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Abstract In this paper a procedure is proposed to calculate
the interlaminar shear stresses in layered composite plates.
The transverse shear stresses are obtained via the consti-
tutive law and derivatives of some warping functions. For
4-node elements the derivatives of curvatures and strains of
the reference surface with respect to the in-plane coordinates
are determined through a system of four equations. Hence
the equilibrium equations lead to a coupled system of ordi-
nary differential equations, which are solved applying a dis-
placement method. The resulting interlaminar shear stresses
are continuous at the layer boundaries. The quality of the
obtained results is demonstrated within several plate exam-
ples with symmetric and unsymmetric lay-ups. Comparisons
with two other approaches using 9-node elements and a solid
shell formulation together with a three-dimensional material
law show good accuracy and efficiency of the proposed algo-
rithm.

Keywords Layered composite structures · Interlaminar
shear stresses · Warping function · Displacement method

1 Introduction

Plate or shell theories are usually used to describe the overall
deformation behaviour of thin laminated structures. Start-
ing with formulations based on the classical laminate theory
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(CLT), nowadays the first-order shear deformation theory
(FSDT) is the accepted basis to develop elements, see e.g.
[1]. This theory is able to describe also the shear deforma-
tion behaviour, which is essential in the context of compos-
ite structures. It needs only C0- instead of C1-continuity,
being of great interest from a numerical point of view. Often
this approach gives satisfactory results for a wide class of
structural problems, even for moderately thick laminates and
should be the best compromise between prediction ability and
computational costs, see e.g. Rohwer [2].

However, if one is interested in more local problems—e.g.
the question of construction of connections or the description
of the interlaminar stresses—the use of above two-dimen-
sional models is not appropriate. Highly complicated inter-
and intralaminar failure modes (e.g. delamination and ply
failure) may occur in laminated structures which could influ-
ence the overall structural behaviour strongly. An example of
dealing with these problems is the international project COC-
OMAT, described e.g. in Degenhardt et al. [3]. Furthermore,
we mention a general survey on the computation of inter-
laminar stress concentrations, see Mittelstedt and Becker
[4].

In the following we would like to concentrate on the ques-
tion how to calculate interlaminar stresses. Within a finite ele-
ment context this leads directly to the use of brick elements
or so-called solid shell elements for each layer, the intro-
duction of layer-wise formulations, the use of higher order
elements or the enhancement of plate or shell formulations.
Advanced formulations exist, which allow the description of
the bending behaviour of thin structures in an accurate way,
see e.g. [5–7], among many others. Each layer is discret-
ized with several elements (≈5–10) in thickness direction.
The price for this type of modeling is a large number of
unknowns leading to unacceptable computing times. Espe-
cially for non-linear problems with a multiplicity of load
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steps and several iterations in each load step this is not a
feasible approach.

Another approach is given with a layer-wise theory. Here,
the displacement field in each layer is represented separately,
see e.g. Reddy [8]. In an early method of Chaudhuri [9] the
formulation is limited to triangular elements and the cal-
culation of the transverse shear stresses in thick compos-
ite plates. With the development of so-called zig-zag theo-
ries, piecewise polynomial distributions of the membrane
displacements in thickness direction are evolved. This is
achieved through the implementation of additional variables
for each layer, so that the effort corresponds to the use of
brick elements. Carrera [10] uses a mixed variational method
to develop an element formulation that delivers transverse
shear stresses for the laminate. A similar shell formulation
is presented in Brank and Carrera [11]. For an overview of
zig-zag theories for multilayered plates and shells see e.g.
Carrera [12]. Developments of the authors on this topic have
been published e.g. in [13–16]. Again these formulations lead
to an effort in the range of a full 3D-computation, see e.g.
Robbins and Reddy [17]. Thus, the practical application may
be limited to detail investigations.

Another possibility to obtain transverse shear stresses is
the application of higher order laminate theories. For exam-
ple, Reddy [18] accounts for a parabolic distribution of the
transverse shear strains through the thickness of the plate.
Engblom and Ochoa [19] develop an element for a sec-
ond-order composite laminate theory. These theories are
usually named HSDT (Higher-order Shear Deformation
Theory). Many finite elements (mostly linear plate formula-
tions) have been proposed based on HSDT models. However,
these methods need often C1-continuous shape functions,
which are less suitable for modern finite element models.
Among many others we mention the papers of Reddy [20],
Rao and Meyer-Piening [21] and Topdar et al. [22].

Finally, post-processing or similar techniques can be used
in conjunction with 2D finite elements. Thus results of com-
mercial codes could be used as well as an implementation
in a plate or shell element. The latter choice is preferable, if
one is interested in an associated non-linear failure analysis
of the structure. Besides the predictor corrector approach,
e.g. [23], the equilibrium equations have been successfully
exploited, e.g. [24]. In general, this requires higher-order
shape functions to allow for second order derivatives of the
in-plane stresses. Thus typically elements with bi-quadratic
or bi-cubic shape functions are used, e.g. [25]. In order to
ease this deficiency, having in mind the use of low order
finite element formulations, further assumptions have to be
introduced. Here a number of publications exist and we men-
tion only a few of them. Rolfes and Rohwer [26] calculate
the distribution of the transverse shear stresses in linear lay-
ered plates. They solve the equilibrium equations under the
assumption of cylindrical bending. Furthermore the mem-

brane forces are neglected in the constitutive equations.
Auricchio and Sacco [1] present a 4-node finite-element
based on a mixed-enhanced approach. Enhanced incompat-
ible modes are used to improve the in-plane deformation
and bubble functions for the rotational degrees of freedom.
Additionally, functions link the transverse displacement to
the rotations.

As stated above the use of brick elements or solid shell ele-
ments with a sufficient fine discretization in thickness direc-
tion leads to unreasonable large computing times. This is
the motivation for the proposed plate and shell formulation
which is characterized by the following features.

(i) An essential goal is to develop an interface to a
4-node plate or shell element, where the shear forces
are obtained from the constitutive equations. Here, the
formulation is implemented in a 5/6-parameter mixed-
hybrid shell formulation [28].

(ii) The above mentioned assumptions of cylindrical bend-
ing and neglect of membrane forces in the constitutive
equations are not used. For the 4-node element version
(model 1) the derivatives of the membrane strains and
curvatures are determined via a regularized minimum
problem. Furthermore a special solution for symmet-
ric laminates is proposed. Within the 9-node element
version (model 2) the strain derivatives are computed
from the displacement field.

(iii) A displacement method is developed to determine dis-
crete values of two warping functions. The procedure
is computationally very effective, since the sparse stiff-
ness matrix has to be set up and factorized only once
for a laminate with fixed lay-up. The transverse shear
stresses are obtained via the constitutive law and deriv-
atives of the warping function.

(iv) The transverse shear stresses are continuous at the
layer boundaries. For the 4-node element version app-
lied to symmetric laminates the integration of the trans-
verse shear stresses through the thickness yields the
shear forces exactly. The exact fulfilment of stress
boundary conditions at the lower and upper surface
holds also for this model. Within the other element
versions the conditions are approximately fulfilled.

The paper is organized as follows. In Sect. 2 we present
the basic equations of laminated plates. In Sect. 3 the deriv-
atives of membrane strains and curvatures are determined
for 4-node elements and 9-node elements. A coupled system
of ordinary differential equations in terms of two warping
functions is formulated and solved for an individual layer
in Sect. 4. The solution for the total laminate is obtained
applying a displacement method. The computed results are
discussed in Sect. 5 for several plate examples with symmet-
ric and unsymmetric lay-ups.
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2 Basic equations

We consider a laminated plate with n layers. A cartesian
coordinate system is introduced in the reference surface of
the plate, see Fig. 1. Within each layer a normalized coor-
dinate ζ in thickness direction is defined with 0 ≤ ζ ≤ 1,
see Fig. 2. The total thickness of the plate is denoted by
H , whereas top and bottom surface are described with the
z-coordinate h+ and h−. Note, that the reference surface can
be chosen arbitrarily. In most cases the mid-surface of the
plate is used as reference surface leading to h+ = H/2 and
h− = −H/2.

The membrane strains εx and εy , the shear strain εxy and
curvatures of the plate κx , κy and κxy are defined within a
Reissner–Mindlin kinematic

ε =
⎡
⎣

εx

εy

εxy

⎤
⎦ =

⎡
⎣

ux ,x

uy,y

ux ,y +uy,x

⎤
⎦

κ =
⎡
⎣

κx

κy

κxy

⎤
⎦ =

⎡
⎣

βx ,x

βy,y

βx ,y +βy,x

⎤
⎦

,

(1)

where ux , uy are the in-plane displacements of the reference
surface and βx , βy describe the slopes of deformed cross
sections. Commas denote partial derivatives with respect to
x and y. Hence the layer strains follow from the kinematic
assumption

ε̄ = ε + z κ . (2)

z y

x
reference
surface

Fig. 1 Plate with coordinate system
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Fig. 2 Layered composite plate

Furthermore, the transverse shear strains γ̄xz and γ̄yz are
introduced as derivatives of some warping functions ϕx (z)
and ϕy(z)

γ̄xz := ϕx,z(z)
γ̄yz := ϕy,z(z)

(3)

which are assumed to be functions of the thickness coor-
dinate. A typical shape of the warping function ϕx (z) is
depicted for a cross-ply laminate with 5 layers in Fig. 2.

Neglecting body forces the equilibrium equations are writ-
ten for the x- and y-direction

σx,x + τxy,y + τxz,z = 0
σy,y + τxy,x + τyz,z = 0.

(4)

In (4) the normal stresses σx , σy , and the shear stresses τxy

as well as transverse shear stresses τxz and τyz enter.
Constitutive equations assuming transversal isotopic

material behaviour are introduced in the following standard
manner
⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦ =

⎡
⎢⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎥⎦

⎡
⎢⎣

ε̄x

ε̄y

ε̄xy

⎤
⎥⎦

[
τxz

τyz

]
=

[
C44 C45

C54 C55

] [
γ̄xz

γ̄yz

]

σ = C ε̄ τ = Cs γ̄ .

(5)

Due to the varying fiber orientation the material constants
Ci j = C ji differ for each individual layer. To alleviate the
notation the layer index i is omitted. Inserting the constitutive
Eqs. (5) into the equilibrium Eqs. (4) yields
[

τxz,z

τyz,z

]
+

[
bx

by

]
=

[
0
0

] [
bx

by

]
=

[
σx,x + τxy,y

σy,y + τxy,x

]

τ ,z +b = 0 b = B x
(6)

with

B =
[

C1 C3 z C1 z C3

C3 C2 z C3 z C2

]
x =

⎡
⎢⎢⎣

ε,x

ε,y

κ,x

κ,y

⎤
⎥⎥⎦

C1 = [C11, C12, C13] , C2 = [C21, C22, C23] ,

C3 = [C31, C32, C33].

(7)

The derivatives of the membrane strains and curvatures with
respect to x and y are determined in the following section.

3 Derivatives of membrane strains and curvatures

Different procedures for 4-node elements (model 1) with
bi-linear shape functions and for 9-node elements (model 2)
with bi-quadratic shape functions are developed in this sec-
tion.
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3.1 Model 1: 4-node element

3.1.1 Regularized minimum problem

The vector x of strain derivatives is determined via a reg-
ularized minimum problem since second derivatives of the
displacement fields can not be computed from bi-linear shape
functions. For this purpose we setup a system of four equa-
tions. The first two equations describe the stress boundary
conditions at the upper surface of the laminate. They are
obtained by integration of (4) with respect to z and incorpo-
ration of (6):

[
τxz(z = h+)

τyz(z = h+)

]
=

[
τxz(z = h−)

τyz(z = h−)

]
−

h+∫

h−

[
bx

by

]
dz =

[
0
0

]

τ (z = h+) = τ (z = h−) −
h+∫

h−
B dz x = 0.

(8)

At the lower surface the stress boundary condition τ (z =
h−) = 0 is fulfilled by the below presented displacement
method. The third and fourth equation describe the defini-
tion of the shear forces qx and qy

h+∫

h−

[
τxz

τyz

]
dz =

[
qx

qy

]
. (9)

Considering Eqs. (4) and (6) leads to

h+∫

h−

[
τxz

τyz

]
dz =

h+∫

h−

[
τxz + z(σx,x + τxy,y + τxz,z)

τyz + z(σy,y + τxy,x + τyz,z)

]
dz

=
[

z τxz

z τyz

]h+

h−︸ ︷︷ ︸
0

+
h+∫

h−

[
bx

by

]
z dz (10)

thus

h+∫

h−
τ dz =

h+∫

h−
B z dz x = q. (11)

Introducing

A :=
h+∫

h−

⎡
⎣

B

z B

⎤
⎦ dz , q̃ =

[
0
q

]
(12)

Eqs. (9) and (12) can be summarized as

Ax = q̃. (13)

This under-determined system of equations is approximately
solved via a regularized minimum problem

1

2
rT r + α

2
xT x → min (14)

where r = A x − q̃ denotes the residual vector and α > 0 is
a regularization parameter. Minimization yields

(AT A + α 1) x = AT q̃ (15)

where 1 is a twelfth order unit matrix. The regularization is
necessary, since AT A is with 4 non-zero eigenvalues rank
deficient. The parameter α = Z α∗ is normalized by a factor
Z = [H2 ∑n

i=1 0.5 (C44 + C55)hi ]2, which is motivated by
Eqs. (5), (7), (12) and (15). An investigation concerning the
sensitivity of the normalized parameter α∗ on the solution
is given in Sect. 5.5. With a sufficient large α using floating
point arithmetic the system of Eq. (15) is regular and can be
solved for x.

3.1.2 Special solution for symmetric laminates

Symmetric laminates are characterized by decoupling of
membrane and bending behaviour. Hence for transverse load-
ing the in–plane strains vanish identically, thus ε ≡ 0. Acc-
ordingly, the derivatives of ε with respect to x and y also
vanish

ε,x = 0 , ε,y = 0. (16)

A rotation of the coordinate system with angle ϕ is introduced
as follows
[

x̂

ŷ

]
=

[
c s

−s c

] [
x

y

]
s := sin ϕ

c := cos ϕ.

x̂ = T x.

(17)

This leads to the transformation of the curvatures, see e.g.
[27] for membrane strains
⎡
⎣

κ̂x

κ̂y

κ̂xy

⎤
⎦ =

⎡
⎣

c2 s2 sc
s2 c2 −sc

−2sc 2sc c2 − s2

⎤
⎦

⎡
⎣

κx

κy

κxy

⎤
⎦

κ̂ = T̂κ

(18)

and in a straight forward way to the transformations of the
stiffness matrices and shear forces

D̂ = T̂−T D T̂−1 Ĉ = T̂−T C T̂−1 =
⎡
⎢⎣

Ĉ1

Ĉ2

Ĉ3

⎤
⎥⎦ q̂ = T q

(19)
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with D = ∫ h+
h− z2 C dz and q̂ = [q̂x , q̂y]T . The angle ϕ is

determined introducing the condition

κ̂xy = β̂x ,ŷ +β̂y,x̂ = −2 sc (κx − κy) + (c2 − s2) κxy ≡ 0

(20)

which yields

ϕ = 1

2
arctan

(
κxy

κx − κy

)
. (21)

The denominator in Eq. (21) may take the value zero, how-
ever in the numerical computations this can be avoided by a
small pertubation.

Since β̂x and β̂y are independent functions of x̂ and ŷ in
general β̂x ,ŷ �= −β̂y,x̂ holds, thus each term in (20) must
vanish at any point of the plate

β̂x ,ŷ ≡ 0
β̂y,x̂ ≡ 0.

(22)

In this case also the derivatives of κ̂xy in (20) and β̂x ,ŷ and

β̂y,x̂ in (22) with respect to the coordinates x̂ and ŷ vanish

κ̂xy,x̂ = 0
κ̂xy,ŷ = 0
κ̂x ,ŷ = β̂x ,ŷ x̂ = 0
κ̂y,x̂ = β̂y,x̂ ŷ = 0.

(23)

Considering (16) and (23) Eq. (13) can now be reduced to a
coupled system of two equations
[

D̂11 D̂23

D̂13 D̂22

] [
κ̂x,x̂

κ̂y,ŷ

]
=

[
q̂x

q̂y

]
(24)

and solved for the derivatives of the curvatures, and thus

x̂ = [0, 0, 0, 0, 0, 0, κ̂x,x̂ , 0, 0, 0, κ̂y,ŷ, 0]T . (25)

With (25) we are able to compute

b = T b̂ b̂ = B̂ x̂ B̂ =
[

Ĉ1 Ĉ3 z Ĉ1 z Ĉ3

Ĉ3 Ĉ2 z Ĉ3 z Ĉ2

]
(26)

Once b is obtained one can proceed in the section on the
calculation of the transverse shear stresses. It is important
to note that for the exception case β̂x ,ŷ = −β̂y,x̂ at singular
points the model can not be applied.

3.2 Model 2: 9-node element

In this case all strain derivatives can be evaluated with second
derivatives of the displacement field. Applying the isopara-
metric concept the first derivatives of the bi-quadratic shape
functions NI (ξ, η) for 9-node elements I = 1...9 yields
[

x,ξ y,ξ
x,η y,η

] [
NI ,x

NI ,y

]
=

[
NI ,ξ
NI ,η

]
(27)

with the Jacobi matrix
[

x,ξ y,ξ
x,η y,η

]
=

[
J11 J12

J21 J22

]
=

9∑
I=1

[
NI ,ξ xI NI ,ξ yI

NI ,η xI NI ,η yI

]
. (28)

Hence the second derivatives are given with the solution of
the following system of equation and can be derived from
(27) using (28) in a straight forward way applying product
rule and chain rule of differentiation⎡
⎣

J11 J11 J12 J12 2J11 J12

J21 J21 J22 J22 2J21 J22

J11 J21 J12 J22 J11 J22 + J12 J21

⎤
⎦

⎡
⎣

NI ,xx

NI ,yy

NI ,xy

⎤
⎦

=
⎡
⎣

NI ,ξξ −J11,ξ NI ,x −J12,ξ NI ,y

NI ,ηη −J21,η NI ,x −J22,η NI ,y

NI ,ξη −J11,η NI ,x −J22,ξ NI ,y

⎤
⎦ . (29)

The derivatives of Jαβ with respect to ξ and η can be directly
computed from (28).

4 Calculation of the transverse shear stresses

With the membrane strain derivatives and curvature deriv-
atives at hand one can proceed with the calculation of the
warping functions ϕx , ϕy . This leads with Eqs. (3)–(6) to a
coupled system of linear inhomogeneous ordinary differen-
tial equations
[

C44 C45

C54 C55

] ⎡
⎣

ϕx ,zz

ϕy,zz

⎤
⎦ = −

⎡
⎣

bx

by

⎤
⎦ (30)

In the following we specify the terms for a specific layer i ,
see Fig. 2. To alleviate the notation the index i is omitted in
all terms. With 0 ≤ ζ ≤ 1 we parameterize the thickness
coordinate z = z1 + ζh, where z1 denotes the coordinate
of the bottom of the layer and h the thickness of the layer,
respectively. Hence the right hand side in (30) is reformulated
in terms of ζ

[
bx

by

]
=

[
b0

x

b0
y

]
+ ζ

[
b1

x

b1
y

]

b = (B0 + ζ B1) x

(31)

with

B0 =
[

C1 C3 z1 C1 z1 C3

C3 C2 z1 C3 z1 C2

]
B1 =

[
0 0 h C1 h C3

0 0 h C3 h C2

]
.

(32)

The solution of the system of differential Eqs. (30) con-
sists of a homogeneous and a particular solution with

ϕx =ϕh
x + ϕ

p
x ϕh

x =cx1 + cx2ζ ϕ
p
x =cx3ζ

2 + cx4ζ
3

ϕy =ϕh
y + ϕ

p
y ϕh

y =cy1 + cy2ζ ϕ
p
y =cy3ζ

2 + cy4ζ
3.

(33)
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The coefficients cx3, cx4, cy3 and cy4 are determined by
inserting the particular solution into the system (30)

[
C44 C45

C54 C55

] [
cx3

cy3

]
= −

[
b0

x

b0
y

]
h2

2

[
C44 C45

C54 C55

] [
cx4

cy4

]
= −

[
b1

x

b1
y

]
h3

6

(34)

which yields with D = C44C55 − C45C54 the constants

cx3 = −(b0
x C55 − b0

yC45)
h2

2D

cy3 = −(b0
yC44 − b0

x C54)
h2

2D

cx4 = −(b1
x C55 − b1

yC45)
h3

6D

cy4 = −(b1
yC44 − b1

x C54)
h3

6D
.

(35)

The coefficients cx1, cx2, cy1 and cy2 of the homogeneous
solution are expressed with the discrete values of ϕx and ϕy

at the layer boundary

ϕx1 = ϕx (0)

ϕx2 = ϕx (1)

ϕy1 = ϕy(0)

ϕy2 = ϕy(1)

→
cx1 = ϕx1

cx2 = ϕx2 − ϕx1 − cx3 − cx4

cy1 = ϕy1

cy2 = ϕy2 − ϕy1 − cy3 − cy4

(36)

Hence the quadratic shape of the shear stresses follows
with (3) and (5) as derivative of the warping functions

τxz = C44 ϕx ,z +C45 ϕy,z

= C44

h
(cx2 + 2cx3ζ + 3cx4ζ

2)

+C45

h
(cy2 + 2cy3ζ + 3cy4ζ

2)

τyz = C45 ϕx ,z +C55 ϕy,z

= C45

h
(cx2 + 2cx3ζ + 3cx4ζ

2)

+C55

h
(cy2 + 2cy3ζ + 3cy4ζ

2)

(37)

Evaluation of (37) at the layer boundaries considering the
definitions according to Fig. 3 yields

2

1

top
bottom

layer

n

1
i

n-1

i

Fig. 3 Definition of shear stresses at layer boundaries

τx1 = −τxz(0) = −C44

h
cx2 − C45

h
cy2

= C44

h
(ϕx1 − ϕx2 + cx3 + cx4)

+C45

h
(ϕy1 − ϕy2 + cy3 + cy4)

τx2 = τxz(1) = C44

h
(cx2 + 2cx3 + 3cx4)

+C45

h
(cy2 + 2cy3 + 3cy4)

= C44

h
(ϕx2 − ϕx1 + cx3 + 2cx4)

+C45

h
(ϕy2 − ϕy1 + cy3 + 2cy4)

τy1 = −τyz(0) = −C54

h
cx2 − C55

h
cy2

= C54

h
(ϕx1 − ϕx2 + cx3 + cx4)

+C55

h
(ϕy1 − ϕy2 + cy3 + cy4)

τy2 = τyz(1) = C54

h
(cx2 + 2cx3 + 3cx4)

+C55

h
(cy2 + 2cy3 + 3cy4)

= C54

h
(ϕx2 − ϕx1 + cx3 + 2cx4)

+C55

h
(ϕy2 − ϕy1 + cy3 + cy4)

(38)

Thus a system of equations can be established for each
layer, where τ i contains the transverse shear stresses at top
and bottom of the layer, ki is an element stiffness matrix, vi

contains the unknown values of the warping functions at top
and bottom of each layer and the vector fi is written in terms
of the constants defined in Eq. (31).
⎡
⎢⎢⎣

τx1

τy1

τx2

τy2

⎤
⎥⎥⎦ = 1

h

⎡
⎢⎢⎣

C44 C45 −C44 −C45

C54 C55 −C54 −C55

−C44 −C45 C44 C45

−C54 −C55 C54 C55

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ϕx1

ϕy1

ϕx2

ϕy2

⎤
⎥⎥⎦

− 6

h

⎡
⎢⎢⎢⎢⎢⎣

3 b0
x + b1

x

3 b0
y + b1

y

3 b0
x + 2b1

x

3 b0
y + 2b1

y

⎤
⎥⎥⎥⎥⎥⎦

τ i = ki vi − fi .

(39)
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Alternatively the vector fi can also be written as

fi = − 1

h

⎡
⎢⎢⎣

−C44(cx3 + cx4) −C45(cy3 + cy4)

−C54(cx3 + cx4) −C55(cy3 + cy4)

−C44(cx3 + 2 cx4) −C45(cy3 + 2cy4)

−C54(cx3 + 2 cx4) −C55(cy3 + 2cy4)

⎤
⎥⎥⎦ . (40)

The continuity of the shear stresses at all layer boundaries can
be written as

∑n
i=1 Ti = 0, where Ti contains the transverse

shear stresses at all layer boundaries, thus

n∑
i=1

Ti =
n∑

i=1

aT
i τ i =

n∑
i=1

aT
i ki ai V −

n∑
i=1

aT
i fi = 0 (41)

which yields the linear system of equations

KV = F (42)

Here, K = ∑n
i=1 aT

i ki ai is the assembled stiffness matrix
and F = ∑n

i=1 aT
i fi the assembled load vector, respectively.

The matrix ai denotes the assembly matrix, thus vi = ai V
holds. The sparse stiffness matrix K has to be set up and
factorized only once for a laminate with fixed lay-up. Thus,
the solution of (42) can be effectively computed applying
only a back substitution, which then yields V with the dis-
crete warping ordinates at the nodes. To prevent rigid body
motions boundary conditions have to be imposed. We choose
ϕx (z = h+) = 0 and ϕy(z = h+) = 0. A different choice of
boundary conditions leads to a solution for ϕx and ϕy which
differs by constants, however these constants do not affect
the shear stresses.

Remark Within an alternative procedure Eq. (6) could be
integrated for each layer with respect to the thickness coor-
dinate z, considering that B is a linear function of ζ . This
requires as boundary condition knowledge of the shear str-
esses of the adjacent lower layer.

On the other hand once V is known, exploitation of Eq. (39)
allows calculation of the shear stresses of an individual layer
without knowledge of the values of the adjacent layer.

5 Examples

The developed model 1 is implemented in a 5/6-parameter
4-node mixed shell element, see [28], within an extended ver-
sion of the general finite element program FEAP [29] with
embedded fast direct solver PARDISO for sparse systems
[30]. The element formulation allows the calculation of the
transverse shear stresses, once the stress resultants have been
computed. We perform the stress evaluation at the element
center. The material constants for transversal isotropy are
chosen for all examples as:

E1 = 125000 N/mm2 G12 = 4800 N/mm2

E2 = 7400 N/mm2 G23 = 2700 N/mm2

ν12 = 0.34 ,

| xz| [N/mm2]

z 
[m

m
]

0 5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4

Model 1 21x21

Model 2 21x21

Model 1 63x63

Model 2 63x63

SOLID SHELL 14x14x24

Fig. 4 Shear stress τxz(x = 23.214, y = 1.786, z) for cross-ply
lay-up 0/90/0

where the index 1 refers to the preferred direction of the
material. In example 1, 2 and 4 model 1 for symmetric lam-
inates according to Sect. 3.1.2 is applied. In example 3 the
normalized regularization parameter α∗ has been chosen as
α∗ = 10−10, see also section 5.5. For comparison we present
also results obtained with a 9-node shell element (model 2)
and results using a solid shell element with 8 nodes [6].

5.1 Example 1

With the first example the transverse shear stresses of a square
plate (lx = ly = 50 mm) with thickness h = 1 mm which is
simply supported and subjected to a constant load of
1 N/mm2 are evaluated.

The calculations are performed for a three layer structure
with a cross ply lay-up of [0/90/0]. One quarter of the plate is
analyzed with regular meshes of 21 × 21, 63 × 63 elements
of 4-node (model 1) and 9-node shell elements (model 2)
taking into account symmetry conditions. Soft support for
the rotational degrees of freedom are chosen as boundary
conditions. The transverse shear stresses are evaluated at the
center of elements at (x, y, z) = (23.214, 1.786, z)mm for
τxz and (x, y, z) = (1.786, 23.214, z)mm for τyz .

For the 8-node solid shell element, we use a discretization
of 14×14 elements and 8 elements in thickness direction of
each layer. This relative fine discretization in thickness direc-
tion is necessary to get proper results. The results for model
1 and model 2 as well as the solid shell element are shown
in Figs. 4 and 5. Note that the shear stresses are continuous
at the layer boundaries. At the bottom surface and the top
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| yz| [N/mm2]z 
[m

m
]
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Model 2 21x21

Model 1 63x63

Model 2 63x63

SOLID SHELL14x14x24

Fig. 5 Shear stress τyz(x = 1.786, y = 23.214, z) for cross-ply
lay-up 0/90/0

| xz| [N/mm2]z 
[m

m
]
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-0.4

-0.2

0

0.2

0.4

Model 1 Distorted Mesh

Model 1 Regular Mesh

Fig. 6 Shear stress τxz(x = 24.7, y = 0.3, z) for lay-up 0/90/0 in a
regular and a distorted mesh

surface the stress boundary conditions are exactly fulfilled
for model 1. There is good agreement between the different
models.

The influence of a distorted mesh on the results has also
been investigated. We compare results of a distorted mesh
(1,594 elements, 1,675 nodes—produced with a meshing
scheme based on an advancing front technique) with a regu-
lar mesh (1,600 elements, 1,681 nodes). Figure 6 depicts the
distribution in thickness direction for the transverse shear
stresses τxz at (x, y, z) = (24.7, 0.3, z)mm and Fig. 7 for
τyz at (x, y, z) = (0.3, 24.7, z)mm. As expected the results
are influenced by the distorsion, but not significantly.

| yz| [N/mm2]

z 
[m

m
]

0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

Model 1 Distorted Mesh

Model 1 Regular Mesh

Fig. 7 Shear stress τyz(x = 0.3, y = 24.7, z) for lay-up 0/90/0 in a
regular and a distorted mesh

20
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-22.9
-33.6
-44. 
-55

Fig. 8 Stress resultant qx (x, y) in N/mm for lay-up 0/90/0 in a regular
mesh

The effect of the mesh distorsion on the distribution of the
stress resultant qx is plotted in Figs. 8, 9, whereas Figs. 10,
11 present the influence on the transverse shear stress τxz at
z = 0. Only small differences occur.

5.2 Example 2

With the second example we present calculations for the same
plate (geometry, boundary conditions and loading) with three
layers but now with an angle play lay-up of [45/−45/45].
Thus, no longer symmetry conditions can be used.
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20
9.3

-1.4
-12.1
-22.9
-33.6
-44.3
-55

Fig. 9 Stress resultant qx (x, y) in N/mm for lay-up 0/90/0 for a
distorted mesh

30
14.3

-1.4
-17.1
-32.9
-48.6
-64.3
-80

Fig. 10 Shear stress τxz(x, y, z = 0) in N/mm2 for lay-up 0/90/0 in
a regular mesh

The transverse shear stress τxz is evaluated at (x, y, z) =
(21.429, 0, z)mm and τyz at (x, y, z) = (0, 21.429, z)mm.
The associated thickness distributions are shown in Figs. 12
and 13. For models 1 and 2 two meshes with 21 × 21 and
63×63 elements are used. For comparison we present results
computed with solid shell elements [6]. Here a mesh with
42×42 elements and 7 elements for each layer is used. Again
there is good agreement between the different models.

A different shape of the transverse shear stresses is obt-
ained at the coordinates (x, y, z) = (10.937, 14.062, z)mm.
Figure 14 and 15 show the results for τxz and τyz for model
1 and model 2 based on a discretization with 48 × 48 ele-
ments as well as for the solid shell element with a mesh of 32
× 32 × 24 elements. In continuation to the previous results

30
14.3

-1.4
-17.1
-32.9
-48.6
-64.3
-80

Fig. 11 Shear stress τxz(x, y, z = 0) in N/mm2 for lay-up 0/90/0) in
a distorted mesh

| xz| [N/mm2]z 
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Model 1 63x63

Model 2 63x63

SOLID SHELL 42x42x21

Fig. 12 Shear stress τxz(x = 21.429, y = 0, z) for an angle ply lay-up
45/−45/45

good agreement between the presented different strategies is
observed.

The different curvature of τxz and τyz in the central layer
follows from fact that the value of σx,x + τxy,y changes the
sign in the central layer, whereas the value of σy,y + τxy,x

possesses the same sign in all three layers.

5.3 Example 3

The results for an unsymmetric lay-up are shown in Figs. 16
and 17. Again we consider the same plate (geometry, bound-
ary and loading conditions), but now with two layers and a
lay-up of [0/90]. Models 1 and 2 are applied with meshes
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Fig. 13 Shear stress τyz(x = 0, y = 21.429, z) for an angle ply lay-up
45/−45/45
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Fig. 14 Shear stress τxz(x = 10.937, y = 14.062, z) for lay-up 45/
−45/45

using 21 × 21 and 63 × 63 elements. The mesh of solid
shell elements consists of 28 × 28 elements in-plane and 8
elements for each layer. The transverse shear stresses τxz

are evaluated at (x, y, z) = (21.429, 0, z)mm and τyz at
(x, y, z) = 0, 21.429, z)mm. The diagrams show that the
results of the different models are in good agreement.

5.4 Example 4

With the last example with length-to-thickness ratio of
lx/h = ly/h = 10 we consider a moderately thick plate.
We choose lx = ly = 10 mm and thickness h = 1 mm and a

| yz| [N/mm2]z 
[m

m
]
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0.4

Model 1 48x48

Model 2 48x48
SOLID SHELL 32x32x24

Fig. 15 Shear stress τyz(x = 10.937, y = 14.062, z) for lay-up
45/−45/45
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Fig. 16 Shear stress τxz(x = 21.429, y = 0, z) for unsymmetric
lay-up 0/90

layer sequence [0/90/0]. The plate is loaded by a sinusoidal
load with a maximum value of q = 1 N/mm2 at the plate
center. The boundaries are simply supported (hard support)
along all edges, more precisely:

x = ±lx/2 : uz = θx = 0
y = ±ly/2 : uz = θy = 0 ,

where θx , θy denote the rotations about the x- axis and y- axis,
respectively. Here, the origin of the coordinate system lies at
the center of the plate. Again symmetry of the plate is consid-
ered when discretizing the structure. The mesh densities are
chosen as in example 1. Shear stresses τxz are evaluated at
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Fig. 17 Shear stress τyz(x = 0, y = 21.429, z) for an unsymmetric
lay-up 0/90
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Fig. 18 Shear stress τxz(x = 4.643, y = 0.357, z) for cross-ply
lay-up 0/90/0

(x, y, z) = (4.643 mm, 0.357 mm, z) and τyz at (x, y, z) =
(0.357 mm, 4.643 mm, z). Figures 18 and 19 show that there
is good agreement between the different models.

5.5 Sensitivity on the regularization parameter

Figure 20 shows the dependency of some selected shear
stresses on the normalized regularization parameter α∗. For

| yz| [N/mm2]

z 
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m
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Model 2 21x21

Model 1 63x63
Model 2 63x63
SOLID SHELL 14x14x24

Fig. 19 Shear stress τyz(x = 0.357, y = 4.643, z) for cross-ply
lay-up 0/90/0
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Fig. 20 Sensitivity on the regularization parameter

the horizontal axis a logarithmic scale is chosen. The below
defined shear stresses τ of examples 1–4 are computed at the
specified coordinates x, y, z according to Table 1.

In the range of 10−14 ≤ α∗ ≤ 10−5 the results are prac-
tically constant. Based on this investigation we choose an
average value α∗ = 10−10 for the computations.

6 Conclusions

The present paper deals with the calculation of transverse
shear stresses in thin composite plate structures. For typi-
cally used 4-node elements a formulation has been intro-
duced, which allows the evaluation of strain derivatives. The
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Table 1 Definition of some
selected shear stresses Example τ x y z

1 |τyz | 1.786 23.214 0

2 |τxz | 21.429 0 0

3 |τxz | 21.429 0 −0.2

4 10 · |τyz | 0.357 4.643 0

procedure is computationally effective since the required
stiffness matrix has to be set up and factorized only once for a
laminate with fixed lay-up. Several plate examples with sym-
metric and unsymmetric lay-ups are considered. The agree-
ment with solutions obtained with 9-node elements and with
solutions obtained with 8-node solid shell elements is good.
The computing time using the presented model is signifi-
cantly less in comparison to three-dimensional finite element
computations. The proposed models can not be applied to
thick plates, since the underlying assumptions are not valid.
Finally it is important to mention that also the interlaminar
normal stresses are significant in the context of composite
failure analysis. The effective computation of these stresses
in layered plates has to be addressed in further research.
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