatives of p(ξ) with respect to x and y are directly
written as:

∂ p(ξ)

∂x
= 1

2A�

⎡
⎢⎢⎢⎢⎣

yb −xb

yc −xc

ξ2 yb + ξ1 yc −ξ2xb − ξ1xc

2ξ1 yb −2ξ1xb

2ξ2 yc −2ξ2xc

⎤
⎥⎥⎥⎥⎦ (76)

The curvatures are directly obtained from the previous
relations, making use of the chain rule. These result in a
3× 6 strain-DOF matrix which is given as:

Bb = ξ3 H

2

⎡
⎢⎢⎣

∂ p(ξ)
∂x

T
Tβxu

∂ p(ξ)T

∂y Tβyu
∂ p(ξ)T

∂y Tβxu + ∂ p(ξ)T

∂x Tβyu

⎤
⎥⎥⎦ (77)

depending exclusively on ξ1, ξ2, ξ3, H and the edge vectors.
We remark that this is a new form of the DKT element and
its simplicity is unmatched by classical derivations.

3.2 Membrane part

For the membrane part we modify the OPT element devel-
oped by C.A. Felippa and coworkers, originally derived using
two different approaches: the EFF (Extended Free Formu-
lation) [2] and the ANDES (Assumed Natural Deviatoric
Strain) [23]. It was then verified that both the EFF and the
ANDES lead to the same optimal8 element, which seems to
indicate that the optimal form is unique [21]. This element
is a linear strain triangle with 3 corner nodes and 3 DOFs
per node (two in-plane displacements and a drilling rota-
tion). The membrane energy is partitioned in two: constant
stress and high-order stress. The strain-displacement matrix
Bm is additively calculated, in a form found by [15] which
guarantees direct satisfaction of the patch test, as:

Bm = B0
m + B1

m (78)

where the constant stress part B0
m is constructed to guaran-

tee consistency, providing for convergence in the limit of

8 Optimal only for certain mesh arrangements, since union-jack meshes
typically produce less than optimal results, see also [14].
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Fig. 10 Cantilever beam: comparative pictures of the elasto-plastic buckling of the flange and numerical prediction

Fig. 11 Channel section cantilever beam: geometry, boundary conditions and sequence of deformed meshes. Thickness-averaged effective plastic
strain is shown

mesh refinement, and the higher order part B1
m to provide for

accuracy. Both matrices involve a set of adjustable parame-
ters which are determined by making the element reproduce
the exact beam pure bending solution. The evaluation of its
performance was made in [23].

3.2.1 Constant stress part

The constant stress part is directly obtained from the EFF.
Although beam shape functions are used for the normal dis-
placement, a scaling factor (α) is required since the con-
tinuum case cannot make direct use of that interpolation.
Considering a constant stress state in the element, the same
constant stress also exists at the boundaries. We assume a
displacement field defined along the edges by beam shape

functions for the normal to the edge displacement compo-
nent ũ and linear interpolation for the edge aligned displace-
ment component ṽ. For one element edge, the displacement
interpolation in edge-aligned coordinates is given by (e =
a, b, c):

ũe =
{

ũ
ṽ

}
e

=
[

Nue1(ς) 0 αNθe1(ς) Nue2(ς) 0 αNθe2(ς)

0 Nve1(ς) 0 0 Nve2(ς) 0

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ũe1

ṽe1

θe1

ũe2

ṽe2

θe2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(79)
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Fig. 12 Channel section
cantilever beam: load-deflection
curve; comparison with [28]

Fig. 13 Ring test by Başar and Ding [9]. Consistent units are used

where the shape functions are:

Nue1(ς) = 1− 3ς2 + 2ς3

Nθe1(ς) = ς − 2ς2 + ς3

Nue2(ς) = 3ς2 − 2ς3

Nθe2(ς) = −ς2 + ς3

Nve1(ς) = 1− ς

Nve2(ς) = ς

(80)

with ζ ∈ [0, 1]. Figure 3 clarifies this notation. Each edge in
(a, b, c) has local nodes 1 and 2.

Writing the equilibrium equations for a single element
with constant stress and strain, we have:

Aσ : δε =
∫

la

t̃a · δũadla +
∫

lb

t̃b · δũbdlb +
∫

lc

t̃c · δũcdlc

(81)

using the edge transformation matrix:

Te =
[

ŷe x̂e

−x̂e ŷe

]
, e = a, b, c (82)

Fig. 14 Ring test: comparison with the results by Sansour et al. [33]

we finally obtain:

B0
m =

1

2A

⎡
⎣ yb 0 α

6 (ya − yc)yb

0 −xb
α
6 (xa − xc)xb

−xb yb
α
3 (xa ya − xc yc)

∣∣∣∣∣∣ · · ·
⎤
⎦ (83)

This process lumps the edge stresses to balanced nodal
forces, which guarantees stress equilibrium between adjacent
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Fig. 15 Simply supported plate; neo-Hookean case, θ3 = 0 at the supports, u3 = 115 and u3 = 185. The thickness contour plot is also shown.
Note that mirroring of the plate was employed for visualization purposes

elements for constant stress states, for any assumed displace-
ment field. For the OPT element, the parameter α was calcu-
lated to be 3/2.

3.2.2 Higher order stress part

The higher order part is calculated using a linear variation of
the natural strains (strains aligned along median directions):

B1
m = A

√
β0Tn

[
ξ1 Q1 + ξ2 Q2 + (1− ξ1 − ξ2) Q3

]
Tu

(84)

where Tn is the natural-global (median aligned in sharp
contrast with C.A. Felippa developments) transformation
matrix. The parameter β0 is found to be 1/809 and Tu is
the matrix relating the hierarchical drilling rotations with
the nodal degrees-of-freedom. The natural strain matrices
Qi , i = 1, 2, 3 are given by:

9 There is no decoupling of stiffness as proposed in the groups of C.A.
Felippa and Battini, see for example [12].

Q1 =

⎡
⎢⎢⎣

1
l2
a

2
l2
a

1
l2
a

0 1
l2
b
− 1

l2
b

− 1
l2
c
− 1

l2
c
− 2

l2
c

⎤
⎥⎥⎦ (85)

Q2 =

⎡
⎢⎢⎣
− 2

l2
a
− 1

l2
a
− 1

l2
a

1
l2
b

1
l2
b

2
l2
b

− 1
l2
c

0 1
l2
c

⎤
⎥⎥⎦ (86)

Q3 =

⎡
⎢⎢⎣

1
l2
a
− 1

l2
a

0

− 1
l2
b
− 2

l2
b
− 1

l2
b

2
l2
c

1
l2
c

1
l2
c

⎤
⎥⎥⎦ (87)

and are obtained by assuming a beam pure bending field. For
a beam in pure bending the cross sections suffer a rotation
by an angle θ , and the (small) bending strain is proportional
to that angle:

εb = − y

l
θ (88)

where y is the distance from the neutral axis to the desired
point in the transverse section and l is the initial beam length.
Therefore, in (plane) pure bending the strain is proportional
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Fig. 16 Simply supported plate; elasto-plastic case: effective plastic strain and thickness contour plots. Note that mirroring of the plate was
employed for visualization purposes

to a geometric factor y
l , and these factors appear in the Qi .

Qiab is the strain at node i (i = 1, 2, 3), parallel to side a
(a= 1, 2, 3), assuming that the neutral axis is parallel to side
a and passing by the triangle centroid, due to the drilling
rotation at node b. These are reworked expressions of those
present in Ref. [2].

4 Thickness extensibility

Thickness variation is caused by the condition σ 33= 0. The
inaugural work of Hughes and Carnoy [26] presented this
methodology, subsequently adopted in many other works
such as in Dvorkin et al. [18]. Call to the constitutive library

(see, e.g. [4]) makes use of four components (since σ 13 =
σ 23 are identically zero). For σ 33 we use the Newton method
to obtain:

σ 33(h) = 0 (89)

which reads (i t is the iteration counter):

∂σ 33

∂ε33
�h = −σ 33 H (90)

hit+1 ← hit +�h (91)

with h0= H . Convergence of this iteration is usually
achieved, for �h ≤ 1×10−8 H , after six or seven iterations.
After convergence, we calculate the tangent modulus as:
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Fig. 17 Simply supported
plate: pressure-displacement
results. The elasto-plastic results
are compared with Ref. [19]

C = ∂σ

∂ε
−

(
∂σ 33

∂ε33

)−1
∂σ

∂ε33
⊗ ∂σ 33

∂ε
(92)

Considerably more sophisticated techniques were devel-
oped by Areias et al. [7] and Wisniewski [37].

5 Numerical examples

A set of sufficiently simple examples shows:

• Correctness of the corotational formulation and satisfac-
tion of patch and rigid-body tests.

• Accuracy of the plane and bending terms in the core ele-
ment.

• Comprehensiveness of the formulation: applications in
elasticity, elasto-plasticity and fracture.

The examples were run in the code created by the first
Author [4]. Elasto-plasticity integration follows the recent
algorithm by Areias and Rabczuk [6].

5.1 Verification tests

With the purpose of verifying the exactness of our formula-
tion, let us first consider the two element setting shown in
Fig. 4. Although the edge e identified in that Figure rotates
due to stretching, the rotation angle

γ = arctan

(
RR11

RR21

)
(93)

must remain zero for v2 �= 0. A comparison between the
edge frame, Battini’s [11] frame and our own is represented in
Fig. 4. Although we confirm the result of Battini, who states
that the corotational frame is independent of node numbering,
it can be observed that his approach may produce spurious
rotations. In contrast, our approach is exact. This is, to our
knowledge, a new result.

Another important test is the patch-test. We here use a
10-element mesh to perform a membrane and bending patch
test, as depicted in Fig. 5. Three load cases are employed
(membrane forces in case I and bending moments in cases
II and III) for the small strain test and membrane forces are
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Fig. 18 Cylindrical shell with diaphragms: deformed mesh, effective plastic strain and thickness distribution

tested in finite strains. The element passes the test with con-
stant stresses in each layer (two layers are employed).

For finite strains, we make use of the block indenta-
tion problem, recently re-tested by Wisniewski and Turska
[38] to inspect the effect of three mesh arrangements in the
results and also the smoothness of the von-Mises equiva-
lent stress for a very coarse meshing. Figure 6 shows the
results for this problem. Some mesh dependence can be
observed, but overall the results are very good for a trian-
gular element in near-incompressibility and similar to the
typical quadrilaterals used in this test (for the three mesh
arrangements).

5.2 Linear elastic pinched hemisphere

The hemispherical shell with four pinching forces is consid-
ered (see Fig. 7). We compare two triangular elements from
Abaqus 6.8 (S3 and STRI3) with the present formulation
for two mesh topologies (a symmetric mesh with crossed
triangles and an asymmetric mesh). Note that meshes with
crossed triangles were found to be inadequate for the Bergan
and Felippa [14] element since a optimal parameter was not
found for their Free Formulation. The results are shown in
the same Fig. 7. The present element converges quicker than
both elements tested in Abaqus 6.8 for the symmetric mesh.
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In addition, for the finer mesh, we obtain results closer to the
target value (we adopt W.K. Liu et al. 9.24×10−2 consistent
units [30]). Results for the asymmetric mesh are also very
good for sufficiently refined meshes.

5.3 Linear elastic twisted beam

The linear elastic twisted beam was considered in the bench-
mark proposal by MacNeal and Harder [31] and was subse-
quently modified by Jetteur [27]. We use the latter version in
this work, since it is now more common and revealing. The
test involves both out-of-plane and in-plane bending strains
and is suitable to assess the effect of the in-plane element
choice in the results. Unit shear in two orthogonal directions
is considered. The target values for the displacement were
taken from Wagner and Gruttmann [35] as 1.387 (load case I)
and 0.3429 (load case II), see also Fig. 8. For a sufficiently
fine mesh we obtained similar values (for a 192×32 element
mesh, 1.401 and 0.3459 respectively). Figure 8 shows that
our element obtained very good results when compared with
a DKT plate combined with Allman’s formulation [1] and
similar to the quadrilateral from Ref. [35].

5.4 Clamped beam: comparison with experimental results

A slender beam with a C profile made from ductile alumi-
num10 was clamped to our laboratory frame as shown in
Fig. 9. The loading strategy was very simple: 2 N, 2.5 N
and 5 N disks were added to a hook hanged at a drilling in
the beam and depth comparators were set above the beam.
We employed a non-linear least-square code to determine
the elasticity modulus. The hardening law was, in contrast,
estimated by trial-and-error. Elasto-plastic buckling occurs
at the flanges as shown in Fig. 10. Comparative results for
the proposed element are also shown in Fig. 9.

The predictive capability was found to be very good. How-
ever, further research into the hardening law will further
improve the proximity between experimental results and the
numerical experiments for higher displacement values.

5.5 Channel section beam

The channel section cantilever beam by Eberlein and Wriggers
[19] is reproduced here. Recently, Klinkel et al. [28] tested
this problem with a hybrid quadrilateral, although to a lower
deformation than in the original paper. Relevant data is shown
in Fig. 11 where deformed and undeformed meshes are
shown for a sequence of steps. We subdivide each quadrilat-
eral element in [28] with four triangles. The load-deflection
results are shown in Fig. 12 and compared with Ref. [28].

10 Specifically window-frame aluminum.

Fig. 19 Cylindrical shell with diaphragms: load-deflection results,
compared with a four-node quadrilateral implementation, Ref. [36] and
Abaqus S3 element

Reasonable agreement with the reported results in [28] can
be observed.

5.6 Nonlinear smooth problems

The first smooth plate is the ring test first proposed by Başar
and Ding [9] to test formulations for finite rotations in shells.
The relevant geometry, boundary conditions and elastic prop-
erties are depicted in Fig. 13. We extend the ring up to 28
consistent units. Figure 13 depicts this extension. A compar-
ison with the results by Sansour and Kollmann [33] is also
shown in Fig. 14. We can observe that with our method we
attain a higher value of ring extension and slightly more flex-
ible results. Between the present element and a combination
of DKT and Allman’s element, no differences were noted, in
contrast with what was observed in the linear tests. A simply-
supported square plate with initial dimensions 508× 508×
2.54 (consistent units) is loaded by a uniform, motion-depen-
dent pressure. In this test, both compressible neo-Hookean
and perfect elasto-plastic materials are considered. Constitu-
tive properties are: E = 69×104, ν= 0.3 and σy = 248. The
in-plane motion at the supports is left free. The neo-Hookean
case uses zero drilling rotations at the supports (see Fig. 15).
Results are shown for both cases in Figs. 15, 16 and 17.
This problem puts to test the bending behavior at the earlier
stages of deformation and then membrane behavior in the
latter stages (see Ref. [19] for a description). During defor-
mation, the plate corners fold and strong thickness variation
occurs. A comparison with results from Ref. [19] is shown
in Fig. 17 with excellent agreement. We are, however, able
to reach higher deformations.

We now consider the cylinder shell with diaphragms. This
test was first considered by Simo and Kennedy [34] with
slightly different dimensions. The present form of the test is
currently in use by many authors. It consists of a cylinder shell
with the hardening law σy = 24.3+ 300εp (consistent units)
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Fig. 20 Fracture process of a
simply-supported plate with
elasto-plastic behavior. Two
cases are shown: εu = 0.1 and
εu = 1. Thickness extrusion
along the directors was
performed

subject to two inward diametrically opposing radial loads.
Elasticity modulus and Poisson coefficient are E = 3000 con-
sistent units and ν= 0.3, respectively. The total length of the
cylinder is 600 for a radius of 300 consistent units. The initial
shell thickness is H = 3 consistent units. Due to symmetry,
only one-eighth of the cylinder needs to be modeled. Free
edges have diaphragms (only rotations and longitudinal dis-
placement are allowed). Displacement control is used: a total
displacement of 300 consistent units is applied and the reac-
tions monitored. This displacement corresponds to the total

radius and is considerably more than what is usually pub-
lished (see what was achieved by alternative approaches in
[19,36]). The reason for this is the presence of a slight load
decrease for a pinching displacement of around 140 which
decreases the convergence radius of Newton’s method. Since
this problem involves large displacements and large plastic
strains, as well as strong thickness gradients near the pinched
point, it is a very demanding test. Large strain warping and
severe relative rotations occur between elements, as can be
observed in Fig. 18. For comparison, reported load-deflection
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Fig. 21 Fracture process of a
simply-supported plate with
elasto-plastic behavior: contour
plots, pressure/control node
displacement and
displacement/crack length
results

results by Wagner et al. [36] are shown in Fig. 19. Note that
these Authors reported results only up to 250 consistent units.
The same 16 × 16 subdivided mesh as in [36] is used here
for results comparison, but a finer, 32×32 subdivision mesh
is required to obtain a smooth distribution of thickness and
effective plastic strain. The latter is used solely for purposes
of graphical representation in Fig. 18. The load-deflection
results are shown in Fig. 19: results are slightly more flexible
than the ones in Ref. [28].

5.7 Ductile fracture of a simply-supported plate

The fracture process of a simply-supported (all displacement
components prescribed) square (2× 2 consistent units) plate
under pressure is tested in the following example. A single
mesh containing 1396 elements is used. We use a simplis-
tic prototype ductile fracture model with the sole purpose of
showing the capabilities of our formulation (a further detailed
model can be consulted in [8]). The effective plastic strain is
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used as an indicator for crack propagation, when the effective
plastic strain overcomes the ultimate strain, ε p > εu , cracks
grow. Two values of εu are tested (εu = 0.1 and εu = 1.0)
with the corresponding sequences of deformed meshes being
shown in Fig. 20. The recently developed ALE method by
Areias et al. [5] was adapted for a curved surface and main-
tains excellent mesh quality, as a careful inspection of the
Figure reveals. A variant of a ductile fracture model (cf. [8]) is
employed. For good visualization of the 3D director motion,
an extrusion along the directors was used. Perfect kinematics
and very stable crack paths can be observed (Fig. 21).

6 Conclusions

This work presented a new corotational method (both an
exact frame and a new coupled core element are introduced),
exactly linearized, capable of dealing with finite strain prob-
lems, including plasticity and fracture. The frame uses a com-
plete polar decomposition which involves a closed-form 2D
polar decomposition and shifted coordinates. Core matrices
are based on a re-formulation of the DKT element for plate
bending and a modified OPT element for membrane defor-
mations. Examples show excellent performance in a vari-
ety of situations: linear benchmarks, finite strain elasticity,
finite strain elasto-plasticity and fracture. An extension of
this work consists in using a constrained-ALE method (we
recently proposed a 2D version of the ALE-based fracture
method [5]) to satisfy the shell mid-surface constraint.
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