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Abstract The classical finite element method (FEM) fails
to provide accurate results to the Helmholtz equation with
large wave numbers due to the well-known “pollution error”
caused by the numerical dispersion, i.e. the numerical wave
number is always smaller than the exact one. This dispersion
error is essentially rooted at the “overly-stiff” feature of the
FEM model. In this paper, an alpha finite element method
(α-FEM) is then formulated for the acoustic problems by
combining the “smaller wave number” model of FEM and the
“larger wave number” model of NS-FEM through a scaling
factor a ∈ [0, 1]. The motivation for this combined approach
is essentially from the features of “overly-stiff” FEM model
and “overly-soft” NS-FEM model, and accurate solutions
can be obtained by tuning the α-FEM model. A technique
is proposed to determine a particular alpha with which the
α-FEM model can possess a very “close-to-exact” stiffness,
which can effectively reduce the dispersion error leading to
dispersion free solutions for acoustic problems. Theoretical
and numerical studies shall demonstrate the excellent prop-
erties of the present α-FEM.
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1 Introduction

As the increasing concerns on the acoustic performance of
enclosed cavities, such as the aircraft cabins and automobile
passenger compartments, careful considerations are required
in designing such sophisticated structures. Therefore, numer-
ical methods for solving acoustic problems governed by the
Helmholtz equation are becoming more and more important.
The standard finite element method (FEM) has been estab-
lished and widely-used in solving general structural-acous-
tic problems. However, it is known that the FEM can only
provide reliable predictions in the low frequency range, and
much effort is currently spent in improving quality of the
FEM solution in high frequency range. Within the standard
framework of Galerkin weak formulations, such efforts have
fundamental difficulties. This is because the Helmholtz oper-
ator may lose the ellipticity with increasing wave number [1],
leading to the well-known “pollution error”.

Studies have found that the pollution error for one-
dimensional problems can be avoided, while for two (and
higher) dimensional problems no such methods are pollution
free [2], and various numerical methods have been proposed.
They are, (i) the stabilized FEM, such as the Galerkin/least-
squares finite element method (GLS) [3,4], the quasi-
stabilized finite element method (QSFEM) [5]. (ii) higher
order methods, such as generalized high order approxima-
tions (p-version) [6,7], the partition of unity method (PUM)
[8,9] and the discontinuous enrichment method (DEM)
[10,11] (iii) meshless method, such as element-free Galer-
kin method (EFGM) [12,13]. They all can give improved
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solutions compared to the standard FEM, however, prop-
erly “softened” stiffness for the discrete model is much more
effective and direct to the root of the numerical pollution
error [14].

Due to the fact that the discretized model based on the
standard Galerkin weak form behaviors stiffer than the con-
tinuous system [15], and the speed of sound propagating
in the overly-stiff discretized model is higher than the real
speed of sound. This also means that the wave number in
the FEM model is smaller than the actual one, leading to the
so-called numerical dispersive error. In order to soften the
discretized system, a formulation of generalized smoothed
Galerkin weak form [16] has been proposed for general
meshfree settings [17], allowing the use of both continuous
and discontinuous field functions and both compatible and
incompatible strain fields. For the FEM settings, smoothed
finite element methods (S-FEM) have also been systemati-
cally formulated [15]. Using the node-based strain smooth-
ing technique, a node-based smoothed point interpolation
method (NS-PIM or LC-PIM) [18,19] and node-based finite
element method (NS-FEM) [20] have been formulated. It
has been found the NS-PIM and NS-FEM can provide upper
bound solution to the exact one in energy norm for elastic-
ity problems with homogeneous essential boundary condi-
tions [20,21]. This property implies that the NS-PIM and
NS-FEM model are softer than the exact model. However,
the NS-PIM and NS-FEM models behave “overly-soft” lead-
ing to the so-called temporal instability observed as spurious
non-zero energy modes in vibration analysis [22]. An alpha
finite element method (α-FEM) was then proposed [23] by
combining the “over-stiffness” of the FEM and the “over-
softness” of the NS-FEM through a parameter α, resulting
in a numerical model with very close-to-exact stiffness. This
idea is very useful in developing “ultra-accurate” numerical
models. However, the parameter α was found depending on
the problems and mesh used, thus the alpha is inconvenient to
determine for different problems or problems with different
mesh.

In this work, the characteristic of NS-FEM for acous-
tic problems is firstly theoretical addressed, and the wave
number of NS-FEM is found to be always larger than the
exact one, which is essentially caused by the “overly-soft”
model. By introducing a scaled factor α ∈ [0, 1], the α-FEM
which makes the best use of the “overly-stiff” of FEM and the
“overly-soft” of NS-FEM is then formulated for 1D and 2D
acoustic problems. The parameter alpha which controls the
contributions from both the standard FEM and the NS-FEM
can be determined by the tuned model. With so-determined
α, the α-FEM can produce a very “close-to-exact” stiffness
to the discretized system, thus the error in the α-FEM is only
an interpolation error and is free of dispersion. In 1D prob-
lems, the parameter α depends on the wave number and mesh
size, while in 2D problems, the direction of wave propagation

is another factor which determines the parameter α, so the
optimal parameter alpha is obtained to remedy this difficulty
which reduces phase error for all possible wave vector direc-
tions.

The paper is organized as follows: Section 2 briefly
describes the mathematical model of the acoustic problems.
Section 3 introduces the detailed formulation of alpha finite
element method for acoustic problems. Section 4 outlines
the issue of the numerical error. In Sect. 5, the determination
of alpha for 1D and 2D problems are presented. Numerical
examples are studied in detail in Sect. 6. Finally, the conclu-
sions from the numerical results are made in Sect. 7.

2 Mathematical model of acoustic problems

Consider an acoustic problem domain � with boundary �

decomposed into three portions �D, �N and �A, which � =
�D ∪ �N ∪ �A. The Dirichlet, Neumann and admittance
(Robin) boundary conditions are prescribed on �D, �N and
�A, respectively. Let p′ denote the acoustic field pressure and
c be the speed of sound traveling in the fluid. The acoustic
wave equation can be written in the following standard form:

∇2 p′ − 1

c2

∂2 p′

∂t2 = 0 (1)

where ∇2 and t denote the Laplace operator and time, respec-
tively. Here we assume that the acoustic pressure p′ is a small
harmonic perturbation around a steady state in the fluid. The
acoustic pressure can be expressed as:

p′ = pe jωt (2)

where j = √−1, ω is the angular frequency and the p is
the amplitude of the acoustic wave. In general, the acoustic
pressure p is complex-valued in the frequency domain, and
satisfies the Helmholtz equation given by:

∇2 p + k2 p = 0 (3)

where k is the wave number defined by

k = ω

c
(4)

Because the acoustic particle velocity v in an ideal fluid
is proportional to the gradient of acoustic pressure, we shall
have:

∇ p + jρωv = 0 (5)

For interior acoustic problems, three types of boundary
conditions containing the Dirichlet, Neumann and admit-
tance (Robin) boundary conditions on �D, �N and �A can
be described as follows:
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p = pD on �D (6)

∇ p · n = − jρωvn on �N (7)

∇ p · n = − jρωAn p on �A (8)

where vn, ρ and An represent the normal velocity on the
boundary �N , the density of medium and the admittance
coefficient on boundary �A, respectively.

A weak form of Helmholtz equation is obtained by multi-
plying Eq. (3) with a test function w, integrating the product
over the entire domain, using integration by part and apply-
ing the boundary conditions shown in Eqs. (6)–(8), the weak
form of the acoustic problem can then be expressed as follows

−
∫

�

∇w · ∇ pd� + k2
∫

�

wpd� − jρω

∫

�N

wvnd�

− jρωAn

∫

�A

wpd� = 0 (9)

Comparing with Eq. (3) that contains 2nd derivatives,
Eq. (9) contains only the first derivatives: the consistence
requirement of Eq. (9) on the field functions is weaker.

3 Formulation of the α-FEM

3.1 Briefing on the finite element method

In the standard FEM, the field variable pressure p can be
expressed in the approximate form:

p =
m∑

i=1

Ni pi = NP (10)

where Ni is the nodal shape function for node i obtained using
standard finite element procedure and pi is the unknown
nodal pressure. In standard Galerkin weak form the shape
function N is also used as the weight function w and the
weak form for acoustic problems can be obtained as:

−
∫

�

(∇N)T∇NPd� − k2
∫

�

NTNPd� + jρω

∫

�N

NTvnd� + jρω

∫

�A

NTNAnPd� = 0 (11)

which contains only the first derivations of nodal shape
functions. The discretized system equations can be finally
obtained and written in the following matrix form:

[KFEM − k2M + jρωC]{P} = −jρω{F} (12)

where

KFEM =
∫

�

(∇N)T (∇N) d�

The acoustic stiffness matrix (13)

MFEM =
∫

�

NTNd�

The acoustic mass matrix (14)

C =
∫

�A

NTNAnd�

The acoustic damping matrix (15)

F =
∫

�N

NTvnd�

The vector of nodal acoustic forces (16)

{P}T = {p1, p2, . . . , pn}
Nodal acoustic pressure in the domain (17)

3.2 Briefing on the node-based smoothed finite element
method

In the scheme of NS-FEM, the problem domain is first
divided into Ne elements with a total of Nn nodes. The
generated cells are exactly the same as those used in the
FEM and are used as background cells in the NS-FEM. On
top of the background cells, the problem domain is further
divided into Nn node-based smoothing domains following
the “no-sharing” rule [16], such that � = ∪Nn

k=1 � k and
�k ∩�l = 0,∀k 	= l. For 1D problems, as shown in Fig. 1a,
for the interior node k, the smoothing domain �k is formed
by connecting two midpoints of elements k − 1 and k; while
for boundary node, the smoothing domain is constructed by
connecting this node and the midpoint of the host element.
Extending the smoothing domain �k for 2D problems as
shown in Fig. 1b, the smoothing domain �k is created by
connecting sequentially the mid-edge-point to the centroids
of the surrounding triangles of node k. The boundary of the
smoothing domain �k is labeled as �k and the union of all
�k forms exactly the global domain �.

In the NS-FEM, the field variable is constructed using the
linear FEM shape functions, which can be created in the same
way as those in the FEM, while the difference is that the com-
patible gradient component ∇N is replaced by the smoothed
item ∇N obtained using the node-based gradient smoothing
operation [18–20], and the global smoothed acoustic stiffness
matrix of NS-FEM can be written as:

K
NS−FEM =

∫

�

(∇N
)T (∇N

)
d�

The smoothed acoustic stiffness matrix

(18)
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Element 1 Element -1k Element eNElement k

k
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for interior node

smoothing domain 

for boundary node
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k
Centroid of triangle

Field node

point-edge-Mid
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(b) 

Fig. 1 Node-based smoothing domains and the background mesh.
a Background mesh and node-based smoothing domain for 1D domain.
b Background triangular cells and node-based smoothing domains for
node k for 2D domain

The above integration is evaluated based on the summa-
tion of all the node-based smoothing domains as:

K
NS−FEM =

Nn∑
k=1

K
(k)

(19)

where the K
(k)

is the local smoothed stiffness matrix associ-
ated with node k, and can be calculated:

K
(k) =

∫

�k

B
T

Bd� = B
T

BAk (20)

where Ak = ∫
�k

d� is the length (area) of smoothing domain
for node k in 1D (2D) problems, and

B
T

i (xk) = [
bi1

]
(for 1D problem) (21)

Bi (xk) = 1

Ak

∫

�k

Ni (x)n p(x)d� (22)

B
T

i (xk) = [ bi1 bi2 ] (for 2D problem) (23)

bip = 1

Ak

∫

�k

Ni (x)n p(x)d� (24)

where Ni is the FEM shape function for node i . Note that

in computing K
(k)

for NS-FEM, we use Eqs. (22) and (24)
where only the shape functions (not the derivatives of the
shape functions) are used. This implies that the requirement
on the nodal shape function is further weakened compared
to the standard Galerkin weak form. Therefore, it is termed
as weakened weak (W2) formulation [17,24–27].

Center of the element

Element -1k Element k

Nodes

k
smoothing domain kΩ

1nc 2nc

-1
FEM domain 

k
Ω

FEM domain Smoothing domain

Centroid of triangleField node point-edge-Mid

+ =

FEM NS-FEM -FEMα

NS-FEM

(b) 

(a) 

FEM

Fig. 2 Illustration of domain discretization for α-FEM. a The illus-
tration of α-FEM for 1D problem. b The α-FEM for 2D problem is
formulated by combining of the FEM and NS-FEM: the NS-FEM is
used for three quadrilateral smoothing domains and FEM is used for
the Y-shaped area

3.3 The combination of the FEM and NS-FEM

The α-FEM [23] combines the NS-FEM and the standard
FEM by introducing a scaled factor a ∈ [0, 1]. For 1D prob-
lem, the NS-FEM divides each element into two equal parts
and each part is used to make the contribution to the local
stiffness matrix of the node-based domain. In the α-FEM, as
shown in Fig. 2a, each element is divided into three parts,
i.e. two smoothing domains scaled down by α with equal
length of 1

2αh (h is the element size) and one FEM domain
with a length of (1 − α) h. In the smoothing domains and
FEM domains, the NS-FEM and FEM formulations are con-
structed respectively. For one particular triangular element
in 2D domain, the NS-FEM divides the triangle into three
quadrilaterals of equal area and each quadrilateral makes
the contribution to the local stiffness matrix of the node
attached to the quadrilateral, as shown in the second fig-
ure of Fig. 2b. In the α-FEM, as shown in Fig. 2b, each
triangular element is divided into four parts with a scaled
factor α: three quadrilaterals associated with three vertexes
with equal area of 1

3αAe and the remaining Y-shaped part
in the middle of the element with a area of (1 − α)Ae,
where the Ae is the area of the triangular element. The NS-
FEM and the FEM formulations are constructed respectively
in the three quadrilaterals and the Y-shaped area for each
element.

The entries in sub-matrices of the system stiffness matrix
Kα−F E M will be the assembly from the entries of both the
NS-FEM and the FEM, and has the following form

Kα−FEM
I J =

N e∑
m=1

KFEM
I J (m) + α

N n∑
n=1

K
NS−FEM
I J (n) (25)
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where N e and N n are the numbers of total elements and
total nodes in the entire problem domain, respectively. The
stiffness matrix KFEM and KNS−FEM can be calculated by
Eqs. (13) and (18), respectively. Thus, in the model of the
α-FEM, the scaling factor α acts as a knob controlling the
contributions from the NS-FEM and the FEM. When the fac-
tor α varies from 0 to 1, a continuous solution function from
the solution of FEM to that of the NS-FEM is obtained.

4 Numerical error in acoustic problems

In the solution of the acoustic problems, the well-known issue
of using numerical method including FEM is to control the
numerical error. There is a so called “the rule of thumb”
which requires a certain number of elements per wavelength
to obtain a stabilized solution to the Helmholtz equation.
However, the criterion is not reliable even if the rule of thumb
is followed. In the following computations, the numerical
discretization error in the H1 semi-norm is used:
∣∣∣pe − ph

∣∣∣2

1
=

∫

�

(
ṽe − ṽh

)T (
ve − vh

)
d� (26)

where ṽ is complex conjugate of the velocity v, the super-
script e denotes the exact solutions and h denotes the numer-
ical solutions obtained from numerical methods including
the present α-FEM and FEM. Ihlenburg et al. showed that
the relative error in the H1 semi-norm can be estimated for a
uniform hp-mesh of finite element method and it is bounded
by [28]:

η =
∣∣pe − ph

∣∣
1

|p|1
≤ C ′

1

(
kh

p

)p

+ C ′
2k

(
kh

p

)2p

(27)

where C ′
1 and C ′

2 are constant independent of the parameters
k and h, and p here is the degree of polynomial approximation
used in the numerical methods. The relative error contains
two terms: the first term is interpolation error which defines
the difference between the interpolation and the exact solu-
tion; the second term is generally known as pollution error
which defines the difference between the interpolation exact
wave and the numerical solution of acoustic. For linear inter-
polation, it is shown in Ref. [29] that if kh < 1, the relative
error for acoustic problems can be expressed by:

η ≤ C1kh + C2k3h2 (28)

4.1 The dispersion error for FEM, NS-FEM and α-FEM in
1D problems

Consider an acoustic problem defined in a 1D domain �=
(0, 1) with a Dirichlet boundary condition at the left end and
a Robin boundary condition at the other end, which can be

stated as follows.

d2 p

dx2 + k2 p = 0 in �(0 ≤ x ≤ 1) (29)

p (0) = 1,
dp

dx

∣∣∣∣
1

= − jkp(1) (30)

This 1D problem has an analytical solution as follows:

p (x) = cos (kx) + j sin (kx) (31)

The density of fluid is 1.225 kg/m3 and the velocity of
the acoustic wave is 340 m/s. k is the non-dimensional wave
number depending on the given frequency. Assuming that the
1D problem is discretized by a uniform mesh of n(= 1/h)

linear elements, the discrete equation corresponding to the
node at xi for FEM can be easily written as [30]:

Rpi−1 + 2Spi + Rpi+1 = 0 (32)

where pi is the nodal pressure value at node i , and the coef-
ficients R(γ ) and S(γ ) are expressed as follows.

S = 1 − 1

3
γ 2, R = −1 − 1

6
γ 2, γ = kh (33)

By substituting pi = eikFEMxi into Eq. (32), using the fact
that the nodes i −1 and i +1 are the two neighbor nodes with
xi−1 = xi − h and xi+1 = xi + h, then the discrete wave
number for standard FEM can be obtained as

k F E M = k − 1

24
k3h2 + O

(
k5h4

)

= k

(
1 − 1

24
k2h2 + O

(
k4h4

))
(34)

As shown in Eq. (34), the wave number of FEM is smaller
than the exact wave number, which leads to a shift phase in
FEM solution.

We now derive the wave number expression for the NS-
FEM. After assembling the global equation and multiplying
the whole set of equations by h, we arrive at the following
set of linear equations for the NS-FEM.

LhP = F (35)

where the discrete operator Lh can be written as

Lh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̃ + 1
2 2R̃ R̃

2R̃ 2S̃ + 1
4 0 R̃

R̃ 0 2S̃ 0 R̃
. . .

R̃ 0 2S̃ 0 R̃
R̃ 0 2S̃ + 1

4 2R̃
R̃ 2R̃ S̃ + 1

2 + ik

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

in which

S̃ = 1

4
− 1

2
γ 2, R̃ = −1

4
, γ = kh (37)
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The discrete equation corresponding to node i can be
rewritten as follows

R̃ pi−2 + 2S̃ pi + R̃ pi+2 = 0 (38)

Using xi−2 = xi − 2h and xi+2 = xi + 2h and pi =
eik N S−F E M x (k N S−F E M here is the wave number of NS-FEM
yet to be determined), Eq. (38) becomes

R̃(γ )eikNS−FEM(xi −2h) + 2S̃(γ )eikNS−FEMxi

+R̃(γ )eikNS−FEM(xi +2h) = 0 (39)

where

λ = ei2kNS−FEMh (40)

Eq. (39) can be solved for λ with

λ1,2 = (1 − 2γ 2) ±
√

(2 − 4γ )2 − 4

2

=
{

complex conjugate if γ < 1

real if γ > 1
(41)

For case of γ < 1, the NS-FEM has a complex conjugate
solution, and the discrete wave number of NS-FEM can be
obtained by combining Eqs. (40)–(41):

cos
(

2kNS−FEMh
)

= 1 − 2γ 2 (42)

In this case, we arrived at

kNS−FEM = 1

2h
arc cos

(
1 − 2γ 2

)
(43)

Using Taylor expansion

arc cos
(

1−2γ 2
)
=2kh+ 1

3
(kh)3+ 3

20
(kh)5 + O (kh)5

(44)

The wave number for NS-FEM can be expressed as fol-
lowing:

kNS−FEM = k

(
1 + 1

6
k2h2 + 3

40
k4h4 + O

(
k4h4

))
(45)

Equation (45) shows that the wave number of NS-FEM is
always larger than the exact one, which is in complementary
to the standard FEM. This important feature is rooted at the
softening effects and upper bound solutions discovered in
[21]: the FEM and NS-FEM solutions stays at the opposite
sides of the exact solution.

The wave numbers of NS-FEM and FEM are also verified
numerically using a mesh with nodal spacing of 0.05 for the
frequency of 680 Hz, and the results are presented in Fig. 3.
As shown in the figure, the wavelength of FEM is longer than
the exact solution showing a phase-lagging behind the exact
solution; while the wavelength of NS-FEM is shorter than
the exact one showing a phase-leading ahead of the exact
solution. This verifies numerically that the wave numbers

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0
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1

1.5

x

R
e(

pr
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)

NS-FEM

FEM

Exact

Fig. 3 Spatial distribution of real part of the pressure at 680 Hz
obtained using NS-FEM and FEM with the same uniform mesh of nodal
spacing of 0.05

of NS-FEM and FEM bound the exact wave number. This
phenomenon is essential caused by the “overly-stiff” nature
of the FEM model and “overly-soft” nature of the NS-FEM
model. It is naturally expected that a properly formulated
α-FEM model which combines the FEM and NS-FEM can
provide a proper stiffness to the system minimizing the dis-
persion error.

To show the effectiveness of the α-FEM, this 1D prob-
lem is again investigated using both FEM and α-FEM at
the frequency of 680 Hz. A uniform mesh with nodal spac-
ing of 0.1 m (kh = 1.26) is adopted. The results obtained
from the FEM and the α-FEM (α = 0.1, 0.3) are pre-
sented in Fig. 4. It is shown that the wavelength of FEM
is also longer than the exact solution exhibiting obvious dis-
persion error; while the wavelength of α-FEM (α = 0.3)
is shorter than the exact. We found that the wavelength of
α-FEM (α = 0.1) matches closely the exact wave with the
error mostly caused by the linear interpolation. Note these
two values of α are chosen arbitrarily from the region of
a ∈ [0, 1].

4.2 The dispersion error for FEM, NS-FEM and α-FEM in
2D problems

For two dimensional problems, a “sequel regular” mesh with
nodal spacing of h is considered as shown in Fig. 5, where
the nodes contributing the FEM linear equation associated
to node S(i, j) are marked. Using this type of mesh, a linear
system similar as Eq. (35) can be obtained when solving the
Helmholtz equation using FEM and NS-FEM. Here L F E M

s
and L N S−F E M

s represent a row of the system equation asso-
ciated to node S(i, j)in the FEM and NS-FEM linear equation
system, respectively.
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Fig. 4 Spatial distribution of real part of the pressure at 680 Hz with
nodal spacing of 0.1 using α-FEM and FEM

( ),i jS

h

h

Fig. 5 The discretization near node (i, j) for both FEM and NS-FEM
models

For the FEM model, the discrete equation corresponding
to node S(i, j) can be written as follow:

LFEM
s = A1 pi, j+1 + A2 pi+1, j+1 + A1 pi−1, j

+A0 pi, j + A1 pi+1, j + A2 pi−1, j−1+ A1 pi, j−1 =0

(46)

where

A0 = 4 − 1
2 k2h2 A1 = −(1 + 1

12 k2h2) A2 = − 1

12
k2h2

(47)

Note in two dimensions, the FEM solution of a plane wave
has a form of

p(x)= Aei(k1x+k2 y) with k1 =kFEM cos θ k2 =kFEM sin θ

(48)

Substituting Eq. (48) into Eq. (46), leads to

LFEM
s

(
kFEM

)
= A1ei(k1·0+k2h) + A2ei(k1h+k2h)

+A1ei(k1(−h)+k2·0) + A0ei(k1·0+k2·0)

+A1ei(k1h+k2·0) + A2ei(k1(−h)+k2(−h))

+A1ei(k1·0+k2(−h)) = 0 (49)

After simplification, we have

Re
(

LFEM
s

(
kFEM

))
= A0 + 2A1(cos(k1h) + cos(k2h))

+2A2 cos(k1h + k2h) = 0 (50)

For the NS-FEM model, we shall have

LNS−FEM
s

(
kNS−FEM

)
= −B3 pi, j+2 − B1 pi+1, j+2

+B1 pi+2, j+2 − B2 pi−1, j+1 + B1 pi, j+1 + B2 pi+1, j+1

−B1 pi+2, j+1 − B3 pi−2, j + B1 pi−1, j + B0 pi, j

+B1 pi+1, j − B3 pi+2, j − B1 pi−2, j−1 + B2 pi−1, j−1

+B1 pi, j−1 − B2 pi+1, j−1 − B1 pi−2, j−2

−B1 pi−1, j−2 − B3 pi, j−2 = 0 (51)

The plane wave of NS-FEM in a 2D domain shall have
the following form:

p(x) = Ae
i
(

k
′
1x+k

′
2 y

)
with k

′
1 = kNS−FEM cos θ

k
′
2 = kNS−FEM sin θ (52)

Using similar approach, Eq. (51) becomes:

Re
(

LNS−FEM
s

(
kNS−FEM

))
= B0

+2B1

(
cos(k

′
1h) + cos(k

′
2h) − cos(k

′
1h + 2k

′
2h)

− cos(2k
′
1h + k

′
2h) − cos(2k

′
1h + 2k

′
2h)

)

−4B2 sin(k
′
1h) sin(k

′
2h) − 2B3(cos(2k

′
2h)

+ cos(2k
′
1h)) = 0 (53)

It is clear that Eqs. (50) and (53) are not the equation
for circles that are the exact solution for the plane wave in
2D space, which indicates that the FEM and NS-FEM always
have some direction-dependent dispersion. Using polar coor-
dinates, it is possible to plot the curve in the (k1, k2)/(k

′
1, k

′
2)

plane representing the numerical solution of wave number
using both FEM and NS-FEM models. Figure 6 shows an
example of kh=1, with h=1. In this figure, it is found that the
dispersion is very large for the wave propagation direction
between the 0o ∼ 90o and 180o ∼ 270o, and relative small
between the direction of the 90o ∼ 180o and 270o ∼ 360o.
This is true for both FEM and NS-FEM models. It is also
observed that the wave number solution of FEM is always
smaller than the exact solution, while the NS-FEM solution
is larger than the exact one, in all wave propagation direc-
tions. Using alpha = 0.4, the solution of α-FEM can be tuned
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Fig. 6 Direction dependence of the exact (circle of radius k =1), FEM,
NS-FEM, and α-FEM (α = 0.4) solutions to the same Helmholtz equa-
tion. All the numerical solutions depend on the angle of acoustic wave
propagation

locating in between the solutions of FEM and NS-FEM, and
much closer to the exact solution, compared to both FEM
and NS-FEM. Note the selection of alpha in the α-FEM is
very critical in minimizing the dispersion error. Therefore,
the determination of the parameter alpha will be discussed
in more detail in the next section.

5 Determination of alpha

5.1 The determination of alpha in 1D problems

In this section, we present a general procedure to deter-
mine the important parameter alpha, which controls the
contribution proportions of the FEM and NS-FEM to the
present α-FEM model.

For 1D problem, the discrete equation of α-FEM in matrix
Lh corresponding to node i can be given as

α R̃(γ )pi−2 + (1 − α)R(γ )pi−1 + 2(1 − α)S(γ )pi

+2α S̃(γ )pi + (1 − α)R(γ )pi+1

+α R̃(γ )pi+2 = 0 (54)

Using the similar procedure discussed in Sect. 4.1, Eq. (54)
becomes:

−α cos2
(

kα−FEMh
)
+2(1−α)

(
−1− 1

6
γ 2

)
cos(kα−FEMh)

+
(

2 − α − 1

3
αγ 2 − 2

3
γ 2

)
= 0 (55)

which is a nonlinear equation of α in relation to kα−F E M

that is the wave number of the α-FEM model. If an alpha can
be found such that kα−F E M equals to the exact k, we shall
obtain a good α-FEM model with no dispersion error. This
requirement is met by replacing the kα−F E M with the exact
k in Eq. (55), with this design criteria, the α can be deter-
mined:

α =
(

2 + (1/3) γ 2
)

cos (γ ) − 2 + (2/3) γ 2

− cos2 (γ ) + 2 cos (γ ) + (1/3) γ 2 cos (γ ) − (1/3) γ 2 − 1

(56)

Using the parameter α determined by Eq. (56), the α-FEM
can eliminate the dispersion error in the 1D acoustic prob-
lems, and the numerical error is only due to the interpolation
error.

5.2 Determination of alpha in 2D problems

For two-dimensional problems discussed in Sect. 4.2, the
discrete equation of α-FEM for nodes i can be expressed as
follows:

(1 − α)Re
(

L F E M
s

(
kα−F E M

))

+αRe
(

L N S−F E M
s

(
kα−F E M

))
= 0 (57)

Based on the previous analysis, the optimal α can also
be determined by replacing the kα−F E M with the exact k in
Eq (57):

α = Re
(
L F E M

s (k)
)

Re
(
L F E M

s (k)
) − Re

(
L N S−F E M

s (k)
) (58)

For a given value of direction of wave propagation θ ,
we can always obtain an α in Eq. (58) which can eliminate
the dispersion error. The optimal α with relation to the wave
propagation θ for different wave number and mesh size have
been plotted in Fig. 7. It is shown in the figure that (i) the
alpha varies with the wave propagation θ , while the chang-
ing trend of the alpha against the wave propagation angle is
roughly the same; (ii) with the increase of wave number, the
value of the alpha will increase accordingly.

Using Eq. (58) and the parameters kh = 2, (h = 1), the
optimal α with respect to each angle θ can be determined. We
then plot the dispersion error for α-FEM with these optimal
values of α in Fig. 8, together with the FEM using both tri-
angular (T3) and quadrilateral (Q4) elements. It can be seen
clearly that the α-FEM results are in a very good agreement
with the analytical one. Relatively, the FEM results have very
large dispersion error for both the linear (T3) and the bilinear
(Q4) models.

It can also be drawn in the figures that the optimal alpha
depends on the wave number, mesh size and the wave propa-
gation angle in 2D problems, while this result is not very
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h = 1), FEM, and α-FEM solutions to the same Helmholtz equation

useful in practice since the exact solution is never a sin-
gle plane wave (but a sum of waves traveling in different
directions). In this case, we need to select the optimal α

based on the wave propagating angle with aim to reduce the
maximum dispersion error. We can select the alpha numer-
ically for Eq. (58), i.e. looping the wave propagation angle
from 0◦ to 360◦ with small steps, for example, 0.001. As
the values of alpha for different wave numbers have the
same changing trend, we can find the optimal alpha at the
specified wave propagation angle and thus minimize the max-
imum dispersion error from 0◦ to 360◦ for all wave num-
ber and mesh size. The optimal angle has been studied with
kh = 1,(h=1) and the results are plotted in Fig. 9. From the
figure, the wave propagation angle which determines the
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Fig. 9 The maximum dispersion error with related to the alpha for the
specified wave propagation angle

optimal alpha can be obtained. Note that any other triangu-
lar mesh can be mapped to the present sequel regular mesh
and the proof is similar as the quadrilateral mesh in [5]. So
the present procedure to determine the optimal alpha is very
general.

6 Numerical example

In this paper, two examples with analytical solutions and a
real problem about the vehicle passenger compartment are
studied in detail to investigate the accuracy and convergence
of the α-FEM.

6.1 1D problem with Dirichlet boundary condition

Consider a wave propagating in the domain �= (0, 1) with
Dirichlet boundary conditions described as follows:

d2 p

dξ2 + k2 p = 0 in �(0 ≤ ξ ≤ 1) (59)

p (0) = 1,
dp

dξ
(1) = 0 (60)

The problem has an analytical solution as follows:

p (ξ) = cos (kξ) + tan k sin (kξ) (61)

The problem has eigenmodes corresponding to the values:

k =
(

n + 1

2

)
π, n ∈ N (62)

Note that in the vicinity of the above values, the problem
becomes numerically ill-posed which significantly increases
the numerical error.
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6.1.1 Acoustic error and convergence study

The density of fluid is 1.225 kg/m3 and the velocity of the
wave is 340 m/s. Three different frequency values (750 Hz
(k = 13.86), 1,500 Hz (k = 27.72), 2,000 Hz (k = 36.96))
have been employed to study the problem using α-FEM with
the nodal spacing of 0.05. In the α-FEM model, alpha calcu-
lated using Eq. (56) for different values of kh is employed. For
the purpose of comparison, FEM solutions are also computed
using the same mesh as well as in the α-FEM. The numer-
ical results of acoustic pressure using α-FEM and FEM at
different frequency values, together with the exact solutions,
are plotted in Fig. 10. It can be seen from these plots that:
for lower frequency value 750 Hz (k = 13.86, kh < 1), the
α-FEM can provide very close-to-exact solution which is
much more accurate than the FEM; for higher frequency val-
ues including 1500 and 2,000 Hz (k = 27.72, 36.96, kh >

1), the α-FEM also provides very good results and the error is
mostly the approximation error, while FEM solutions depart
a lot from the exact one.

The convergence and accuracy properties of α-FEM
are then studied using four models with different num-
bers of uniformly distributed nodes (21, 41, 81, 161 nodes,
respectively). Three frequency values 750 Hz (k = 13.86),

1,500 Hz (k = 27.72) and 2,000 Hz (k = 36.96) have been
selected. The results obtained from the α-FEM and FEM in
terms of global error are plotted together in Fig. 11. From this
figure it can be found that the α-FEM obtains much better
accuracy and higher convergence rate than the FEM; this is
due to the dispersion free and very “close-to-exact” stiffness
feature of the α-FEM.

6.1.2 Influence of the eigenfrequencies

The problem has analytical solution of eigenvalues corre-
sponding to the wave number k = (n + 1/2) π, n ∈ N ,
for which the response and the global error are infinity.
Due to the dispersion error, the numerical wave numbers
of FEM are tending to different from the exact wave num-
ber with the increase of the frequency. In this section, the
global error against wave number will be investigated using
the present α-FEM and FEM. Figure 12 plots the global
error as a function of wave number k with nodal spac-
ing of 0.1 m. As shown in the figure, global error tends
to infinity where the numerical wave numbers are close to
the exact eigenvalues. With the increase of wave number,
the FEM can not give the eigenvalues prediction observed
with higher eigenvalues prediction or spurious eigenvalues,
due to the dispersion of the numerical wave; while the α-
FEM can provide very accurate eigenvalues prediction even
when kh > 1, which is known as “the rule of thumb”.
This is because the gradient smoothing operation has been
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Fig. 10 Exact and numerical solutions of acoustic pressure at differ-
ent frequency values for the 1D time-harmonic problem. a 750 Hz (k =
13.86, kh = 0.693), b 1,500 Hz (k = 27.72, kh = 1.386), c 2,000 Hz
(k = 36.96, kh = 1.848)

conducted in the α-FEM which can partially soften the
structure and provide the “right-stiffness” to the acoustic
model.
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6.2 2D Problem with Neumann boundary condition

Another problem for interior acoustic simulations is a 2D
rectangular tube filled with air as shown in Fig. 13. The
dimension of this tube with length l=1 m and width b=0.24 m
is considered. The left of the tube is subjected to normal
velocity boundary condition with vn=0.01 m/s, the right end
of the tube is rigid wall and the normal velocity v=0 m/s. The
density of air ρ is 1.225 kg/m3 and the speed of sound in the
air is 340 m/s. The analytical solutions for this problem can
be easily derived and the pressure and velocity are given by

p = − jρcvn
cos (k (1 − ξ))

sin(k)
(63)

v = vn sin (k (1 − ξ))

sin(k)
(64)

vn

air 

NΓ Ω
0.24

x

y 1 

Fig. 13 2D acoustic chamber with the Neumann boundary condition
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Fig. 14 Comparison of accuracy and convergence at different
frequency values between the α-FEM and FEM for 2D problem

The problem also has eigenmodes corresponding to the
values:

k = 2πn (65)

6.2.1 Convergence study

The convergence property is investigated by employing four
models with 58, 186, 669 and 2,541 uniformly distributed
nodes with nodal spacing of 0.08, 0.04, 0.02 and 0.01 m.
Figure 14 presents the convergence curves in terms of global
error against the average nodal spacing h at frequency of 500
and 1,000 Hz for both α-FEM and FEM simulations. From
these figures, it can be observed that the present α-FEM can
give much more accurate results than that of FEM.

6.2.2 Influence of the eigenfrequencies

The problem also has analytical solution of eigenvalues cor-
responding to the wave number k = 2πn, n ∈ N . In this
section, the global error against wave number will also be
investigated using the present α-FEM and FEM. Figure 15
plots the global error as a function of wave number with
nodal spacing of 0.08 and 0.04 m. The results shown in the
figure also demonstrate the similar conclusions above that
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(i) with the increase of wave number, the FEM gives higher
eigenvalues or spurious eigenvalues prediction (ii) while the
α-FEM can also provide very accurate eigenvalues solution
even kh > 1, which far beyond the “the rule of thumb”.
This also verifies the “right-stiffness” of the α-FEM for 2D
acoustic problems.

6.3 2D car acoustic problem

Acoustic pressure distribution in a car passenger compart-
ment, which has been frequently used as a benchmark in
acoustic simulation, is also adopted to study the efficiency of
α-FEM. Figure 16 illustrates the 2D geometry of the problem
domain. The maximum size of this domain is Lx = 2.664m
in the horizontal and Ly = 1.121m in the vertical. The acous-
tical fluid is air and the parameter is the same as the previous.
As one of the main sources generating the noise in the passen-

0.01 /v m s=

absorbing material

the defined path ab

a 

b

driver’s ear position 

Fig. 16 Acoustic problem for a 2D car with different boundary

conditions, the results on
−→
ab path will be closely examined
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Fig. 17 a Acoustic pressure distribution obtained using α-FEM
(500 Hz). b Acoustic pressure distribution obtained using FEM
(500 Hz). c Acoustic pressure distribution obtained using Reference
(500 Hz)

ger compartment is engine vibration. The front panel of the
passenger compartment is subjected to the vibration coming
from the engine with the velocity of 0.01 m/s. The roof of
the passenger compartment is fixed with absorbing material
with admittance of 0.00144m3/(Pa · s).

This domain is dicretized with 361 nodes with nodal spac-
ing of 0.08 m, which gives a frequency limit of 676 Hz by
the “the rule of thumb”. The frequency values of 500 Hz
(kh = 0.74) and 650 Hz (kh = 0.96) will be investigated
using the α-FEM in this model. Figures 17a and 18a show
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Fig. 18 a Acoustic pressure distribution obtained using α-FEM
(650 Hz). b Acoustic pressure distribution obtained using FEM
(650 Hz). c Acoustic pressure distribution obtained using Reference
(650 Hz)

the distribution of acoustic pressure in the passenger com-
partment at 500 and 650 Hz obtained from the α-FEM, while
the results obtained using the FEM at 500 and 650 Hz are
plotted in Figs. 17b and 18b, respectively. Because the ana-
lytical solution is unavailable for this problem, a reference
configuration using FEM with a very fine mesh (8,951 nodes)
is adopted and the results at 500 and 650 Hz are plotted in
Figs. 17c and 18c.

From these figures, it can be observed that the FEM solu-
tion shows the dispersion error around the seat at 500 Hz.
When it comes to higher frequency value ( f = 650 Hz),
the FEM error is obvious due to the dispersion, as most of
the contours of the acoustic pressure are departing from the
reference solution. While the α-FEM can provide similar
contours to the references at both the frequency values of
500 and 650 Hz, and showed only little dispersion. To show
the results quantitatively, the real part of pressure obtained
from the α-FEM and FEM along the defined path

−→
ab shown

in Fig. 16 at different frequency values are given in Fig. 19a
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Fig. 19 Real part of acoustic pressure distribution along the path
−→
ab

at different frequency values

and b, respectively. The solution of FEM along the defined
path

−→
ab shows the dispersion and deviates from the reference

solution a lot; while the α-FEM solution exhibits better than
that of the FEM. We found even for the frequency of 650 Hz,
the real part of acoustic pressure obtained from the α-FEM
along the defined path

−→
ab varies a little from the reference

result. This again demonstrates the α-FEM is much more
accurate than FEM.

Then the direct frequency response analysis is also
conducted using present α-FEM and FEM with previous
Neumann and Admittance boundary conditions. A full range
frequency sweep is done from 1 to 1,000 Hz at intervals of
1.0 Hz which is beyond the frequency value limit 676 Hz, and
the response (sound pressure level) at the driver’s ear point,
which is illustrated in Fig. 16, is measured. The results using
α-FEM and FEM are depicted in Fig. 20. As the analyti-
cal solution is unavailable, a reference solution using FEM
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Fig. 20 Acoustic frequency response at driver’s ear point for 2D car
problem using α-FEM and FEM

with 8951 nodes is also provided. As shown in the figure,
the α-FEM can provide much better result than FEM in
the full frequency range even the frequency exceeds 676 Hz;
while error of FEM solution can be obviously observed for
higher frequency value. This numerical example validates
that α-FEM possesses an appropriately softened effect com-
pared with the “overly-stiff” FEM model and can give more
accurate solution even at high frequencies.

7 Conclusions and discussions

In this work, the alpha finite element method (α-FEM) is
formulated for solving 1D and 2D acoustic problems. In
the α-FEM, a combined model is obtained by a scaled
factor α ∈[0,1], making the best use of the “overly-stiff”
FEM model and the “overly-soft” node-based finite element
method (NS-FEM) model. A general way to find out the opti-
mal value of alpha has been presented for both 1D and 2D
problems and a number of numerical examples have been
studied. The following conclusions can be derived:

a) The wave number of the NS-FEM is larger than the exact
one, which is in complementary to the standard FEM
whose wave number is smaller than the exact.

b) Theα-FEM has the same dimension with the FEM model
by using same mesh and the method can be implemented
in a straightforward way with little change to the FEM
code.

c) The parameter α introduced in the α-FEM model con-
trols the ratio of the contributions from the FEM and
the NS-FEM models. The procedure to determine the
optimal α is very general and can be easily performed.

d) Owing to the optimal alpha and gradient smoothing
operation used in the model, the α-FEM processes an

appropriately softened effect and close-to-exact stiffness
dramatically reducing the dispersion error. Numerical
studies also demonstrate that the present α-FEM can
achieve higher accuracy than the FEM especially for
higher wave number, and provide much better eigen-
frequencies prediction in acoustic analysis.

Finally, we note that for acoustics problems governed by the
Helmholtz equations, the most effective approach to improve
the accuracy of the numerical solution is not through the
increase of the density of the mesh, but via a smart tuning of
the numerical model as we have done in our α-FEM.
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