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Abstract An extended multiscale finite element method
is developed for small-deformation elasto-plastic analysis
of periodic truss materials. The base functions constructed
numerically are employed to establish the relationship
between the macroscopic displacement and the microscopic
stress and strain. The unbalanced nodal forces in the micro-
scale of unit cells are treated as the combined effects of mac-
roscopic equivalent forces and microscopic perturbed forces,
in which macroscopic equivalent forces are used to solve the
macroscopic displacement field and microscopic perturbed
forces are used to obtain the stress and strain in the micro-
scale to make sure the correctness of the results obtained by
the downscale computation in the elastic-plastic problems.
Numerical examples are carried out and the results verify the
validity and efficiency of the developed method by compar-
ing it with the conventional finite element method.

Keywords Truss material · Elasto-plastic analysis ·
Extended multiscale finite element method · Base function

1 Introduction

As a result of the rapid developments in manufacturing
techniques recently, there is growing interest in the study of
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lattice truss material, which is composed of periodic unit cells
that can be decomposed in elementary bars (Fig. 1). This kind
of material is widely used in civil engineering [1] and aero-
nautic engineering structures [2,3] due to its excellent per-
formance such as high stiffness-weight, high strength-weight
ratios and easy of construction. These advantages make it as
one of most attractive ultra-light materials. Deshpande et al.
[4] demonstrated that stretching-governed lattice truss mate-
rials are much stiffer and stronger than bending-governed
foamed materials; thus, this material may substitute for metal-
lic foams in lightweight structures.

When the truss material structure involves multiple spa-
tial scales, the material behavior is influenced by the physical
phenomena which take place at each scale and by the inter-
action of the phenomena across scales. In this context, the
direct numerical solutions on the whole structure by mesh-
ing all heterogeneities may be not practicable even using the
advanced supercomputers, owing to the requisite of
tremendous amount of computer memory and CPU time.
An effective way to overcome this difficulty is to develop
multiscale algorithms that can be used to obtain the equiva-
lent material model. Considerable research works have
already been done to predict equivalent elastic property
[6–11] and dynamic model [12,13] of complicated periodic
materials, and have achieved significant results. It is clear that
robust fundamental studies about damage and failure mecha-
nisms are important for designing advanced materials in high
performance applications. However, there are a few restric-
tions when the aforementioned methods are applied to solve
nonlinear problems, since most of the theories developed for
finding effective material properties do not pay much atten-
tion to the accurate evaluation of the microscopic variables
in the framework of nonlinear analysis.

In recent years, a considerable amount of effort has
been made on developing multiscale algorithm for solving
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Fig. 1 Photograph of 3D truss material made from an aluminum
casting alloy [5]

nonlinear problems. Notable among the recent developments
is the asymptotic homogenization theory which was first pro-
posed by Benssousan et al. [14]. In this method, the FEM
is applied to yield the homogenized material parameters as
well as evaluate the actual stress field in a microscale from
the macroscopic responses [15]. Since the method has the
ability to evaluate the microscopic variables within the unit
cells, it has been extended to solve various nonlinear multi-
scale problems: the evaluation of local damage [16,17], small
deformation elastoplastic problems [18–20], etc. Though the
asymptotic homogenization methodologies have been suc-
cessfully used for solving the heterogeneous elasto-plastic
problems, they do have some shortcomings. Besides local
periodicity hypothesis, these methods request that the ratio
between the small-scale length and the large-scale length
is very small. Moreover, for nonlinear history dependent
systems, since the microscopic problems are solved at each
macroscopic (Gauss) point of the FE mesh, the deforma-
tion histories have to be stored and updated at all integra-
tion points, that is to say, the current multiscale method still
require enormous computational efforts in practical applica-
tions when the structures are large [19,21,22].

The multiscale finite element method (MsFEM) takes their
origin from a pioneering work of Babuska and Osborn
[23,24] and is extended to the general heterogeneities by
Hou and Wu [25]. It provides an effective way to capture the
large-scale solutions on a coarse-scale mesh without resolv-
ing all the small-scale features. This is accomplished by
constructing the multiscale base functions that are adaptive
to the local property of the differential operator. The small
scale information is then brought to the large scales through
the coupling of the global stiffness matrix, and the effect
of small-scales on the coarse-scales is correctly captured.
The MsFEM has been widely used for numerically solv-
ing second order elliptic boundary value problems with high
oscillating coefficients since it was proposed. For example:
the method has been generalized and successfully used for

simulation of two-phase flow and transport in highly
heterogeneous porous media [26–29]. Recently, Dostert et al.
[30] investigated the MsFEM for stochastic permeability field
as well as application to uncertainty quantification. More-
over, several similar multiscale methods have been
developed, such as the multiscale finite volume method
(MsFV) [31] and the multiscale finite volume element method
(MsFVEM) [32].

However, less literature has discussed about the appli-
cations of the MsFEM for vector field problems of com-
putational solid mechanics. Reference [33] seems the first
one in which the MsFEM was developed for solving the
coupling problems of consolidation of heterogeneous satu-
rated porous media under external loading conditions. In this
method, two sets of base functions are constructed, respec-
tively, for the coarse-scale model. One set is for the pressure
field of fluid flow and the other is for the displacement field
of solid skeleton. Our recent research [34] has found that
the base function constructed in [33] for solid phase cannot
capture well the small-scale deformation information in the
unit cell due to Poisson’s effect. Thus, the coupled additional
terms of base function for the interpolation of the displace-
ment field are introduced in the extended multiscale finite
element method (EMsFEM) [34] to consider the coupled
effect among different directions in the multi-dimensional
problems. The results in [34] show that the EMsFEM can
be successfully used for solving elastic multiscale problems
of periodic truss material. Meanwhile, the method can exe-
cute the downscaling computation easily and the actual micro
stress and strain within the unit cells can be obtained simul-
taneously in the multiscale computation. Thus the EMsFEM
has great potential for strength analysis of heterogeneous
materials.

The objective of this paper is to extend the EMsFEM
proposed in [34] for elastic problems to small deformation
elasto-plastic problems of periodic truss materials. In the
present method, the unbalanced nodal forces in the micro-
scale of unit cells are treated as the combined effects of mac-
roscopic equivalent forces and microscopic perturbed forces,
in which macroscopic equivalent forces are used to solve the
macroscopic displacement field and microscopic perturbed
forces are used to obtain the stress and strain in the micro-
scale to make sure the correctness of the results obtained
by the downscale computation in the elastic-plastic prob-
lems. Then, the modified Newton–Raphson iterative method
is introduced for solving micro- and macro-structure. The
numerical experiments show that the results obtained by the
EMsFEM agree well with the reference solutions for elas-
tic-plastic analysis of periodic truss materials. Meanwhile,
the CPU time and memory storage can be reduced drasti-
cally.

It should be remarked that, unlike other homogenization
methods, the microscopic problems in our method are solved
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Fig. 2 Illustration of the
EMsFEM: a Truss material
structure with periodic
microstructure; b The truss unit
cell; c The coarse-scale
(macroscopic) meshes of the
model and d the sampling
element
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on macroscopic elements directly rather than at Gauss points
of the elements. Thus, the computational cost is further
reduced and the ratio between the small-scale length and
the large-scale length is not restricted here. Moreover, for
EMsFEM, the construction of base functions and downscal-
ing computations are performed in each macroscopic ele-
ment independently, that is to say, the method developed
here can be extended for the parallel computing in simple
way as well as strength analysis of non-periodic continuum
problems.

This paper is organized as follows: in the next section,
we summarize the formulation of the EMsFEM proposed in
[34], which is used for elastic problems of periodic truss
material. In Sect. 3, the equivalence technique of micro-
scopic nodal forces in multiscale frame is presented. Thus,
the technique can be used for treatment of the microscopic
unbalanced nodal forces in nonlinear computation. In Sect. 4,
some fundamental formulations used in elasto-plastic com-
putation are provided, and then the flow chart of iteration
process is given in the framework of two-scale elasto-plastic
analysis. In Sect. 5, several simple, but illustrative numer-
ical examples are conducted and compared with direct FE
method to examine the validity of the EMsFEM for nonlinear
problems. At the same time, two kinds of boundary condi-
tions which are used for the construction of base functions
are compared. In Sect. 6, the memory storage and computing
time are compared between the EMsFEM and the traditional
FEM to show the efficiency of our method. Finally, some
discussions are presented.

2 EMsFEM for elastic analysis of periodic truss material

In this section, we briefly summarize the EMsFEM for elastic
analysis of periodic truss material with reference to Zhang
et al. [34]. After presenting the derivation process of the
formulas for micro- and macro-scale computation, we also
illustrate downscaling algorithm for computing microscopic

stress and strain information which can be used for elasto-
plastic analysis in the following sections.

Consider a heterogeneous truss material structure occupy-
ing a region�structure depicted in Fig. 2a, which is composed
of periodic truss unit cells as shown in Fig. 2b. The structure
is subjected to a system of external forces Fext, and pre-
scribed displacement fields on the boundary �u . There are
two computational steps need to be performed for the EMs-
FEM (see Fig. 2). One is micro-scale computation in which
the multiscale base functions of the unit cell are constructed
and the equivalent stiffness matrix is derived. The other is
macro-scale computation, in this step, the FEM are handled
on the coarse meshes (shown in Fig. 2c) since the unit cell’s
equivalent stiffness matrix has been obtained. Note that the
sizes of coarse meshes used in EMsFEM are as large as those
of unit cells.

2.1 Micro-scale computation

2.1.1 The construction of base functions of unit cell

In the EMsFEM, the main work is to construct the base func-
tions of unit cells numerically, whose values can capture well
the small-scale heterogeneities of unit cells. The base func-
tions are constructed by solving the equilibrium equation on
each fine-scale mesh within the unit cell with special bound-
ary conditions. Reference [34] has introduced two kinds of
boundary conditions, i.e., the linear boundary condition and
the oscillatory boundary condition, to construct base func-
tions.

Firstly, let’s take the linear boundary condition as an exam-
ple to illustrate the construction process of base functions. For
the vector field problems of computational solid mechanics,
the base functions must be constructed separately for each
coordinate direction. In 2D problems, two kinds of base func-
tions for interpolation of the displacement field of the truss
structures are needed to constructed, in which one is used for
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Fig. 3 The construction of base functions for truss cell

the displacement interpolation in x-direction and the other is
used for y-direction. Firstly, let us consider the construction
of N1x . For the unit cell shown in Fig. 3, the displacements
at all boundary nodes are constraint in y direction. At the
same time, the nodes on boundary 34 and boundary 23 are
constraint in x direction to avid rigid displacement. For the
linear boundary condition, a unit displacement is applied on
node 1 in x-positive direction, and the values vary linearly
along boundaries 12 and 14, just as in the standard bilinear
(linear) base functions. Using the boundary condition men-
tioned above, the internal displacement field of unit cell can
be obtained directly by standard finite element analysis in
fine-scale mesh, and the base functions N1x and N1xy can be
obtained. Here, Nixy is a coupled additional term and means
that the displacement field in y direction within the unit cell
induced by unit displacement of node i in x direction. The
rest of base functions can be constructed in the similar way.

It can been verified that the base functions constructed
above satisfy

⎧
⎪⎪⎨

⎪⎪⎩

4∑

i=1
Nix = 1,

4∑

i=1
Niy = 1

4∑

i=1
Nixy = 0,

4∑

i=1
Niyx = 0

(1)

which ensures the rigid displacement of unit cell and the
compatibility between the neighboring unit cells.

Another more appealing approach is to construct the
oscillatory boundary condition for the construction of base
functions using the oversampling technique. Consider a
larger domain that covers the unit cell as illustrate in Figs. 2d
and 4, in which�1234 is the original element (unit cell) and
�1′2′3′4′ is the sampling element. Firstly, temporary base
functions ψ j ′( j ′ = 1′, 2′, 3′, 4′) are constructed with linear
boundary method presented above. Then the temporary base
functions φ are constructed from the linear combination of

original element

sampling element

1' 2'

3'4'

1 2

34

Fig. 4 Illustration of the oversampling technique

ψ as follows

φi =
4∑

j=1

ci jψ j ′ , (i = 1, 2, 3, 4) (2)

where ci j are the constants determined by the condition φi | j

= δi j , δ is the Kronecker delta.
It is noticed that the temporary base functions φ andψ are

only used to obtain the oscillatory boundary condition, so the
coupled additional terms are not considered in the computa-
tion. The values of φi at unit cell’s boundary can be called as
oscillatory boundary condition from which the actual base
functions N for the unit cell can be constructed. The final
base functions, i.e. Nix , Nixy, Niy and Niyx (i = 1, 2, 3, 4)
obtained by this way also satisfy Eq. 1.

Thus, the displacement fields within the unit cell can be
expressed as

u =
4∑

i=1

Nix u′
i +

4∑

i=1

Niyxv
′
i (3)

v =
4∑

i=1

Niyv
′
i +

4∑

i=1

Nixyu′
i (4)

which can be given in a unified form

u = Nu′
E (5)

where N is the base function matrix of the unit cell, u is the
nodal displacement vector in the micro scale, and u′

E is the
nodal displacement vector of the unit cell in macro scale.
They can be expressed as

u = [
u1 v1 u2 v2 · · · un vn

]T
(6)

N=[
Rx (1)T Ry(1)T Rx (2)T Ry(2)T · · · Rx (n)T Ry(n)T

]T

(7)

u′
E = [ u′

1 v
′
1 u′

2 v
′
2 u′

3 v
′
3 u′

4 v
′
4 ]T (8)
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where

Rx (i) = [N1x (i)N1yx (i)N2x (i)N2yx (i)N3x (i)N3yx (i)

N4x (i)N4yx (i)] (9)

Ry(i) = [N1xy(i)N1y(i)N2xy(i)N2y(i)N3xy(i)N3y(i)

N4xy(i)N4y(i)]
and n is the total number of the micro nodes in the unit cell.

2.1.2 Equivalent stiffness matrix of the truss unit cell

Once the base functions are constructed, the equivalent stiff-
ness matrix of unit cell can be obtained in the following form:

KE =
M∑

i=1

GeiTki
eGei (10)

where M is the total number of micro truss elements in the
unit cell, and ke = E A

l is elastic coefficient of truss ele-
ment, in which E is the Young’s modulus, A is the element
cross-sectional area and l is the length of the element, the
transformation matrix [Gei] is given by

[Gei] = [−cosθi −sinθi cosθi sinθi ]

⎡

⎢
⎢
⎣

Rx (m)
Ry(m)
Rx (n)
Ry(n)

⎤

⎥
⎥
⎦ (11)

where m and n are the nodes of i th micro element in the unit
cell.

Reference [34] has pointed out that the equivalent
stiffness matrix derived by the base functions which are con-
structed with oscillatory boundary condition can not satisfy
rigid-body displacement completely. Thus, the eigenvalues
modified method (EMM) [35] was introduced to modify the
stiffness matrix.

For a more detailed derivation process, the reader is
refered to [34].

2.2 Macro-scale computation

Up to now, we have got the unit cell’s equivalent element stiff-
ness matrix KE . Note that for periodic materials, the matrix
KE only need to be solved one time. Then, the global stiffness
matrix is obtained as follows

K = m
A

i=1
Km

E (12)

where Am
i=1 is a matrix assembled operator, and m is total

number of coarse elements.
Thus, a classical FE analysis is carried out on coarse ele-

ments, and the macroscopic displacement vector is given by

U = Fext/K (13)

2.3 Downscaling computation for microscopic information

When the multiscale procedures are performed for elasto-
plastic analysis, it is necessary to obtain at the same time
the stress and strain response in the micro scale as well as
the macro behavior of the entire structure. For the EMsFEM,
the relation between the micro and macro scales is created
through the base functions which are constructed numeri-
cally and can capture the micro scale heterogeneities within
the unit cell. By virtue of this relation, the downscaling com-
putation could be realized easily and the stress and strain in
micro-scale can be obtained simultaneously in the multiscale
computation.

For the EMsFEM whose base functions are constructed
with linear boundary condition, the internal force of the i th
truss element within the unit cell can be written as

F
e
i = Ei Ai

li
[Gei]i

{
u′

E
}

(14)

While for oscillatory boundary condition, as the equivalent
stiffness matrix has been modified, we assume that the mod-
ified stiffness matrix and the original one have the following
relationship:

K′
E = SKEST (15)

where matrix S is obtained by solving 64 nonlinear equations
iteratively and only need to be solved one time for the mate-
rials with periodic microstructure. In this case, the mapping
relations between micro-scale nodes and macro-scale nodes
(i.e., Eq. 11) of the unit cell have been changed, that is

Gei′ = GeiST (16)

Using Eqs. 14 and 16, we can get the internal force of the i th
truss element within the unit cell as follows

F
e
i = Ei Ai

li

[
Gei′

] {
u′

E
}

(17)

3 Treatment of micro-scale nodal forces within unit cells
for EMsFEM

In the macro-scale computation step discussed in Sect. 2,
the FE analysis is performed on the coarse meshes. Thus,
for the formula (13), all the external forces Fext must be
applied on the macroscopic nodes. However, it is inevitable
that some external forces are acted on the nodes of micro-
scale meshes within unit cells in practice. Specially, for elas-
to-plastic multiscale analysis, it will induce unbalance nodal
forces in micro-scale meshes with the increase of loading
step. In this section, the treatment of these micro-scale nodal
forces in the EMsFEM will be discussed. Note that the mate-
rial properties used in this section are linear elastic.
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nFmicro

n

Unit cell

The structure

Fig. 5 A force applied on the node of microscale meshes of the unit
cell which is contained in the structure

As shown in Fig 5, a force Fmicro,n is applied on the nth
node of micro-scale meshes of the unit cell which is con-
tained in the structure. The problem here is how to substitute
the macroscopic nodal forces (i.e., the forces applied on the
corner node of unit cell) for the micro-scale nodal force,
while the global displacement response of structure and local
micro-scale stress and strain response within the unit cell are
remain unchanged. In our method, the nodal forces in the
micro-scale in unit cells are treated as the combined effects
of macroscopic equivalent forces and microscopic perturbed
forces (see Fig. 6), in which macroscopic equivalent forces
are used to solve the macroscopic displacement field and
microscopic perturbed forces are used to obtain the stress
and strain in the micro-scale. We will demonstrate through
extensive numerical experiments that the treatment method
mentioned here for micro-scale nodal forces is reasonable.

To derive the macroscopic equivalent forces, the princi-
ple of virtual work is used. As shown in Figs. 5 and 6a, the
unit cell is in equilibrium if the microscopic forces virtual
work equals the macroscopic forces virtual work for respec-
tive kinematically admissible displacement field. It can be
expressed as:

δU = Fmicro,nδun = FE,nδu′
E (18)

where Fmicro,n is the force applied on the nth node of
micro-scale meshes, δun is the virtual displacement vector

of micro-scale node n, δu′
E is the virtual displacement vector

of macroscopic nodes of the unit cell, and FE,n is the mac-
roscopic equivalent forces that can be given in matrix form
as follows:

FE,n = [FE1,n FE2,n FE3,n FE4,n] (19)

in which FEi,n = [FEi x,n FEiy,n](i = 1, 2, 3, 4).
Using Eqs. 5, 7 and 9, we get

un =
{

un

vn

}

=
[

Rx (n)
Ry(n)

]
{
u′

E
}

(20)

By using Eqs. 18 and 20, we can obtain the macroscopic
equivalent forces as follows:

FE,n = Fmicro,n ×
[

Rx (n)
Ry(n)

]

(21)

Now, we discuss about the solution for microscopic per-
turbed forces (see Fig. 6b). From reference [34] we know
that the boundary nodes of unit cell are deformed forcibly by
the displacement of corresponding macroscopic nodes, while
the internal nodes of unit cell are balanced automatically. To
get the microscopic perturbed forces, boundary nodes are
all constraint in x and y direction to be consistent with the
constraint conditions shown in Fig. 3. Thus, the microscopic
perturbed forces fperturbed,n can be obtained by the conven-
tional FE analysis in fine-scale meshes under the constraint
conditions mentioned above (see Fig. 6b).

Here, we present a one dimensional example to illustrate
the validity of the equivalence of microscopic nodal forces.
For the sake of simplicity, we assume that the truss structure
contains only one unit cell and is composed of two truss ele-
ments with different cross sections (see Fig. 7). It is obvious
that the nodes A, n and B are micro-scale nodes where the
nodes A and B are also macro-scale nodes. The left endpoint
of truss structure A is fixed in axial direction and a force
Fmicro,n is applied on the micro-scale node n. Elastic modu-
lus Ee is used as the same in all examples in this paper with a
magnitude of 1.0E6. The cross sections of two elements are
1 and 0.5, respectively. The length of two truss elements is
both equal to 5.

Fig. 6 Equivalence of
micro-scale nodal force depicted
in Fig 5: a Macroscopic
equivalent forces; b Constrains
for microscopic perturbed forces

nF 1E nF 2E

nF 3EnF 4E

+
n

nFmicro

(a) (b)
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Fig. 7 A one-dimensional truss
structure

A B

nFmicro,

truss element 1 truss element 2

x

n

k

nFmicro ,

F
F

3

1

+

F
3

1

F
3

2

+
-

Real internal forces' distribution Macroscopic equivalent forces'
              diatribution

Microscopic perturbed forces'
             distribution

- -
be equivalent to

be equivalent to
+

nFmicro,nEBF ,

(a)

(b)

Fig. 8 Illustration of the equivalence of micro-scale nodal force: a the equivalent process and constraint conditions; b the internal forces’ distribution
of micro-elements under each force

It easy to construct the two numerical base functions of
coarse element, they are NAx =[

1 2
3 0

]
and NBx =[

0 1
3 1

]
,

respectively. Then, using Eq. 21, we can obtain the macro-
scopic equivalent forces as follows:

FE A,n = 2

3
Fmicro,n, FEB,n = 1

3
Fmicro,n

Also, the microscopic perturbed forces induced by Fmicro,n

can be obtained when the endpoints A and B are all fixed.
The equivalence process and boundary conditions are shown
in Fig. 8a. Figure 8b shows the internal forces’ distribution of
micro-elements under each force. Note that a positive value
implies tension and a negative value implies compression.
From Fig. 8, we can see that the internal force distribution
of each truss element obtained by the EMsFEM is consistent
with real distribution. Meanwhile, it is easy to verify that
the global displacement response obtained by macroscopic
equivalent forces is equal to real situation.

4 EMsFEM for the elasto-plastic analysis of periodic
truss material

4.1 Fundamental equations for the elasto-plastic multiscale
computation

From the discussion above we can see that the micro-scale
nodal forces can be approximately treated as the combined

effects of macroscopic equivalent forces and microscopic
perturbed forces. In this way, when the material nonlinear
problems are considered in multiscale computation, the
unbalanced nodal force Funbalanced,n in micro-scale can be
treated as Fmicro,n and be dealt with in the same way.

For the truss elements in micro-scale, the strain increment
is decomposed into elastic and plastic parts, dεe and dε p,

such that

dε = dεe + dε p (22)

and have following constitutive relations

dσ = Ee(dε − dε p) (23)

where dσ is the micro stress increment and Ee is the elastic
modulus of the truss element.

Moreover, the micro stress increment can be treated as the
combined effects of two items, that is

dσ = d
∑

+dσ̂ (24)

where d
∑

is the stress increment induced by macroscopic
equivalent forces FE and dσ̂ is the stress increment induced
by microscopic perturbed forces fperturbed. Note that dσ̂ is
set to zero for the first iteration step since there are no micro-
scopic unbalanced forces exists at the moment.

It should be noted that in the EMsFEM the equivalent stiff-
ness matrix of the unit cell is obtained by the base functions
which are constructed numerically in micro-scale and depend
on rigidity distribution of truss elements in the unit cell.
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Fig. 9 Flow chart for
multiscale elasto-plastic
analysis of truss structures Given structure and 

boundary conditions
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In this context, the equivalent stiffness matrix will be changed
along with the evolution of macroscopic deformation in
elasto-plastic analysis. That is to say, for non-linear problems
the base functions of each unit cell should be re-constructed,
respectively, in different iteration steps and also the equiva-
lent stiffness matrix of each unit cell should be re-obtained.
It will cost too much computing efforts and become mean-
ingless, unless the parallel computation is considered. In the
present paper, the modified Newton–Raphson iterative proce-
dures are used for both the micro- and macro-scale problems.
In this way, the base functions and the equivalent stiffness

matrices of the unit cells do not need to be changed. They
are only computed for one time in the elastic stage and can
be used for subsequent computations.

4.2 Flow chart for the elasto-plastic multiscale computation

The flow chart for the elasto-plastic multiscale analysis of
truss structure is shown in Fig. 9. where σy is the initial yield
stress, σy,updated is the updated yield stress, Ee and Et are
the elastic and plastic moduli of truss elements, respectively.
Here, in each step ( j) for macroscopic iteration process, the
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physical quantity of the kth truss element in the i th unit cell is
denoted by •i,( j)

k . The algorithm is converged when macro-
and micro-scale stress states are equilibrated simultaneously.

5 Numerical examples

In this section, several simple, but illustrative numerical
examples are presented to examine the validity of the devel-
oped method. For comparison, the structures are also solved
by the direct finite element method in fine-scale models
(FEM-F), whose results can be regarded as reference solu-
tions. For the last example, both linear boundary condition
and oscillatory boundary condition are considered for the
construction of base functions, and the numerical results
obtained by the two boundary conditions are designated as
EMsFEM-L and EMsFEM-O, respectively. In the follow-
ing computation, we assume that the elastic-plastic behavior
of truss material is described by bilinear isotropic harden-
ing law. Moreover, all the truss elements have the following
material properties: elastic modulus Ee = 1.0E6, plastic
modulus Et = 0.3Ee. All the numerical examples here are
dimensionless.

Example 1 For the first numerical example, we consider the
1D truss structure presented in Sect. 3. As shown in Fig. 10,
the total amount of macroscopic force Fext = 1, 000 is
applied on the node B and is divided into 10 steps. The initial
yield stress σy = 1, 500. Figure 11 shows the macroscopic
responses (i.e., displacement of the right-end of the macro-
structure, Point B) to the increasing macroscopic external
force. As can be seen from the figures, the EMsFEM give
identical results compared to those of the FEM-F. Moreover,
the micro-strains (i.e., the strains of truss elements 1 and 2)

A Btruss element 1 truss element 2

x

extF

Fig. 10 A one-dimensional truss structure
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B tnioP ta tne
mecalpsi

D

EMsFEM

FEM-F

Fig. 11 Macroscopic load-displacement curves at Point B

10000=extF

A

y

x

Fig. 12 Macroscopic FE model

2

2

 3*10

01*3

(a) (b) 

Fig. 13 Two kinds of unit cells: a unit cell 1 (Cross-section areas of
the thinner truss elements are 0.2, while for the thicker ones, they are
1.0); b unit cell 2 (Cross-section areas of the outer elements are 0.5,
while for internal elements, they are 1.0)

obtained by the EMsFEM at final loading step are 0.001 and
0.0032, respectively. It is also the same as reference solutions.

Example 2 Consider a macroscopic FE model shown in
Fig. 12, which is composed of nx × ny = 14 × 8 unit cells,
where nx and ny denote the number of unit cells in the x and
y directions, respectively. The left and right sides of model
are fixed in the two axis directions and a uniformly distrib-
uted load of 10,000 is applied on the top side and also divided
into 10 steps. In this example, two kinds of unit cells are con-
sidered, respectively (see Fig. 13). For the unit cell 1, there
are only two nodes at each boundary and the unit cell is het-
erogeneous. While for the unit cell 2, as the stiffness of truss
elements within the unit cell are all the same, the unit cell is
homogeneous. The initial yield stress of truss elements for
two kinds of structures are set to σy = 1, 800 and σy = 150,
respectively. The base functions here are constructed with
linear boundary condition. Fig. 14 shows the macroscopic
load-displacement curves at Point A. As can be seen from
figure, the EMsFEM yields almost the same results as the
reference values when the unit cell 1 is considered. For the
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Fig. 14 Macroscopic load-displacement curves at Point A

Fig. 15 A complicated heterogeneous unit cell (The cross-sections of
three kinds of truss elements are 0.4, 1 and 0.2, respectively.)

heterogeneous unit cell with two nodes at each boundary, the
boundary conditions do not affect the construction of base
functions. In this case, the heterogeneity at the micro-level
can be captured accurately by the base functions. For the
structure composed of homogeneous unit cells (unit cell 2),
the results obtained by the EMsFEM-L also fit fairly well
with the reference values, the maximum relative error for the
results obtained by the EMsFEM-L is less than 2% compared
to those of the FEM-F. It illustrates that the base functions
constructed with linear boundary condition are applicable to
the homogeneous unit cell.

Example 3 For the macroscopic model shown in Fig. 12, the
complicated heterogeneous unit cells are considered in this
example. The sizes of truss elements within the unit cell are
shown in Fig. 15. The initial yield stress of truss elements is
set to σy = 600 here. Note that both the linear and oscillatory
boundary conditions are considered here. Figure 16 shows
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FEM-F
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Fig. 16 Macroscopic load-displacement curves at Point A (The dotted
arrows denote the loading and unloading direction)

the macroscopic load-displacement curves at Point A. From
the results, we can see that the boundary conditions of the
base functions have significant influence on the accuracy of
the solutions for the heterogeneous materials. By comparing
results between EMsFEM-L and EMsFEM-O, we see a great
improvement in the accuracy of solutions using oscillatory
boundary condition.

It is easy to know that the base functions constructed
with linear boundary condition is established with forcing the
boundary of the unit cell deformed linearly; these artificial
constraints will induce unequilibrium nodal forces on the
boundary and stiffen the structures, especially for strong het-
erogeneous materials. However, this boundary layer effect is
not obvious for homogeneous unit cells. This is why the EMs-
FEM-L can obtain relatively good solutions for the unit cell 2
in the example 2. It can be further verified that if all the truss
elements within the unit cell in Fig. 15 have the same cross-
section area, then the results obtained by the EMsFEM-L will
also agree well with the corresponding reference solutions.
On other hand, since the oscillatory boundary condition can
simulate the boundary deformation of unit cells more reason-
ably, the unequilibrium nodal forces on the boundary of unit
cells can be reduced drastically. Thus, more accurate solu-
tions will be obtained for the heterogeneous materials when
the oscillatory boundary condition is used.

It should be remarked that a good choice of the boundary
conditions can significantly improve the numerical precision
of the multiscale method. In this paper, we just use the over-
sampling technique to construct oscillatory boundary con-
dition. There should be other types of boundary conditions
that can be applied and may get improved accuracy. This
investigation will be further done in our future work.

6 Computer memory and computing time comparison

The main purpose for developing multiscale methods is to
solve some practical problems which are too large to handle
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Fig. 17 Two kinds of
macroscopic FE models:
a macroscopic FE model 1;
b macroscopic FE model 2 1000 1000

(a) (b)

by direct methods even with modern supercomputers. As
mentioned before, for most of existing multiscale methods, a
complete micro RVE (unit cell) problem has to be solved
at each Gauss point on the macro meshes in every itera-
tion step. In this case, the deformation histories have to be
stored and updated at every microscale element within the
RVEs (unit cells) at all integration points for nonlinear
history dependent systems. They still require enormous com-
putational efforts when the structures are large. In our method,
since the multiscale base functions are employed to estab-
lish the relationship between the macro and micro variables,
the micro RVE problem is solved on macro meshes directly
rather than at Gauss points of macro meshes, thus, the com-
putational cost is further reduced. In this section, we make
a rough estimate of the computer memory and CPU time in
the EMsFEM, and compare them with those of the traditional
FEM.

Let’s consider a numerical model with the total number of
nodes K . For FEM applied on the fine-scale model, the mem-
ory needed is O(a · K ), where a is the number of degrees
of freedom on a single node. For the 2-D truss structure con-
sidered in the present paper, a = 2. In the framework of
EMsFEM, we assume that the number of nodes in macro-
scopic FE model and the number of nodes in micro-scale
within each unit cell are N and M, respectively. In this con-
text, if the serial computer is used, the memory needed for
solving the problem on the coarse elements is O(a · N ) +
O(a · M). It can be seen that when the structure is large
(i.e., both the value of N and M are large), the memory
needed is reduced significantly in our method. For the exam-
ple 3, N = 135,M = 65, and K = 5, 553. Then
traditional FEM needs about 300 times more memory than
EMsFEM.

For the material nonlinear problems, the operation count is
s1 · O(a · K ) for the FEM, where s1 is the number of iterative
steps. While for the EMsFEM, since the base functions and
the equivalent stiffness matrix of unit cell of periodic mate-
rial are only constructed for one time in the preprocessing
computations and can be used for subsequent computations,
a large amount of CPU time comes from solving microscopic
perturbed forces and macro-scale FE computation. Thus the
operation count of the EMsFEM is about s2 ·(O(a · N )+ N ′ ·
O(a · M)), where s2 is the number of iterative steps for the
EMsFEM and N ′ is the number of coarse elements which is
approximately equal to N .Note that both of the FEM and the

(a) (b)

Fig. 18 Two kinds of unit cells: a Unit cell 1 (the same as the unit
cell shown in Fig. 13b); b Unit cell 2 which is composed of 2 × 2 unit
cell 1, and the sizes of elements in the unit cell are scaled by 1/2

EMsFEM use the modified Newton–Raphson iterative pro-
cedure for nonlinear analysis, the iterative steps are almost
the same for the two methods. It should be mentioned that it is
quit difficult to compare fairly the computing times between
the EMsFEM and traditional FEM due to many factors (such
as algorithm, hard ware, practical problems, etc), so the func-
tion expression of the operator ‘O’ is hard to define. But we
can roughly estimate that it is the power of degrees of freedom
if the serial computer is used. Thus, it also can be seen that
the computing time is reduced significantly in our method
when the structure is large.

Here, we present a numerical example to show the effi-
ciency of the developed method. As shown in Fig. 17, two
kinds of macroscopic FE models are considered, where the
number of unit cells in the x and y directions are nx × ny =
12 × 3 for model 1 and nx × ny = 16 × 4 for model 2,
respectively. The left side of the structure is fixed in the two
axis directions and a uniformly distributed load is applied
on right side. Meanwhile, two kinds of unit cells are consid-
ered (see Fig. 18), in which the unit cell 2 is composed of
2 × 2 unit cell 1. Table 1 shows the computing time com-
parison between the EMsFEM and the FEM for four differ-
ent cases. It can be seen that the computing times for the
FEM grow rapidly with the increasing of M and N . While
for the EMsFEM, the computing times grow slowly. For the
case 4 (i.e., the macroscopic FE model 2 and the unit cell 2
are adopted), our method only spends 3.8% computing time
than the traditional FEM. In addition, if we solve a large
structure that has nx × ny = 80 × 20 unit cells, and the
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Table 1 computing time
comparison (unit: s) Macroscopic model Unit cell style EMsFEM F E M

Macroscopic FE model 1 Case 1: unit cell 1 0.8 1.0

Case 2: unit cell 2 2.7 23.2

Macroscopic FE model 2 Case 3: unit cell 1 1.6 3.2

Case 4: unit cell 2 4.7 122.6

unit cell 2 is considered. Because the structure is too large,
the direct FEM performed on fine-scale meshes (the pro-
gram codes are written by commercial software Matlab) is
hard to carry out due to large amount of degrees of freedom
(a total of 116,402 degrees of freedom in fine scale).
However, only about 101 s computing time are needed in the
EMsFEM since the number of degrees of freedom is reduced
drastically.

By the way, we would like to emphasize that, for the
EMsFEM, the micro-scale problems are solved indepen
dently on each coarse element; thus the EMsFEM can be eas-
ily extended for parallel computing. This will further reduce
computational cost in solving the micro-scale problems. In
this case, our method has great potential for nonlinear anal-
ysis of large random heterogeneous materials.

7 Conclusions

The algorithm of the EMsFEM for linear problems, which
was proposed in reference [34], is generalized for elasto-
plastic multiscale analysis of periodic truss structure. The
base functions constructed numerically are employed to
establish the relationship between the macroscopic displace-
ment and the microscopic stress and strain. In macroscopic
and microscopic iteration processes, the unbalanced nodal
forces within the unit cells are treated as the combined effects
of macroscopic equivalent forces and microscopic perturbed
forces, in which the macroscopic equivalent forces are used
to solve the macroscopic displacement field and the micro-
scopic perturbed forces are used to obtain the stress and strain
in the micro-scale. By means of this technique, a
multiscale nonlinear analysis procedure is developed. From
our numerical experiments we can see that the structural
stiffness obtained by EMsFEM-L are overestimated for het-
erogeneous materials since the base functions constructed
with linear boundary condition can not effectively reflect
the boundary deformation of unit cells in the real physics
phenomenon. Thus, the EMsFEM-O is introduced to over-
come this problem. Numerical examples show that the results
obtained by the developed method fit fairly well with those
obtained by the direct FE method. Meanwhile, our method
can reduce the CPU time and memory storage drastically for
large structures.

In contrast to other homogeneous methods, the micro-
scopic stress and strain information in the EMsFEM are
obtained on macroscopic elements directly rather than at
Gauss points of the elements. Thus, numerical data are not
needed to be solved and updated at every integration points.
Moreover, since the construction of base functions and micro-
scale problems in the EMsFEM are performed on each coarse
element independently; thus, the method developed here can
be easily extended for the parallel computing. This gives hope
to solving some large scale nonlinear problems of random
heterogeneous materials that are intractable by traditional
numerical methods. It should be noted that the method pro-
posed here can also be used for solving dynamic problems,
where the saving of computational time would be even more
important. Further investigations will be carried out in our
future work.
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