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Abstract Finite deformation contact of flexible solids
embedded in fluid flows occurs in a wide range of engineer-
ing scenarios. We propose a novel three-dimensional finite
element approach in order to tackle this problem class. The
proposed method consists of a dual mortar contact formula-
tion, which is algorithmically integrated into an eXtended
finite element method (XFEM) fluid–structure interaction
approach. The combined XFEM fluid–structure-contact
interaction method (FSCI) allows to compute contact of
arbitrarily moving and deforming structures embedded in
an arbitrary flow field. In this paper, the fluid is described
by instationary incompressible Navier–Stokes equations. An
exact fluid–structure interface representation permits to
capture flow patterns around contacting structures very
accurately as well as to simulate dry contact between struc-
tures. No restrictions arise for the structural and the contact
formulation. We derive a linearized monolithic system of
equations, which contains the fluid formulation, the structural
formulation, the contact formulation as well as the coupling
conditions at the fluid–structure interface. The linearized sys-
tem may be solved either by partitioned or by monolithic
fluid–structure coupling algorithms. Two numerical exam-
ples are presented to illustrate the capability of the proposed
fluid–structure-contact interaction approach.
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1 Introduction

A variety of problems in engineering and applied sciences
require the simulation of finite deformation contact inter-
actions of solids surrounded by fluid. Important fields of
application include machine parts, such as gaskets or sliding-
contact bearings, and biomechanical systems, such as heart
valves or capillary flow of red blood cells, to name only a
few.

From the method development point of view, fluid–
structure interaction (FSI) problems coupled with structural
contact require powerful simulation approaches for both
algorithmic ‘building blocks’: FSI and contact. Even though
many different FSI approaches and contact formulations
exist, most of them are hard or even impossible to combine
algorithmically with a reasonable programming effort. Arbi-
trary Lagrangian–Eulerian (ALE) methods are a very popular
category of FSI methods. For this type of FSI approaches, the
fluid mesh is connected to the solid mesh and deforms accord-
ing to the structural deformations. Problems occur in the case
of contact, since fluid elements between contact interfaces are
completely squeezed together. This feature complicates the
application of ALE methods for simulations of dry contact.
Fictitious Domain (FD) methods and Immersed Boundary
Methods (IMB) usually lack an exact fluid–structure inter-
face representation within a fixed background grid. Dry con-
tact is hard to be achieved under such restrictions.

A contact formulation is needed as second ‘building block’
for the proposed FSCI approach. Contact ought to be treated
efficiently and as general as possible, allowing for very large
structural deformations of the contacting elastic bodies. For
this purpose, both a suitable contact discretization and a suit-
able scheme for constraint enforcement have to be chosen.
Concerning discretization, several authors (see e.g.
[12,14,24,25,39]) have demonstrated over the last decade
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the superior robustness of mortar-based segment-to-segment
methods as compared with classical node-to-segment
schemes. Constraint enforcement is usually handled via
Lagrange multipliers or a penalty method.

First efforts in developing numerical approaches for FSI
including contact so far concentrate on tailored, often sim-
plified models for very specific problem scenarios. In [31],
a 2D fluid–structure interaction (FSI) method with a purely
node-based contact algorithm within a monolithic solution
scheme is proposed for the numerical simulation of heart
valve dynamics. Another approach dealing with the dynam-
ics of thin valves in fluid is presented in [4], where a par-
titioned FD based FSI scheme is combined with a specific
contact formulation for thin structures (modeled as 1D con-
tinua) and rigid walls. An interesting extension to fully 3D
aortic valve simulations including elastic contact has been
proposed recently [1]. Modeling of FSI problems including
contact is also considered in [27] and [30], where the authors
introduce a so-called surface-edge-node contact tracking
algorithm used in combination with the Deforming-Spatial-
Domain/Stabilized Space–Time (DSD/SST) formulation
[28,29]. When two bodies approach each other, penalty
forces are applied in such a way that the contacting sur-
faces are kept slightly apart in order to protect the fluid mesh
in between. Furthermore, current research focuses on the
detailed analysis of physical effects in the contact interface
such as lubrication or wet contact (see e.g. [38]). In this case,
the space between contacting solids is partially filled with
fluid, which constitutes a specific class of problems (based
on the Reynolds equation for the thin fluid film and a free
boundary).

The main scope of our paper is to bring together recent
developments in the fields of fluid–structure interaction and
computational contact mechanics in order to create a novel
and very general numerical approach: we propose a 3D finite
element formulation, which combines an eXtended finite
element method (XFEM) FSI method and a dual finite defor-
mation mortar contact formulation. Owing to its general-
ity, the resulting FSI-contact (FSCI) method is applicable
to a broad range of problems involving elastic contact of
solids embedded in an interacting flow field. We start the
derivation of our FSCI method by reviewing a two-field
XFEM FSI method [7–10] and related other methods [32,34].
The fluid fields and the structural fields live on two dis-
tinct grids. An interface handling algorithm (see [17] and
[19]) allows to localize the fluid–structure interface of arbi-
trarily moving as well as deforming structures and provides
an exact representation of the discretized interface within
the fixed fluid background mesh. Continuity between non-
matching fluid and interface grids is weakly imposed by a
stress based Lagrange multiplier technique [9] that is numer-
ically stable without heuristic stabilization parameters and
does not generate a saddle point structure for the resulting

FSI system. These features are mainly responsible for the
convenient integration of the contact formulation. In addi-
tion, they prevent that any limitations to the structural as
well as to the contact formulation occur. Flow patterns around
surfaces very close to contact can be resolved highly accu-
rately. An exactly represented interface also allows to sim-
ulate dry contact, since no fluid computation is performed
between structures in contact. Regarding the contact for-
mulation, we employ a recently developed mortar approach
[11,21,22] based on so-called dual Lagrange multipliers in
combination with a primal-dual active set strategy for con-
tact constraint enforcement. By interpreting the active set
search as semi-smooth Newton scheme and by performing
consistent linearization, all types of nonlinearities (i.e. geo-
metrical, material and contact) are efficiently resolved within
one single iterative scheme. The dual Lagrange multipliers
(see e.g. [36]) can be eliminated by condensation, thus avoid-
ing an undesirable increase in global system size. The final
structural system of equations including contact is positive
definite and contains only displacement degrees of freedom.
All described properties heavily facilitate the proposed inte-
gration into our FSI approach. A linearized coupled system
of equations is derived, which contains the fluid description,
the structural description, the contact formulation as well as
the FSI coupling conditions. Any partitioned or monolithic
fluid–structure coupling algorithm may be applied to solve
the system of equations.

The remainder of the paper is organized as follows: the
general problem setup is described in Sect. 2. We proceed
with a review of the XFEM fluid–structure interaction
approach in Sect. 3, where we focus on details regarding
the combination with the contact method. The important
aspects of the dual mortar contact formulation are explained
in Sect. 4. The linearized FSCI system, which may be solved
by partitioned or monolithic fluid–structure coupling schemes,
is derived in Sect. 5. Numerical examples demonstrate the
capability of the approach in Sect. 6.

2 General formulation of the fluid–structure-contact
interaction problem

To begin with, we introduce the general problem statement.
Figure 1 displays the coupled system and introduces the fluid
fields for velocity u and pressure p in the fluid domain � f as
well as the structural displacement field ds in the structural
domain �s . Fluid quantities are denoted by a superscript
f if necessary for understanding; structural quantities are
always denoted by a superscript s if the entire structure is
addressed. To prepare the integration of a contact formula-
tion, the structural domain �s already consists of two con-
tacting bodies distinguished by superscripts s, (1) and s, (2).
The fluid–structure interface is denoted by �FSI.
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Fig. 1 Coupled system comprising fluid and structural fields

2.1 Fluid

The presented approach is not limited to a specific flow
description. For the derivation and our numerical examples
we describe the fluid part by instationary, incompressible
Navier–Stokes equations for Newtonian fluids. The stress
tensor σ f for Newtonian fluids

σ f = −p I + 2με(u) (1)

is composed of a hydrostatic term p I and a viscous term
2με(u), where μ denotes the dynamic viscosity. The strain
rate tensor ε(u) may be written as

ε(u) = 1

2

(
∇u + (∇u)T

)
. (2)

The conservation of momentum in Eulerian formulation is

ρ
∂u
∂t

= −ρu · ∇u + ∇ · σ f + b f in � f . (3)

The body force b f is omitted in further derivations, but it
may be included without additional difficulties and it is also
integrated in the implementation.

Mass conservation for an incompressible flow field
requires the divergence of the velocity u to equal zero

∇ · u = 0. (4)

Dirichlet and Neumann boundary conditions �
f
D and �

f
N at

the fluid boundary may be stated as

u = ū in �
f
D, (5)

n f · σ f = h̄
f

in �
f
N . (6)

The weak form is obtained by testing Eqs. (3) and (4) with
test functions for velocity v and pressure q

(
v, ρ

∂u
∂t

)

� f
+ (v, ρu · ∇u)� f +

(
∇v, σ f

)
� f

+ (q,∇ · u)� f −
(
v, h̄

f
)

�
f
N

= 0. (7)

During the development of the XFEM FSI approach in
Sect. 3, we reformulate the weak form to include a moving
interface based on embedded Dirichlet conditions.

2.2 Structure

Before considering contact interactions and FSI of two
bodies, the continuum mechanics problem statement of one
single structure is briefly reviewed. As usual for most applica-
tions, the structural behavior is described based on a
Lagrangian description, where the motion from reference
configuration xs

0 to current configuration xs is given by the
displacement vector ds = xs − xs

0. The structural velocity

ḋs and the structural acceleration d̈s are defined as

d̈s = ∂ ḋs

∂t
= ∂2ds

∂t2 . (8)

As can be seen in Fig. 1, the structural domain is represented
by the open set �s in the current configuration and the bound-
ary ∂�s consists of Dirichlet boundary �s

D and Neumann
boundary �s

N . For convenience and without loss of general-
ity, material nonlinearity is simply incorporated by assuming
compressible Neo-Hookean behavior

S = ∂�N H

∂E
, C = ∂2�N H

∂E2 , (9)

where the second Piola–Kirchhoff stress tensor S, the hy-
perelastic strain energy function �N H , the fourth order con-
stitutive tensor C and the Green–Lagrange strain tensor E
are introduced. The strain tensor can be written in terms of
the material deformation gradient F as E = 1

2 (FT F− I), and
the second Piola–Kirchhoff stress tensor S is obtained
from the Cauchy stress σ as S = J F−1 · σ · F−T . Here
J denotes the determinant of the material deformation gra-
dient F, which itself is defined as

F = ∂xs

∂xs
0
. (10)
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The initial boundary value problem (IBVP) of finite defor-
mation elastodynamics stated in the current configuration is

∇ · σ s + bs = ρs d̈s in �s,

ds = d̄
s

on �s
D,

σ s · ns = h̄
s

on �s
N ,

(11)

where ρs is the current structural density. Prescribed dis-
placements are represented by d̄

s
and prescribed surface trac-

tions by h̄
s
, whereas bs denotes a volumetric body force.

Initial conditions for structural displacements and structural
velocities can be formulated as ds(x, t = 0) = ds

0 and
ḋs(x, t = 0) = ḋs

0. The weak form after integration by parts
(still without consideration of the fluid–structure coupling
and without consideration of contact) is

(δds, ρs d̈s)�s + (∇δds, σ s)�s − (δds, bs)�s

− (δds, h̄
s
)�s

N
= 0. (12)

This equation is discretized using any standard (often mixed/
hybrid) finite element technique in space and direct time inte-
gration schemes. Geometrical and material nonlinearities are
handled via a Newton–Raphson method. A brief overview of
spatial discretization and time integration will be given in
Sect. 3.5.

2.3 Contact

We restrict the presentation to only two contacting structures
as depicted in Fig. 2, yet a generalization to an arbitrary
number of bodies is straightforward and mostly a matter of
efficient contact search strategies. The structural domain �s

in the current configuration consists of two separate open
sets �s,(1) and �s,(2), see also Fig. 1. As the two bodies may
potentially come into contact, their surfaces ∂�s,(i), i = 1, 2,
are divided into three boundary sets as

∂�s,(i) = �
s,(i)
D ∪ �

s,(i)
N ∪ �s,(i)

c ,
(13)

�
s,(i)
D ∩ �

s,(i)
N = �

s,(i)
D ∩ �s,(i)

c = ∅,

where �
s,(i)
c now represents the potential contact surface in

addition to the well-known Dirichlet and Neumann bound-
aries. Note that FSI is still not considered. We retain a com-
mon nomenclature in contact mechanics here and refer to
�

s,(1)
c as the slave surface and to �

s,(2)
c as the master surface,

although their traditional meaning will not be conveyed to
our mortar discretization approach. All definitions given in
Sect. 2.2 for one single structure, such as stress and strain
tensors, the IBVP and weak form, hold for two bodies in full
analogy.

Proximity and potential contact of the two bodies is mea-
sured by the gap function g(x) in the current configuration

g(x) = −nc
(

xs,(1)
)

·
[

xs,(1) − x̂s,(2)
]
, (14)

Fig. 2 Setup of the 3D finite deformation contact problem

where nc represents the current outward unit normal on the
slave surface �

s,(1)
c in xs,(1) and x̂s,(2) denotes the projection

of xs,(1) onto the master surface �
s,(2)
c along nc, see Fig. 2.

The definition of the contact normal nc within our finite
element discretization will be discussed briefly in Sect. 4.3.
Together with the two tangent vectors τ ξ and τ η, nc builds
an orthonormal basis in the slave surface point xs,(1).

A Lagrange multiplier vector λ is defined as negative con-
tact traction on the slave surface (λ = −hs,(1)

c ), providing the
basis for a mixed variational formulation later to be discret-
ized with a dual mortar finite element approach [21,22]. We
denote the normal and tangential components of the Lagrange
multiplier vector λ as λnnc, λ

ξ
ττ

ξ and λ
η
ττ

η respectively.
Two modifications of the structure problem statement have

to be taken into account when considering contact: an addi-
tional contact virtual work term entering the weak form (12)
and a set of contact constraints. First, contact virtual work is
readily expressed in terms of a slave side integral by exploit-
ing the balance of linear momentum across the contact inter-
face, yielding

δ�c =
(
λ, δds,(1) − δds,(2)

)
�

s,(1)
c

. (15)

Contact constraints are addressed next. Frictionless contact
interaction is governed by the three classical Karush–
Kuhn–Tucker (KKT) conditions and frictionless tangential
sliding

g(x) ≥ 0, λn ≥ 0, λn g(x) = 0, λξ
τ = λη

τ = 0. (16)

The interested reader is referred to [16,37] for details on
constitutive laws for contact including friction. Note that
the strong pointwise non-penetration condition g(x) ≥ 0
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Fig. 3 Definition of normals in the coupled problem

is typically replaced by a weak integral condition along the
contact interface in the context of a mortar approach

(δλn, g(x))
�

s,(1)
c

≥ 0, (17)

where Lagrange multiplier test functions δλn serve as weight-
ing functions for the kinematic constraint. A suitable dis-
cretization of (15), (17) and the remaining constraints from
(16) using a dual mortar finite element method is derived in
Sect. 4 (see also [12,14,21,22]). There it will also be demon-
strated how the additional nonlinearity stemming from con-
tact (active set search) can be efficiently treated within an
iterative Newton–Raphson framework.

2.4 Fluid–structure interface conditions

Dynamic and kinematic coupling conditions have to be ful-
filled at the fluid–structure interface �FSI, whose position
varies with time. The direction of the interface normals is
defined in Fig. 3. Note, that we focus on dry contact here:
�FSI ∩ �

s,(1)
c = �FSI ∩ �

s,(2)
c = ∅. Obviously parts of the

boundary change in time from being a fluid–structure inter-
face to a contact interface and vice versa. Since we assume
that no mass flow occurs across the interface, the normal
velocities at the interface have to match each other

n f · u = −ns · ḋs on �FSI. (18)

Viscous fluids require additionally a matching condition for
tangential velocities, which completes the no slip-boundary
conditions at the interface

u = ḋs on �FSI. (19)

The force equilibrium requires the surface tractions to be
equal

n f · σ f = −ns · σ s on �FSI. (20)

The statement of the fluid–structure interface conditions
completes the general problem description. In the follow-
ing sections we derive a combined fluid–structure-contact
interaction (FSCI) approach based on the above problem
setup.

3 An XFEM based fluid–structure interaction
formulation enabling topological changes

We start the development of the fluid–structure-contact
method with a short review of the underlying XFEM FSI
approach. Emphasis is put on details, which are important to
understand the algorithmic combination with the contact for-
mulation described in the next section. The interested reader
is referred to [7–10,19,32,34] and references therein for fur-
ther information about the XFEM FSI approach.

Figure 4 illustrates the applied two-field technique as well
as the surface coupling between the fields. The fluid field
and the structural field live on two distinct meshes: a fixed
mesh for the fluid and moving Lagrangian meshes for the
structure. The structure may move or deform arbitrarily in
the background fluid mesh. Restrictions arise neither for the
structural formulation nor for the integrated contact formula-
tion. An exact fluid–structure interface representation allows
to capture flow patterns around the structures with high accu-
racy and it enables also a straightforward combination of the
FSI approach with the presented contact formulation.

3.1 Instationary Navier–Stokes equations including
embedded Dirichlet conditions

Since the structural mesh can move and deform arbitrarily
in a fixed background fluid mesh, the fluid–structure inter-
face does not generally match with the fluid mesh. We apply a
novel embedded Dirichlet formulation [9] to impose Dirichlet
boundary conditions weakly on non-fitting grids as depicted
in Figs. 4 and 5. The entire problem domain � is divided
into a physical domain �+, which is identical with the fluid
domain � f , and a completely fictitious domain �−, which
overlaps with the structural domain �s . Initial conditions for
velocity and pressure are tagged by a subscript zero in the
physical domain and equal to zero in the fictitious domain.
Since fluid field and structural field live on distinct meshes,
we obtain two identical fluid–structure interfaces: the inter-
face �s

FSI belongs to the structural mesh and the interface

�
f

FSI = �+ to the fluid mesh. The structural interface velocity

ḋs has to be imposed as an embedded Dirichlet condition on
the velocity field u+ at the fluid interface. Formulating the
Lagrange multiplier as traction or vector field living on the
interface appeared to be a very hard task for three-dimen-
sional problems. Instead, we introduce an additional stress
field σ that lives in the fluid domain � f and from which the
surface traction is recovered by n f · σ . The corresponding
test function to σ is γ . The weak kinematic coupling along
the fluid–structure interface is therefore given as

(
n f · γ , u+ − ḋs

)
�+ . (21)

123



58 Comput Mech (2010) 46:53–67

Fig. 4 Fluid–structure-contact interaction with coupling conditions

Fig. 5 Fluid domain with embedded Dirichlet boundary conditions on
an interface which intersects the fluid domain

Substituting the traction vector by an additional unknown
stress field σ leads to three equations for six unknowns.
We formulate an additional strain rate balance εs = εu , to
close the set of equations. The strain rate balance is enforced
weakly only on elements, which are intersected by the inter-
face. Both strain rates εu and εs

εu = 1

2

(
∇u + (∇u)T

)
and εs = 1

2μ
(σ + p I), (22)

as well as the stress tensors τ u = 2μεu and σ u = −p I +τ u

depend only on the primary unknowns u, p and σ .
Time-discretization of the strong form is derived here for

the one-step-θ method, to keep the presentation simple. If no
superscript is specified, the variable is computed at the new
time step n + 1, the superscript n refers to the old time step.
The time-discretized strong form of the momentum equation
results in

ρu + �tθ
[
ρu · ∇u − ∇ · (−p I + τ u)

]

−ρun − �t (1 − θ)ρ u̇n = 0 in �+. (23)

The embedded Dirichlet condition at the interface is also
discretized

u+ − ds − ds,n

θ̂�t
+ 1 − θ̂

θ̂
u+,n = 0 on �+. (24)

to prepare for the coupling with the structural formulation.
Note that the time-discretization of the Dirichlet boundary
condition is not connected to the time-discretization of the
momentum equation as expressed by different parameters θ

and θ̂ (see also [5]). The structural displacements ds and ds,n

are assumed to be prescribed for the time being, since only
the fluid formulation is considered. Section 3.5 explains, how
ds and ds,n are computed by coupling the structural formu-
lation with the fluid formulation. More information about
time integration in the context of this XFEM FSI approach
is given in [10]. The weak form is obtained by testing with
the velocity, pressure and stress test functions v, q and γ .

(v, ρu)�+ + �tθ
[
(v, ρu · ∇u)�+ + (∇v,−p I + τ u)

�+

+ (q,∇ · u)�+ −
(

γ ,
1

2ν
(σ + p I) − εu

)

�+

−
(

n f · γ , u
)

�+ −
(
v, n f · σ

)
�+

]

= (
v, ρun + �t (1 − θ)ρ u̇n)

�+

+�tθ
(
v, h̄

)
�

f
N
−�tθ

(
n f ·γ ,

1

�t θ̂
ds − 1

�t θ̂
ds,n

)

�+

+�tθ

(
n f · γ ,

1 − θ̂

θ̂
u+,n

)

�+
(25)

In the following, we assume θ = θ̂ to simplify the sub-
sequent notation. One of the advantages of the proposed FSI
approach is that standard fluid stabilization methods for the
Navier–Stokes equation can be applied and that the stress
based Lagrange multiplier does not require additional stabil-
ization as demonstrated in [9]. We omit all fluid stabilization
terms in this paper for brevity; the interested reader is referred
to [10].
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3.2 Geometric interface handling and enrichment strategies

The solution of the above derived weak form including
embedded Dirichlet conditions requires an accurate local-
ization of the structural interface in the background fluid
mesh as well as an integrable surface representation of the
interface in each fluid element. A detailed description of the
interface handling algorithm is given in [17] and [19]. In
summary, the structural boundary is localized in each fluid
element and the resulting part of the interface is triangulated.
The fluid element including the triangulated interface part is
subtetrahedralized based on a Constrained Delaunay Tetra-
hedralization. The collection of tetrahedral volume cells in
the intersected fluid element allows for a numerically exact
integration of the fluid part of an intersected volume element.
The fluid–structure interface can be integrated numerically
by the triangulated interface representation. The algorithm
is applicable to hexahedral elements, tetrahedral elements,
wedges or any other element types also of different order
and it can handle several interfaces in a single fluid element.

The sharp interface description within an element is based
on the eXtended finite element method (XFEM) proposed to
model an arbitrary discontinuity or interface within a single
element by enriching the ansatz function space. It was ini-
tially developed for discontinuous solid mechanics problems
such as crack growths in [2] and [20].

The physical field is approximated by the sum of a continu-
ous term and a discontinuous term. The latter term introduces
additional degrees of freedom. The interpolation function in
the discontinuous term consists of a product of shape func-
tions and a discontinuous enrichment function. According to
the underlying physics that we have to model, we choose the
well-known Heaviside function as enrichment function, such
that it equals one in the fluid domain and zero in the fictitious
part occupied by the structure

�(x) =
{+1 in �+

0 in �− . (26)

The following equation represents schematically the trial and
test functions for velocity u and v, pressure p and q, as well as
stress σ and γ . As explained above, each quantity is approx-
imated by a continuous term and a discontinuous term based
on the product of usual shape functions N and enrichment
function �. The continuous term is tagged by a superscript
c and the discontinuous term by dc.

(·)h(x, t) =
∑

I

NI (x)(·)c
I (t) +

∑
J

NJ (x)�(x)(·)dc
J (t).

(27)

We apply linear or quadratic equal order shape functions N ,
which are continuous at element boundaries for velocity and
pressure discretization and discontinuous at element bound-
aries for stress discretization.

3.3 Discrete matrix formulation

The discrete matrix formulation is obtained by inserting trial
and test functions into the weak formulation (25).

The matrix K uu denotes the sum of the standard opera-
tors for mass, convection and viscous stresses K uu = Muu +
Nuu + V uu with

Muu : + (v, ρu)�+ , (28)

Nuu : +�tθ (v, ρu · ∇u)�+ , (29)

Vuu : +�tθ
(∇v, τ u)

�+ . (30)

Gradient and divergence matrices are obtained as

K up : −�tθ (∇v, p I)�+ , (31)

Kpu : +�tθ (q,∇ · u)�+ . (32)

Stabilization leads to the matrix Kpp. The following domain
and boundary integrals result form the introduced stress field
σ and the test function γ . Matrices related to domain integrals
are denoted by

Kσu : +�tθ
(
γ , εu)

�+ , (33)

Kσ p : −�tθ

(
γ ,

1

2ν
p I

)

�+
, (34)

Kσσ : −�tθ

(
γ ,

1

2ν
σ

)

�+
. (35)

Matrices corresponding to boundary integrals are written as

Guσ : −�tθ
(
v, n f · σ

)
�+ , (36)

Gσu : −�tθ
(

n f · γ , u
)

�+ , (37)

Gσun : −�t (1 − θ)
(

n f · γ , un
)

�+ , (38)

Gσds : −
(

n f · γ , ds
)

�+ , (39)

Gσds,n : +
(

n f · γ , ds,n
)

�+ . (40)

The right-hand side vectors f rhs and f rhs,σ are related to

f rhs : + (
v, ρun + �t (1 − θ)ρ̇un)

�+

+�tθ(v, h̄)�N , (41)

f rhs,σ : +
(

n f · γ , ds,n
)

�+

−�t (1 − θ)
(

n f · γ , un
)

�+ . (42)

The discrete matrix formulation with a prescribed inter-
face velocity may be written as
⎡
⎣

K uu K up Guσ

K pu K pp 0
Kσu +Gσu Kσ p Kσσ

⎤
⎦

⎡
⎣

u
p
σ

⎤
⎦=

⎡
⎣

f rhs

0
Gσds ds + f rhs,σ

⎤
⎦.

(43)
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To prepare for coupling with the structural formulation,
we extract the displacements ds and include it in the solution
vector. The resulting matrix formulation

⎡
⎢⎢⎣

K uu K up Guσ 0
K pu K pp 0 0

Kσu +Gσu Kσ p Kσσ −Gσds

� � � �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
p
σ

ds

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

f rhs

0
f rhs,σ

�

⎤
⎥⎥⎦.

(44)

contains the entire fluid description including matrices result-
ing from the additional stress field σ , which can be condensed
on the element level as demonstrated in Sect. 5. The missing
structural equation as well as the coupling matrix that results
from imposing fluid stresses onto the structure is derived in
Sect. 3.5. In the meanwhile, we tag the missing vector and
matrices by boxes � in system (44).

3.4 Linearization

In this subsection, we derive the linearized coupled system
for fluid flows interacting with a structural interface based on
embedded Dirichlet conditions. We restrict the derivation to
a very schematic representation of the individual derivatives
and assume θ = 1.0 for simplicity.

The residual Ru(u, p, σ ) of the first equation in the dis-
crete system (44) may be written as

Ru(u, p, σ ) = f rhs − 1

�t
Muu u − Nuu(u)u

− V uu u − K up p − Guσ σ = 0. (45)

The residual of the second equation denoted by Rp(u, p) is

Rp(u, p) = −K pu u − K pp p = 0. (46)

The residual Rσ (u, p, σ , ds) due to the additional stress field
σ results in

Rσ (u, p, σ , ds) = f rhs,σ + Gσd ds − (Kσu + Gσu)u

− Kσ p p − Kσσ σ = 0. (47)

The structural momentum equation is not yet included, but
will be considered in the next subsection.

Each residual is developed in a Taylor series in u, p, σ

and ds up to first order as usual.
The resulting directional derivatives

Lxy = ∂Rx

∂ y

∣∣∣∣
y

(48)

determine the individual subblocks of the system matrix for
the linearized coupled system of equations including the fluid

description and embedded Dirichlet conditions
⎡
⎢⎢⎣

Luu Lup Luσ 0
L pu L pp 0 0
Lσu Lσ p Lσσ Lσd

� � � �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�u
� p
�σ

�ds

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−Ru

−Rp

−Rσ

�

⎤
⎥⎥⎦ . (49)

The right-hand side contains the residuals.

3.5 Structural discretization

Discretization of the weak form (12) is based on standard
(often mixed/hybrid) finite element discretization that is
abundantly discussed in literature and thus will not be detailed
here. We begin with a reformulation of the structural weak
form by including Neumann type boundary conditions aris-
ing from fluid stresses. The Neumann boundary is split into
a usual Neumann boundary �s

N and the fluid–structure inter-

face of Neumann type �s
FSI. The traction force h̄

s
FSI arises

from the fluid stresses, expressed by the additional stress
field σ f at the fluid–structure interface �s

FSI

h̄
s
FSI = −n f · σ f on �s

FSI. (50)

Note that we tag the additional fluid stress field with a super-
script f here to avoid confusion. The resulting weak form
may be written as

(δds, ρs d̈s)�s + (∇δds, σ s)�s − (δds, bs)�s

− (δds, h̄
s
)�s

N
− (δds, h̄

s
FSI)�s

FSI
= 0. (51)

For presentation, a β-Newmark scheme with integration
parameters β and γ is applied as implicit time integration
scheme. Note that this scheme is not stable in the nonlinear
case. The actual implementation is based on generalized-α
time integration shifting evaluation of the discretized equa-
tions of motion to generalized mid-points [3]. Displacement
time derivatives are discretized as follows

d̈s,n+1 = 1

β�t2

(
ds,n+1− ds,n

)
− 1

β�t
ḋs,n − 1 − 2β

2β
d̈s,n

(52)

ḋs,n+1 = ḋs,n + γ�t d̈s,n+1 + (1 − γ )�t d̈s,n . (53)

Defining a mass matrix M and inserting (52) and (53) into
the usual semi-discrete equations of motion yields the fully
discretized expression

1

β�t2 Mds,n+1 + f int (ds,n+1)

= f n+1
ext,N + f FSI(σ

f,n+1)

+ M
(

1

β�t2 ds,n + 1

β�t
ḋs,n + 1 − 2β

2β
d̈s,n

)

︸ ︷︷ ︸
f n+1

dyn

, (54)
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where ds,n+1 now represents the discrete vector of structural
nodal displacements. The force term f FSI(σ

f,n+1) depend-
ing on the fluid stress σ f,n+1 will introduce the missing
linearized coupling matrix Ldσ .

Consistent linearization within a Newton–Raphson frame-
work leads to the following linear system of equations to be
solved in the i th iteration step

Ldσ |n+1
i �σ

f,n+1
i + Ldd |n+1

i �ds,n+1
i

= −Rd(σ f , ds)|n+1
i . (55)

The iteration index i will be dropped further on for brevity.
The effective force residual Rd(σ f , ds) may be written as

Rd(σ f , ds) = 1

β�t2 Mds,n+1 + f int (ds,n+1)

− f n+1
ext,N − f FSI(σ

f,n+1) − f n+1
dyn . (56)

The effective tangent stiffness matrix Ldd and the coupling
matrix Ldσ are derived as

Ldd =
(

1

β�t2 M + K T

)
with K T = ∂ f int

∂ds,n+1 ,

Ldσ = − ∂ f FSI

∂σ f,n+1 . (57)

The final monolithic fluid–structure interaction system can
then be written as
⎡
⎢⎢⎣

Luu Lup Luσ 0
L pu L pp 0 0
Lσu Lσ p Lσσ Lσd

0 0 Ldσ Ldd

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�u
� p
�σ

�ds

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−Ru

−Rp

−Rσ

−Rd

⎤
⎥⎥⎦ . (58)

In the upcoming paragraph, when considering a dual mortar
discretization for structural contact, the fourth line of (58)
will be extended. Discrete contact forces enter the effective
force residual Rd , and the tangent stiffness Ldd is modified
by taking into account contact stiffness terms. It is impor-
tant to point out that this makes the consideration of con-
tact almost fully self-contained, meaning that no algorithmic
changes to the general FSI setup become necessary.

4 Dual mortar contact discretization

4.1 Discretization of contact virtual work

Spatial discretization of contact virtual work (15) and contact
constraints (16) and (17) requires a discretization of slave and
master surface, which is simply obtained based on their trace
space relationship with the underlying structural discretiza-
tion. We consider 3D first-order Lagrangian finite elements
here and shape functions for the contact surface discretization
follow directly from the shape functions on �s,(i)h , i = 1, 2.
Thus, contact surfaces may consist of 3-node triangular and
4-node quadrilateral elements. Accordingly, the following
general form of slave and master displacement interpolation

(and in full analogy for geometry interpolation owing to the
isoparametric concept) holds

ds,(1)h |
�

s,(1)h
c

=
nsl∑

k=1

N (1)
k (ξ (1)) ds,(1)

k , (59)

ds,(2)h |
�

s,(2)h
c

=
nm∑
l=1

N (2)
l (ξ (2)) ds,(2)

l , (60)

with the total number of slave and master nodes, nsl and nm ,
respectively. Nodal displacements are given by ds,(1)

k , ds,(2)
l

and shape functions N (1)
k , N (2)

l are defined with respect to
a suitable finite element parameter space ξ (i) = (ξ (i), η(i)).
Lagrange multiplier interpolation on the slave surface is
based on so-called dual shape functions � j [35] as

λh =
nsl∑
j=1

� j (ξ
(1))z j , (61)

with discrete nodal Lagrange multipliers z j . The polynomial
degree of these dual shape functions is chosen identical to
the polynomial degree of the surface geometry interpolation.
Moreover, they are constructed such that a biorthogonality
condition as introduced in [14,35,36] holds (for brevity, the
discretized slave surface is denoted as �h

c in the following)
∫

�h
c

� j (ξ
(1)) N (1)

k (ξ (1)) dγ = δ jk

∫

�h
c

N (1)
k (ξ (1)) dγ, (62)

where δ jk is the Kronecker delta. As can be demonstrated
easily, this choice is very advantageous for the presented
approach, as it allows for static condensation of the discrete
multipliers z j . It is worth mentioning that an a priori defini-
tion of dual shape functions in the context of finite deforma-
tions is in general not possible, as the biorthogonality relation
(62) is deformation-dependent. For an overview and exem-
plary local calculations of element-specific dual shape func-
tions in 3D contact analysis we refer to [12] and [22]. When
substituting displacement and Lagrange multiplier interpo-
lation into contact virtual work expression (15), the nodal
blocks of two mortar integral matrices D ∈ R

3nsl×3nsl and
M ∈ R

3nsl×3nm emerge as

D[ j, j] = D j j I3 =
∫

�h
c

N (1)
j dγ I3, (63)

M[ j, l] = M jl I3 =
∫

�h
c

� j N (2)
l dγ I3, (64)

with j = 1, . . . , nsl , l = 1, . . . , nm and with the identity
I3 ∈ R

3×3. Biorthogonality relation (62) has allowed for the
beneficial simplification of D to become a diagonal matrix
here. Finally, an algebraic notation of the discretized contact
virtual work
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δ�h
c =

(
δds,(1)

)T
D z −

(
δds,(2)

)T
MT z (65)

is obtained, where all discrete nodal values of Lagrange mul-
tipliers and nodal test function values are assembled into
global vectors z, δds,(1) and δds,(2), respectively. To make
algebraic representations clearer, all finite element nodes in
the two domains �s,(1)h and �s,(2)h are split into three sub-
sets: a subset S containing all nsl potential slave side contact
nodes, a subset M of all nm potential master side contact
nodes and the set of all remaining nodes N . The global nodal
displacement vector can be sorted accordingly, yielding ds =
(ds

N , ds
M, ds

S)T . Then, the vector of discrete contact forces
is

f c = [0 − M D]T z. (66)

As described earlier, the contact forces extend the fully dis-
cretized force residual Rd defined in (55) leading to the fol-
lowing modified residual including contact

Rdc = Rd + f c(ds,n+1). (67)

4.2 Discretization of contact constraints

A discrete version of the weak non-penetration condition is
obtained by inserting the Lagrange multiplier interpolation
(61) into (17)

∫

�
s,(1)
c

δλn g dγ ≈
nsl∑
j=1

(δzn) j

∫

�h
c

� j ĝ dγ ≥ 0. (68)

Here, ĝ is the discrete version of the gap function defined in
(14). Introducing for each slave node j ∈ S a discrete normal
weighted gap g̃ j yields

g̃ j =
∫

�h
c

� j ĝ dγ ≥ 0. (69)

The discrete nodal values z j ∈ R
3, j = 1, . . . , nsl of the

Lagrange multipliers are split into normal and tangential
components (zn) j nc

j and (zξ
τ ) jτ

ξ
j , (zη

τ ) jτ
η
j , respectively.

Here nc
j , τ

ξ
j and τ

η
j are the unit normal and tangent vec-

tors at slave node j . Summarizing the discrete formulation
of the KKT conditions yields

g̃ j ≥ 0, (zn) j ≥ 0, (zn) j g̃ j = 0. (70)

The frictionless sliding conditions are discretized as

(zξ
τ ) j = (zη

τ ) j = 0. (71)

4.3 Evaluation of mortar integrals and weighted gaps

In order to evaluate the discrete mortar integral terms (63),
(64) and discrete weighted gaps (69), one has to set up so-
called contact segments suitable for numerical integration.
As the main focus of this paper is on the integration of the
presented contact formulation into a 3D XFEM FSI frame-
work, the numerical integration of contact expressions is not
discussed here, but only outlined schematically.

A prerequisite for any mortar coupling and interface seg-
mentation method is the definition of a suitable contact nor-
mal nc. While not unique, the continuous field of slave
normals based on nodal averaging first suggested in [39] has
proven to provide the desired robustness for mortar contact
methods [21,22]. For details on the numerical integration
algorithms in both 2D and 3D the interested reader is referred
to the original work by Puso et al. [23–25] and to the authors’
recent work on dual mortar contact [21,22].

4.4 Semi-smooth Newton approach

The discrete contact constraints (70) are still stated as inequal-
ities and thus require a suitable active set strategy as solution
technique. The idea of any active set strategy is to find the
correct subset of all slave nodes which are currently in contact
with the master surface. The set A ⊆ S is called the active set
and definition of the inactive set I = S\A is straightforward.

As demonstrated recently in [21] and [22] for both 2D
and 3D, the idea of an active set strategy can be successfully
merged with the idea of a semi-smooth Newton method in
the context of finite deformations. The main advantage of
this approach is the fact that all sources of nonlinearities, i.e.
finite deformations, nonlinear material behavior and contact
itself, can be treated within one single iterative scheme. There
is no need for a nested approach with the outer loop solving
for the correct active set as e.g. in [12].

We start with a reformulation of the discrete KKT-
conditions (70) within one single complementarity function
C j for each slave node j ∈ S as

C j
(
z j , ds)=(zn) j −max

(
0, (zn) j −cn g̃ j

)=0, cn >0.

(72)

It can be easily shown that (72) is equivalent to the set of
KKT-conditions and that this equivalence holds for arbitrary
positive values of the complementarity parameter cn . While
C j is a continuous function, it is non-smooth and has no
uniquely defined derivative at positions (zn) j − cn g̃ j = 0.
Yet, it is well-known from mathematical literature on con-
strained optimization [13,26] that the max-function is semi-
smooth and therefore a Newton method can still be applied.
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4.5 Consistent linearization

Defining as generalized derivative of the max-function

f (x) = max(a, x) −→ � f (x) =
{

0 if x ≤ a

1 if x > a
, (73)

one can perform a semi-smooth Newton step at the current
iterate i to be solved for the primal-dual pair of discrete vari-
ables (ds

i+1, zi+1), with

�(·) = ∂ (·)
∂ds �ds . (74)

Strictly speaking, full linearization�(·) also comprises direc-
tional derivatives with respect to the discrete Lagrange
multipliers z. However, apart from the active set decision
contained in (72) and linearized in (73), all contact terms are
at most linear in z and thus can be directly expressed in terms
of zi+1. Consistent linearization of the involved quantities,
such as the discrete contact forces f c, the mortar matrices
D and M and the discrete weighted gaps g̃ j has been pre-
sented in great detail in [21] for 2D and in [22] for 3D. Here
we just summarize the resulting semi-smooth Newton algo-
rithm to be solved within one time increment tn → tn+1. As
in Sect. 3.5, simple β-Newmark time integration is assumed
for presentation. As all quantities are evaluated at tn+1, the
superscript n + 1 is omitted.

Algorithm 1

1. Set i = 0 and initialize the solution (ds
0, z0)

2. Initialization: A0 ∪ I0 = S and A0 ∩ I0 = ∅
3. Find the primal-dual pair (�ds

i , zi+1) by solving

�Rdc|i = −Rdc|i , (75)

z j |i+1 = 0 ∀ j ∈ Ii , (76)

�g̃ j |i = −g̃ j |i ∀ j ∈ Ai , (77)

�τ
ξ
j · z j |i + τ

ξ
j · z j |i+1 = 0 ∀ j ∈ Ai , (78)

�τ
η
j · z j |i + τ

η
j · z j |i+1 = 0 ∀ j ∈ Ai . (79)

4. Update ds
i+1 = ds

i + �ds
i

5. Set Ai+1 and Ii+1 to

Ai+1 := {
j ∈ S | (zn) j |i+1 − cn g̃ j |i+1 > 0

}
,

(80)
Ii+1 := {

j ∈ S | (zn) j |i+1 − cn g̃ j |i+1 ≤ 0
}
.

6. If Ai+1 = Ai , Ii+1 = Ii and ‖Rtot‖ ≤ εr , then stop,
else set i := i + 1 and go to step (3).

The variable εr denotes an absolute Newton convergence
tolerance for the L2-norm of the total residual vector Rtot ,
which comprises the force residual Rdc and the residual

of the contact constraints (76)–(79). All types of nonlin-
earities including the search for the correct active set are
resolved within one Newton iteration, with the sets Ii and Ai

being updated after each semi-smooth Newton step. Numer-
ical tests reveal that even for large step sizes and fine con-
tacting meshes the correct active set is found after a few
Newton steps. Once the sets remain constant, quadratic con-
vergence is obtained due to the underlying fully consistent
linearization. An algebraic representation of the linear sys-
tem (75)–(79) to be solved in each semi-smooth Newton step
has been presented in [21,22]. Owing to the dual shape func-
tions introduced for the Lagrange multipliers in Sect. 4.1,
the matrix D becomes diagonal making its inversion trivial.
The discrete multiplier values can be eliminated by conden-
sation and the resulting linear system of equations thus con-
tains only displacement degrees of freedom and is positive
definite. An undesirable increase in global system size due
to the Lagrange multiplier degrees of freedom is avoided.
Here, we restrict the presentation to a schematic algebraic
form

Ldσ |n+1
i �σ

f,n+1
i + L̃dd |n+1

i �ds,n+1
i = −R̃dc|n+1

i , (81)

which is an extension of (55) with a modified force resid-
ual vector R̃dc emanating from the condensation of the dis-
crete Lagrange multipliers and including contact forces (see
Rdc in (67)). Similarly, the modified effective tangent matrix
L̃dd results from including contact stiffness terms, i.e. lin-
earization of Rdc, and again from performing condensation
of the discrete Lagrange multipliers (see [21,22] for details).
Another advantage of the presented contact formulation is
the fact that neither a regularization (usually introduced via
an unphysical and problem-specific penalty parameter) nor
a costly augmentation scheme (usually based on an Uzawa-
type algorithm) is necessary. The dual Lagrange multipliers
allow for the contact constraints to be enforced exactly. Still,
the method is very efficient due to the consistently linearized
semi-smooth Newton approach for the active set search. All
types of nonlinearities are resolved within one single iter-
ative scheme. An extension to frictional sliding is possible
without conceptual changes and has recently been presented
for the 2D case [11].

5 Fluid–structure-(contact) coupling

In the previous two sections, we derived a linearized mono-
lithic system of equations, which contains the fluid formu-
lation, the structural formulation, the contact formulation as
well as the coupling conditions at the fluid–structure interface
in terms of an additional stress field σ
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⎡
⎢⎢⎣

Luu Lup Luσ 0
L pu L pp 0 0
Lσu Lσ p Lσσ Lσd

0 0 Ldσ L̃dd

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�u
� p
�σ

�ds

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−Ru

−Rp

−Rσ

−R̃dc

⎤
⎥⎥⎦ . (82)

The unknown stress field σ can be condensed on the element
level

�σ = L−1
σσ

(−Rσ −Lσu�u − Lσ p� p−Lσd�ds) . (83)

By introducing the notation L�
uσ = Luσ L−1

σσ and L�
dσ =

Ldσ L−1
σσ , the entries of the condensed linear system matrix

result in

Auu = Luu − L�
uσ Lσu, (84)

Aup = Lup − L�
uσ Lσ p, (85)

Auσ = −L�
uσ Lσd , (86)

Apu = L pu, (87)

App = L pp, (88)

Adu = −L�
dσ Lσu, (89)

Adp = −L�
dσ Lσ p, (90)

Add = L̃dd − L�
dσ Lσd . (91)

The condensed coupled system

⎡
⎣

Auu Aup Aud

Apu App 0
Adu Adp Add

⎤
⎦

⎡
⎣

�u
� p
�ds

⎤
⎦ =

⎡
⎣

−Ru + L�
uσ Rσ

−Rp

−R̃dc + L�
dσ Rσ

⎤
⎦

(92)

may be solved by any state-of-the-art fluid–structure cou-
pling scheme. The integrated dual mortar contact formula-
tion does not restrict the application of coupling algorithms
in any way. There exist mainly two classes of coupling algo-
rithms: monolithic and partitioned schemes. In the case of
monolithic schemes, the system may be solved directly e.g.
by a truly monolithic algebraic multigrid solver tailored for
fluid–structure interaction problems [6]. In the latter case,
the monolithic system is partitioned and solved iteratively
by different strong coupling schemes [15].

6 Numerical examples

We present one 2D and one 3D numerical example to illus-
trate the capabilities of our approach. All simulations are
based on a parallel implementation of the algorithms
described above in our research code BACI [33]. Since our
implementation is 3D, the 2D example is modelled as a 3D
problem with just one layer of elements in the third direction.

6.1 Contact of a 2D elastic structure with a stiff wall

In the first example, the capability of our proposed approach
to deal with large structural deformations and contact is dem-
onstrated. A hollow quadrangular structure (E = 2000, Pois-
son ratio ν = 0.4) with rounded corners is positioned in a
2D channel flow, see Fig. 6. A parabolic inflow profile as
Dirichlet boundary is applied at the top and a zero traction
Neumann boundary is assumed at the bottom left and right.
All remaining channel boundaries are stiff walls with con-
tact occurring between the hollow structure and the bottom
wall. 20-node hexahedral elements are used for the fluid mesh
and 8-node hexahedral elements for the structural discretiza-
tion. There is only one element layer in thickness direction
and plane strain conditions are enforced by constraining any
movement orthogonal to the paper-plane.

Flow field and structural deformation including contact
are illustrated in Fig. 6, giving an impression of the highly
dynamic fluid–structure-contact interaction (FSCI) process.
Owing to its high flexibility the structure exhibits large defor-
mations: At first, they are primarily induced by fluid stresses
resulting from the increasing fluid pressure between the hol-
low structure and the bottom wall. At later stages the struc-
tural deformation is dominated by dry contact interaction. In
Fig. 7, the contact forces acting in the contact zone are visu-
alized for the stage of maximum structural deformation. Due
to the very coarse structure mesh a small geometrical asym-
metry is introduced, which explains why the contact forces
are slightly asymmetric as well.

6.2 Contact of a 3D elastic torus with a stiff wall

The second test case illustrates a three-dimensional fluid–
structure-contact interaction example. An elastic torus (E =
4000, Poisson ratio ν = 0.4) turned around the y-axis by an
angle of 65 degrees is placed in a 3D channel as depicted in
Fig. 8. Similar to the settings in the example above, a par-
abolic inflow profile is imposed at the top boundary of the
channel and zero traction Neumann boundaries allow outflow
on the left and right side near the bottom. All other channel
boundaries are no-slip boundaries. Both the fluid and the
structural mesh consist of 8-node hexahedral elements. The
velocity field around the moving torus is depicted in Fig. 8.
Stream lines illustrate the 3D fluid flow through the inner
hole of the torus before contacting with the wall. At first, the
torus is moving towards the wall due to the interaction with
the fluid stresses. The exact interface representation allows
to resolve flow patterns around the torus very close to con-
tact and to simulate dry contact. After some time, the torus
touches the wall and its further movement and deformation
is influenced by the fluid at the fluid–structure interface and
by contact forces at the contact interface.
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Fig. 6 Flexible structure contacting a stiff wall: a finite element mesh, b–e fluid velocity and structural deformation are visualized for several time
steps of the dynamic fluid–structure-contact interaction process

Fig. 7 2D structure contacting a stiff wall—contact forces

7 Conclusions

We propose a three-dimensional finite element approach to
finite deformation contact of structures embedded in fluid
flows. The possibility to simulate finite deformation con-
tact of solids in fluid flows allows to investigate a wide
range of engineering problems, which so far could hardly
be solved. The presented fluid–structure-contact interaction

(FSCI) method combines algorithmically a dual mortar con-
tact formulation with an XFEM FSI method. The FSI
approach as well as its combination with the contact for-
mulation does not introduce any restrictions to the structural
formulation. The resulting linearized coupled system com-
prising the fluid formulation, the structural formulation as
well as the contact formulation may be solved by either parti-
tioned or monolithic state-of-the-art fluid–structure coupling
schemes. An exact interface representation allows for highly
accurate flow computations around the interface of structures
in contact and for the simulation of dry contact.

One possibility to extend the approach is to include wet
contact e.g. based on a lubrication model as an intermedi-
ate layer between dry contact and a full FSI computation.
Current work also considers the integration of the reviewed
macroscopic contact formulation within a mesoscopic FSI
approach [18] for biophysical problems. On the mesoscopic
scale, structures are interacting through intermolecular inter-
action phenomena. Under certain circumstances, intermole-
cular interaction of structures very close to contact can be
extended or approximated by a macroscopic contact formu-
lation.
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Fig. 8 3D torus contacting a stiff wall: a finite element mesh, b stream lines through the inner hole of the torus before contact, c–e fluid velocity
and structural movement are visualized for several time steps of the dynamic fluid–structure-contact interaction process
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