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Abstract A two-scale thermo-mechanical model for porous
solids is derived and is implemented into a multi-scale multi-
physics analysis method. The model is derived based on
the mathematical homogenization method and can account
for the scale effect of unit cells, which is our particular
interest in this paper, on macroscopic thermal behavior and,
by extension, on macroscopic deformation due to thermal
expansion/contraction. The scale effect is thought to be the
result of microscopic heat transfer, the amount of which
depends on the micro-scale pore size of porous solids. We
first formulate a two-scale model by applying the method of
asymptotic expansions for homogenization and, by using a
simple numerical model, verify the validity and relevancy of
the proposed two-scale model by comparing it with a corre-
sponding single-scale direct analysis with detailed numerical
models.

Keywords Porous solids · Thermo-mechanics · Scale
effect · Homogenization method · Micro-scale heat transfer

1 Introduction

Many types of materials, including ceramics, concrete, asp-
halt, soils and rocks, are categorized into porous solids with
pores either artificially made for a specific purpose or nat-
urally formed by a physical process. Such materials tend to
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have very small pores, which may be open and connected,
or closed, and are often subjected to thermal or chemical
attack at the internal boundaries formed by pores as well as
the external boundaries. Because the strength, stiffness and
durability of porous solids rely on their mechanical character-
istics under certain thermal and chemical conditions, which
can be determined by transport phenomena [1], the thermo-
mechanical or chemo-mechanical coupling problems are of
particular importance. Inevitably, our attention is focussed on
the so-called scale effect of the pore size on the characteristics
of heat conduction or transfer, mass diffusion and deforma-
tion of porous solids possibly accompanied with fluid flow
in the pores, as pointed out in the literature [2–4].

Since the direct numerical modeling of an assembly of
small pores as a medium for numerical analyses requires
considerable computational costs, the introduction of equiv-
alent media with average or effective thermal and poroelas-
tic properties has been common practice. In this context,
the approaches based on the mathematical homogenization
method [5,6] have attracted attention affinity to numerical
methods such as finite element methods (FEM); see [7,8]
for relatively early developments to demonstrate the promise
and potential of such approaches.

Applications of computational homogenization approa-
ches to thermal or poroelastic problems are too numerous to
mention [9–14]. Some of them deal with thermo-mechan-
ical coupling phenomena [15,16]. Although the theoretical
and computational aspects of the homogenization approaches
seem to be mature, very few serious attempts have been made
to realize the aforementioned scale effect on the heat conduc-
tion or transfer characteristics of porous solids. In fact, no
attention has been paid to the incorporation of the effect with
overall deformation behavior. This is partially because for-
mulation in consideration of the scale effect for heat conduc-
tion problems is somewhat special [17], with the help of the
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method of asymptotic expansions [6], and is not mentioned
even in the monograph for the homogenization of porous
solids [18].

In this paper, we derive a two-scale thermo-mechanical
model for porous solids that can account for the scale effect
of unit cells by applying the mathematical homogenization
method, and develop a multi-scale multi-physics analysis
method for simulating the thermo-mechanical coupled
behavior characterized by the proposed model. Since heat is
supposed to be transferred from the micro-scale pores in the
model, the macroscopic conduction characteristics of porous
media are affected by the pore size and, by extension, such a
scale effect also appears on the macroscopic deformation due
to thermal expansion/contraction. The formulation is inserted
in the Japanese monograph by Terada and Kikuchi [17], but
has not yet been reported in journal articles.

After the two-scale model is formulated with the method
of asymptotic expansions, its validity and relevancy is ver-
ified by comparing it with the corresponding single-scale
direct analysis with detailed unit cell models. For this numer-
ical verification, we employ a simple but intentioned porous
medium model with open and connected pores that are filled
with a fluid, since the heat is supposed to be conducted in the
filling fluid, which does not flow in this study.

2 Preliminaries to the asymptotic homogenization
for thermo-mechanical problem

2.1 Assumptions

We consider a coupled problem of quasi-static deformation
with thermal expansion/contraction and transient heat
conduction in porous solids. The pores are assumed to be
infinitesimally small, and only the sources of micro-scale
heterogeneity that governs the overall thermo-mechanical
behavior of the media. The pores are also assumed to be peri-
odically arranged so that the periodic microstructure, i.e., the
unit cell, with one or two pores can be identified with a rep-
resentative volume element (RVE) within the framework of
the mathematical homogenization [6,17].

We suppose that the pores may be filled with a fluid that
does not flow. It is then assumed that the heat is transferred
at the pore surfaces from the fluid phase to the solid phase.
This means that the macroscopic heat conduction is charac-
terized not only by the micro-scale heat conduction but also
the effect of the micro-scale heat transfer. Note here that the
fluid is regarded just as a medium that delivers and provides
the heat to the solid phase.

It is assumed that the solid phase is a linearly elastic solid
and the deformation is infinitesimally small. This assumption
may justify the condition in which material properties for heat
conduction and transfer in the solid phase are not affected by

deformation. That is, the coupling behavior is assumed to be
one way form the temperature field of the fluid phase to the
deformation of the solid phase due to temperature change,
i.e., thermal expansion/contraction.

2.2 Governing equations of the original problems

Let us consider the domain of a porous solid denoted by
�ε ⊂ Rndim with a smooth boundary ∂�ε . Here, ε indicates
the representative size of the unit cell, and ndim (=1, 2, or 3)
is a spatial dimension of the problem, R is the space of real
numbers. We assume that the pores, or voids, in the medium
are open and connected. Figures 1 and 2, respectively, sche-
matize separate homogenization procedures for an unsteady
heat conduction problem with micro-scale heat transfer and
a deformation problem with thermal expansion/contraction
in the same domain. The upper figures of each show the
corresponding original problems before being homogenized,
where the sub- or superscript ε are attached to the field vari-
ables so that they are dependent on the microstructure. In
this subsection, we provide the governing equations of the
original heat conduction and deformation problems by means
of this notational rule.

Fig. 1 Homogenization for heat conduction problem
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Fig. 2 Homogenization for solid deformation problem

2.2.1 Transient heat conduction problem

The governing equations of the original heat conduction prob-
lem for without advection are given at any point x ∈ �ε and
at any time t ∈ [0,∞) as follows:

cερε Ṫ ε = −∇ · qε + f ε in �ε (1)

qε = −kεvε in �ε (2)

vε = ∇T ε in �ε (3)

where, with t being the current time, T = T ε(x, t) is the tem-
perature field, and qε(x, t) is the heat flux, which is related
to the temperature gradient vε(x, t) via the positive definite,
second-order heat conduction tensor kε(x). Here, ∇ is the
gradient operator, (•̇) := D/Dt is the material time deriva-
tive, cε is the specific heat, ρε is the mass density, and f ε is
the heat source.

We consider the following three types of boundary condi-
tions on the part of the boundary �ε ⊂ ∂�ε , whose outward
unit normal vector is commonly denoted by n:

T ε = T̂ on �T (4)

qε · n = p̂ on �q (5)

qε · n = k∞(T ε − T̂∞) on �∞ (6)

where T̂ is the temperature data specified on the Dirichlet
boundary �T and p̂ is the heat supplied on the Neumann

boundary �q . Also, the heat is supplied from �∞ with the
coefficient of heat transfer k∞ according to the ambient tem-
perature T̂∞. It is noted that �ε = �T ∪�q ∪�∞ ⊂ ∂�ε and
�T ∩ �q ∩ �∞ = ∅. In addition, the heat transfer is allowed
on the pore surfaces as

qε · ν = kεS(T
ε − T̂S) on Sε (7)

where Sε = ∂�ε\�ε is the sum of all the pore surfaces, ν
is its outward unit normal vector, T̂S is the temperature of
the fluid filling the pores, and kεS is the coefficient of heat
transfer in distinction from k∞. Although the pores may or
may not appear on the external boundary of the overall struc-
ture, it is assumed that the heat transfer characteristics can be
represented by k∞, irrespective of its geometrical features.

The corresponding weak form for the solution T ε(x, t),
which is a function of time t with values in an appropriate
function set UT , is given as follows:

∫

�ε

cερε T̄ ε Ṫ ε d�+
∫

�ε

∇ T̄ ε · kε∇T ε d�

+
∫

�∞

k∞T̄ ε(T ε − T̂∞) d� +
∫

Sε

kεS T̄ ε(T ε − T̂S) d�

=
∫

�ε

T̄ ε f ε d�−
∫

�q

T̄ ε p̂ d� ∀T̄ ε ∈ VT (8)

where T̄ ε(x) is a test function selected arbitrarily from its
function space VT . Finally, we provide the following initial
condition to complete the transient heat conduction problem:

T ε(x, 0) = T0(x) in �ε (9)

Even if the heat conduction problem for the fluid phase has to
be solved simultaneously, the formulation here is unchanged.
It is also recognized that the heat conduction problem for the
fluid phase is exactly the same as that presented here, when
the domain �ε is applied to the fluid phase.

2.2.2 Deformation problem with thermal
expansion/contraction

Assuming that the deformation process is quasi-static, we
here provide the governing equation of the equilibrium prob-
lem of a linearly elastic porous solid with thermal expan-
sion/contraction with reference to Fig. 2a. The domain of
interest�ε is the same domain as that of the heat conduction
problem.

The equilibrium equation for stress σ ε(x, t), the relation-
ship between strain εε(x, t) and displacement uε(x, t) and
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the constitutive equation are respectively given as follows:

∇ · σ ε + ρε b̂ = 0 in �ε (10)

εε = 1

2

{∇uε + uε∇} = ∇(s)uε in �ε (11)

σ ε = cε : εε − θεβε = cε : (
εε − θεαε

)
in �ε (12)

where cε(x) is the elasticity tensor, b̂(x) is the body force per
unit mass density, and ∇(s) the symmetric gradient operator.
Here, θε is the temperature change form the initial value T0

in (9); that is, θε(x, t) := T ε(x, t)− T0(x). Also, αε and βε

are the second order tensor of thermal expansion coefficients
and the thermal expansion stress tensor per unit of tempera-
ture change, respectively, and are assumed to have positive
diagonal components in general. The following two types of
boundary conditions are considered on �ε = �u ∪ �t with
�u ∩ �t = ∅:

uε = û on �u (13)

σ εn = t̂ on �t (14)

where û and t̂ are the prescribed displacement and surface
traction vectors, respectively.

The weak form equivalent to the above strong form for
the deformation problem is given as follows:
∫

�ε

∇ ūε : σ ε d� =
∫

�t

ūε · t̂ d�

+
∫

�ε

ūε · ρε b̂ d� ∀ūε ∈ Vu (15)

with which uε ∈ Uu is searched for via the constitutive equa-
tion (12). Here, Uu is a subset of a relevant Sobolev space
with equality constraint (13) and Vu is an appropriate func-
tion space of its variation ū.

We assume that the external loadings b̂(x) and t̂(x) are
constant with respect to time. Also, the temperature change
in (12), which causes thermal expansion/contraction of the
solid, is actually the solution of the heat conduction problem
above described. Therefore, in this study, the temperature
change in time is only the source of time dependent loading
for the solid phase.

3 Two-scale governing equations for thermo-mechanical
coupled problem

The two-scale initial-boundary problem is derived by
applying the method of asymptotic expansions to the thermo-
mechanical coupled problem for porous solids in consid-
eration of the micro-scale heat transfer, which necessarily
enables us to take into account the scale effect of microstruc-
tures.

3.1 Two-scale setting: micro- and macro-scale

Within the framework of the mathematical homogenization
theory [5,6], two distinct scales are introduced to describe the
thermal or mechanical behavior of this body. One is a macro-
scale denoted by x for the macroscopic domain �, in which
the heterogeneities are invisible, and the other is a micro-
scale which defines the heterogeneities, and is denoted by y
for the microscopic domain of the RVE (unit cell) Y ⊂ Rndim .
These two scales are related to each other as y = x/ε, with
the parameter ε, which is assumed to be very small com-
pared with the macro-scale bounded domain�. Note that the
microscopic domain Y of the RVE is the sum of the domains
of the solid phase Y ϑ in the RVE and of pores (or voids) ϑ .
That is, for later use in the homogenization, we assume

Y ϑ = Y\ϑ and Y = Y ϑ ∪ ϑ. (16)

The domain of pore ϑ is assumed to be open and connected,
and defines a smooth surface S on the micro-scale solid
domain Y ϑ , which does not intersect with the RVE’s external
boundary ∂Y . At this internal surface S, the heat is transferred
in view of (7). Consideration of this effect in the homogeni-
zation is the novelty of the present study.

By virtue of this setting, all the field variables introduced
in the previous section are identified with reference to the two
scales and y takes charge of representing the dependency on
the micro-scale heterogeneity. More specifically, we write the
temperature, the temperature gradient vector, the heat flux,
the displacement vector, the strain tensor and the stress ten-
sor as T (x, y), V (x, y), q(x, y), u(x, y), ε(x, y), σ (x, y),
respectively. It is then postulated in the mathematical theory
of homogenization that all the variables are assumed to be
periodic with respect to the micro-scale y; i.e., Y-periodic
[5,6].

In what follows, we apply the conventional method of
asymptotic expansions [5,6] to separate the governing equa-
tions for heat conduction and deformation problems pre-
sented in the previous section to derive the corresponding
micro- and macroscopic governing equations. The temper-
ature and the displacement fields are first asymptotically
expanded with respect to the characteristic size of the unit
cell ε and are inserted into the original governing equations.
Then, we take the limit (ε → 0) to separate the governing
equations in micro- and macro-scales; see also [17,18]. To
this end, we extensively utilize the following formulae to
separate the micro- and macro-scale volume integrals:

lim
ε→0

∫

�ε

ϕε(x)d� =
∫

�

[
1

|Y |
∫

Y

ϕ(x, y)dy

]
dx (17)

where ϕε = ϕ(x, y) is an arbitrary function in our problems
under consideration; see [6].
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Before proceeding to formulation, an important assump-
tion must be confirmed for the order of approximation with
asymptotic expansions. That is, we have assumed that the
unit cell size is infinitesimally small so that only the first
order terms of the asymptotic expansions could be taken into
account; higher-order terms are neglected. This means that
the macroscopic strain and the macroscopic temperature gra-
dient are assumed to be sufficiently small within the RVE.
This is the standard setting for the conventional homogeniza-
tion theory of the first order approximation. It is then guaran-
teed that we need not consider fluctuations of the temperature
field in time, and that a steady-state temperature distribution
can be assumed in the RVE domain. Accordingly, a single
time scale is enough for the present setting, although multiple
time scales have to be introduced along with multiple spa-
tial scales to distinguish between fast and slow phenomena
[19,20].

3.2 Two-scale heat conduction problem

Applying the method of asymptotic expansion, we derive the
micro- and macroscopic governing equations, which define
the two-scale heat conduction problem. Since the material
behavior is assumed to be linear, the formulae of homoge-
nized material properties are also formulated.

3.2.1 Method of asymptotic expansions

First, we assume the solution T ε of the original heat con-
duction problem and its variation T̄ ε can be asymptotically
expanded as

T ε(x, t)=T 0(x, y, t)+εT 1(x, y, t)+ε2T 2(x, y, t)+· · ·
(18)

T̄ ε(x) = T̄ 0(x, y)+ εT̄ 1(x, y)+ ε2T̄ 2(x, y)+ · · · (19)

where terms T i (i = 0, 1, . . .) of order εi are Y-periodic.
Since y = x/ε, the chain rule can be applied for the differ-
entiation of each term with

∂

∂xi

∣∣∣∣
�ε

ei =
(
∂

∂xi

∣∣∣∣
�

+ 1

ε

∂

∂yi

∣∣∣∣
Y

)
ei = ∇x + 1

ε
∇y (20)

Substituting (18) and (19) into (8) and neglecting higher-
order terms (higher than or equal to the second order terms
with ε2), we have the following weak form:
∫

�ε

cερε
(

T̄ 0 + εT̄ 1
) (

Ṫ 0 + εṪ 1
)

d�

+
∫

�ε

(
1

ε
∇y T̄ 0 + ∇x T̄ 0 + ∇y T̄ 1 + ε∇x T̄ 1

)

· kε
(

1

ε
∇y T 0 + ∇x T 0 + ∇y T 1 + ε∇x T 1

)
d�

+
∫

�∞

k∞
(

T̄ 0 + εT̄ 1
) (

T 0 + εT 1
)

d�

+
∫

Sε

εkS

(
T̄ 0 + εT̄ 1

) (
T 0 + εT 1

)
d�

=
∫

�ε

(
T̄ 0 + εT̄ 1

)
f εd�−

∫

�q

(
T̄ 0 + εT̄ 1

)
p̂d�

+
∫

�∞

k∞
(

T̄ 0 + εT̄ 1
)

T̂∞d�

+
∫

Sε

εkS

(
T̄ 0 + εT̄ 1

)
T̂Sd� (21)

Here, we have assumed that the coefficient of heat transfer kεS
on the pore surface Sε depends linearly on the characteristic
length ε of the unit cell; that is,

kεS = εkS . (22)

This assumption can be accepted by the insight that the area
of the pore surface becomes finite when the volume of the
unit cell becomes zero in the asymptotic process with ε → 0
in the sequel. This can be explained in a little more detail with
reference to Fig. 3. That is, even if the pore volume fractions
in separate unit cells of similar form are the same, the ratio
of the pore surface area to the unit cell volume is increased
in proportion to the unit cell’s edge length. Therefore, it can
be expected that, if the volume of a unit cell become small,
the effect of heat transfer via the pore surface is increased.
In this sense, kS is a material parameter associated with this
effect and, in this study, is distinguished from k∞ in (6). The
introduction of this type of scale effect into the homogeniza-
tion for the heat conduction problem in a porous medium is
a new contribution of this work; otherwise the formulation is
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sentative volume elements of porous solids
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ordinary, as in [5,6,21,11], and does not need to be presented
here.

Using the formula (17), we obtain the following weak
form:

∫

�

1

|Y |
∫

Y ϑ

cρ
(

T̄ 0 + εT̄ 1
) (

Ṫ 0 + εṪ 1
)

dydx

+
∫

�

1

|Y |
∫

Y ϑ

(
1

ε
∇y T̄ 0 + ∇x T̄ 0 + ∇y T̄ 1 + ε∇x T̄ 1

)

· k
(

1

ε
∇y T 0 + ∇x T 0 + ∇y T 1 + ε∇x T 1

)
dydx

+
∫

�∞

k∞
(

T̄ 0 + εT̄ 1
) (

T 0 + εT 1
)

d�

+
∫

�

1

|Y |
∫

S

kS

(
T̄ 0 + εT̄ 1

) (
T 0 + εT 1

)
d�dx

=
∫

�

1

|Y |
∫

Y ϑ

(
T̄ 0+εT̄ 1

)
f dydx−

∫

�q

(
T̄ 0+εT̄ 1

)
p̂d�

+
∫

�∞

k∞
(

T̄ 0 + εT̄ 1
)

T̂∞d�

+
∫

�

1

|Y |
∫

S

kS

(
T̄ 0 + εT̄ 1

)
T̂Sd�dx (23)

where the last terms in both the left- and right-hand sides are
of particular importance in the present study as mentioned
above, since they represent the effect of heat transfer at the
pore surfaces. Here, we have used the following formula for
the integral over the pore surfaces in addition to the formula
(17):

lim
ε→0

∫

Sε

εϕε(x)d� =
∫

�

[
1

|Y |
∫

S

ϕ(x, y)d S

]
dx (24)

The proof of this formula is found in [10,17]. It is this for-
mula that the reason why weak formulations are employed
in this study.

In this weak form (23), the identical equations with respect
to the order of ε can be identified as follows:

• Order of ε−2:

∫

�

1

|Y |
∫

Y ϑ

∇y T̄ 0 · k∇y T 0dydx = 0 (25)

• Order of ε−1:

∫

�

1

|Y |
∫

Y ϑ

[
∇y T̄ 0 · k

(
∇x T 0 + ∇y T 1

)

+
(
∇x T̄ 0 + ∇y T̄ 1

)
· k∇y T 0

]
dydx = 0 (26)

• Order of ε0:

∫

�

1

|Y |
∫

Y ϑ

cρT̄ 0Ṫ 0dydx

+
∫

�

1

|Y |
∫

Y ϑ

[
∇y T̄ 0 · k∇x T 1 + ∇x T̄ 1 · k∇y T 0

+
(
∇x T̄ 0 + ∇y T̄ 1

)
· k

(
∇x T 0 + ∇y T 1

)]
dydx

+
∫

�∞

k∞T̄ 0T 0d� +
∫

�

1

|Y |
∫

S

kS T̄ 0T 0d�dx

=
∫

�

1

|Y |
∫

Y ϑ

T̄ 0 f dydx −
∫

�q

T̄ 0 p̂d�

+
∫

�∞

k∞T̄ 0T̂∞d� +
∫

�

1

|Y |
∫

S

kS T̄ 0T̂Sd�dx

(27)

In the subsequent section, each equation is analyzed so that
the two-scale heat conduction problem can be defined.

Equation (25) of order of ε−2 implies that

T 0 = T 0(x) ( and T̄ 0 = T̄ 0(x) ) (28)

which guarantees (26) of order of ε−1 is automatically satis-
fied. Also, with (28) at hand, Eq. (27) of order of ε0 becomes∫

�

RHT̄ 0Ṫ 0dx

+
∫

�

1

|Y |
∫

Y ϑ

(
∇x T̄ 0 + ∇y T̄ 1

)
· k

(
∇x T 0 + ∇y T 1

)
dydx

+
∫

�∞

k∞T̄ 0T 0d� +
∫

�

kH
S T̄ 0T 0dx

=
∫

�

f HT̄ 0dx −
∫

�q

p̂T̄ 0d�

+
∫

�∞

k∞T̄ 0T̂∞d� +
∫

�

kH
S T̄ 0T̂Sdx (29)

Here, RH, f H(= f̄ ) and kH
S are the average (or homogenized)

heat capacity per unit volume, the average heat source/sink,
and the homogenized heat transfer coefficient of the pore
surfaces, respectively, and are defined as
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RH = 1

|Y |
∫

Y ϑ

cρ dy = 〈cρ〉 (30)

f H = 1

|Y |
∫

Y ϑ

f dy = 〈 f 〉 (31)

kH
S = 1

|Y |
∫

S

kS d� (32)

where we have introduced a bracket operator as

〈•〉 := 1

|Y |
∫

Y ϑ

• dy (33)

to indicate the volume average for the RVE. It should be
noted that the last terms in both the left- and right-hand sides
in (29) are volume integrals, even though the expression (32)
for kH

S is a surface integral in the micro-scale.
If the variation is taken as T̄ 1 = T̄ 0(x) in (29), the

following macroscopic governing equation for the solution
T 0(x, t) ∈ UT can be identified:∫

�

RHT̄ 0Ṫ 0dx

+
∫

�

∇x T̄ 0 · 1

|Y |
∫

Y ϑ

k
(
∇x T 0 + ∇y T 1

)
dydx

+
∫

�∞

k∞T̄ 0T 0d� +
∫

�

kH
S T̄ 0T 0dx

=
∫

�

f HT̄ 0dx −
∫

�q

p̂T̄ 0d�

+
∫

�∞

k∞T̄ 0T̂∞d� +
∫

�

kH
S T̄ 0T̂Sdx ∀T̄ 0 ∈ VT (34)

where, for the sake of simplicity, the function set and space,
UT and VT, are the same as those used in the original problem
in (8). Putting this back to (29), we can obtain the following
microscopic governing equation:∫

�

1

|Y |
∫

Y ϑ

∇y T̄ 1 · k
(
∇x T 0 + ∇y T 1

)
dydx = 0

∀T̄ 1 ∈ Ṽper
T . (35)

Here, Ṽper
T is the subspace of Vper

T such that

Ṽper
T =

{
T ∗(•; y) ∈ Vper

T

∣∣∣
∫

Y

T ∗(•; y)dy = 0
}

(36)

where Vper
T is a relevant function space of Y-periodic

functions.
Equations (34) and (35) just derived are the governing

equations for the two-scale heat conduction problem. It is to

be noted that the coupling between micro- and macro-scale
behaviors arises from the temperature gradient term

∇yz(x, y, t) = ∇x T 0(x, t)+ ∇y T 1(x, y, t) (37)

where z(x, y) is the actual temperature field in the RVE.
The macroscopic equation (34) is solved for the macroscopic
temperature field T 0(x) in � with the microscopic Y-peri-
odic temperature field T 1(x, y) given as a datum, while the
microscopic equation (35) is for T 1(x, y) in Y ϑ at each mac-
roscopic point x with T 0(x) given as a datum.

3.2.2 Homogenizaion for the heat conduction problem

The micro-scale Y-periodic temperature field T 1(x, y, t) can
be assumed to be in proportion to the macro-scale tempera-
ture gradient so that

T 1(x, y, t) = −ζ j ( y)
∂T 0(x, t)

∂x j
+ T̃ 1(x) (38)

where ζ j ( j = 1, 2, 3) are called the characteristic func-
tions and are Y-periodic scalar-valued functions with units of
length in response to three patterns of unit macro-scale tem-
perature gradient, which will be defined later. Here, T̃ 1(x)
is an indefinite constant, but can be set at zero due to the
restriction in (36) for T 1 (and ζ j ) such that

∫

Y

T 1(x, y) dy = 0 ⇒ T̃ 1(x) = 0 (39)

Substitution of (38) for T 1 into (35) yields the following
weak form at each macro-scale material point x:

∫

Y ϑ

∇y T̄ 1 · k∇yζ
j dy =

∫

Y ϑ

∇y T̄ 1 · k1 j dy

∀T̄ 1 ∈ Ṽper
T , j = 1, 2, 3 (40)

where 1 j are three unit vectors of the macroscopic tempera-
ture gradient with its j th component being 1 and with others
being 0. On the other hand, by substituting (38) into the mac-
roscopic governing equation (34), we can eliminate the term
involving T 1 from the macroscopic governing equation for
T 0 such that
∫

�

RHT̄ 0Ṫ 0 dx +
∫

�

∇x T̄ 0 · kH∇x T 0 dx

+
∫

�∞

k∞T̄ 0T 0 d� +
∫

�

kH
S T̄ 0T 0 dx
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=
∫

�

f HT̄ 0 dx −
∫

�q

p̂T̄ 0 d� +
∫

�∞

k∞T̄ 0T̂∞ d�

+
∫

�

kH
S T̄ 0T̂S dx ∀T̄ 0 ∈ VT (41)

In this expression, we have defined the homogenized heat
conduction tensor kH as

kH = 1

|Y |
∫

Y ϑ

k · (
I − ∇yζ

)
dy (42)

where I is the second-order identity tensor and ζ ={
ζ 1 ζ 2 ζ 3

}T
.

In summary, the strong form corresponding to the weak
form (41) can be written as follows:

RHṪ 0 = −∇x · Q + f H − kH
S (T

0 − T̂S) in � (43)

Q = −kHV in � (44)

V = ∇T 0 in � (45)

along with the boundary conditions

T 0 = T̂ on �T (46)

Q · n = p̂ on �q (47)

Q · n = k∞(T 0 − T̂∞) on �∞ (48)

and the initial condition

T 0(x, 0) = T0(x) in � (49)

It is to be noted here that the heat transfer via pore sufaces is
realized as the heat supply in the source/sink term of (43) at
each macroscopic point, according its temperature value.

3.2.3 Localization for heat conduction problem

The solution procedure to obtain the microscopic response
with the macroscopic solution as a datum is commonly referr-
ed to as ‘localization’ within the framework of the mathemat-
ical homogenization [6]. For the two-scale heat conduction
problem, if necessary, the localization can be performed with
the macroscopic temperature gradient to obtain the micro-
scale temperature field as well as heat flux.

For this purpose, we first define the macroscopic temper-
ature gradient as V (x, t) = ∇x T 0 and re-write the micro-
scopic temperature gradient (37) as

∇yz(x, y, t) = V (x, t)+ ∇y T 1(x, y, t) (50)

When this is integrated in space, the microscopic temperature
field becomes

z(x, y, t) = V (x, t) · y + T 1(x, y, t)+ T̃ z(x, t) (51)

where T̃ z(x, t) is an integration constant and represents an
indefinite function of x. In order to determine T̃ z(x, t), we

postulate that the volume average of the micro-scale temper-
ature field z(x, y, t) be the macroscopic temperature field
T 0(x, t) as

〈z(x, y, t)〉 = 1

|Y |
∫

Y ϑ

z(x, y, t) dy = T 0(x, t) (52)

Since T 1(x, y, t) is in Ṽper
T with the relation (39), the indef-

inite term T̃ z(x) can be of the following form:

T̃ z(x, t) = T 0(x, t)− V (x, t) · 〈 y〉 (53)

Together with the micro-scale Y-periodic temperature field
T 1(x, y, t) in the form of (38), the actual microscopic
temperature field z(x, y, t) in the unit cell becomes

z(x, y, t) = V (x, t) · ( y − ζ ( y)− 〈 y〉)+ T 0(x, t) (54)

where ζ = {
ζ 1 ζ 2 ζ 3

}T
as defined above. When the origin

of the micro-scale coordinate system is placed at the center of
the unit cell so that 〈 y〉 = 0, the forth term can be eliminated,
if necessary.

In spite of this formulation, the first three terms in (54)
neither make sense nor have effects on the deformation of the
solid phase under the assumption made before that the micro-
scale temperature distribution becomes steady-state instan-
taneously.

3.3 Two-scale deformation problem with thermal
expansion/contraction

By applying the method of asymptotic expansions, we derive
the micro- and macroscopic governing equations that define
the two-scale deformation problem with thermal expansion/
contraction. The procedure is almost the same as that descri-
bed above for the heat conduction problem, and is ndepen-
dent of it. However, since the formulation is not fresh and has
already been reported elsewhere in the literature [9,17], we
here start with the intermediate equations derived by assum-
ing the asymptotically expanded forms of the displacement
field and its variation as

uε(x, t)=u0(x, y, t)+εu1(x, y, t)+ε2u2(x, y, t)+· · ·
(55)

ūε(x) = ū0(x, y)+ εū1(x, y)+ ε2ū2(x, y)+ · · · (56)

along with, in view of (18) and (19),

θε(x, t)=θ0(x, t)+εθ1(x, y, t)+ε2θ2(x, y, t)+· · · (57)

Here, needless to say, t in (55) is real time, even though
quasi-static deformation processes are assumed, and the time
marching is brought by the temperature change in (57).

The micro- and macroscopic governing equations are res-
pectively derived as follows:
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– Macro-scale: Given u1, find u0 ∈ Uu such that

∫

�

∇(s)
x ū0 : 1

|Y |
∫

Y ϑ

c :
(
∇(s)

x u0 + ∇(s)
y u1

)
dydx

=
∫

�

∇(s)
x ū0 : 1

|Y |
∫

Y ϑ

θ0β dydx

+
∫

�

ū0 · ρH b̂ dx +
∫

�t

ū0 · t̂ d� ∀ū0 ∈ Vu (58)

– Micro-scale: Given u0, find u1 ∈ Ṽper
u such that

∫

�

1

|Y |
∫

Y ϑ

∇(s)
y ū1 : c :

(
∇(s)

x u0 + ∇(s)
y u1

)
dydx

=
∫

�

1

|Y |
∫

Y ϑ

∇(s)
y ū1 : θ0β dydx ∀ū1 ∈ Ṽper

u (59)

where u0 is the macroscopic displacement field, u1 is the
microscopic Y-periodic displacement field, ρH is the aver-
age mass density defined as

ρH = 1

|Y |
∫

Y ϑ

ρ dy = 〈ρ〉 (60)

It is to be noted that the temperature change in (58) and (59)
is defined as θ0(x, t) = T 0(x, t)− T0(x) and is constant in
a unit cell. That is, the temperature change causing thermal
expansion/contraction is a macroscopic quantity. This means
that the micro-scale temperature change in time due to the
change of the macroscopic temperature gradient V in (54) is
negligibly small compared with the change of the absolute
value of T0(x); that is, within a time interval [t, t +�t],

z(x, y, t +�t)− z(x, y, t)

= (V (x, t +�t)− V (x, t)) (y − ζ ( y)− 〈 y〉)
+ T 0(x, t +�t)− T 0(x, t) (61)

≈ T 0(x, t +�t)− T 0(x, t) := θ0(x, t) (62)

This is true when the unit cell is infinitesimally small, which
is consistent with our assumption in this study.

3.3.1 Homogenization for deformation problem
with thermal expansion/contraction

The micro-scale Y-periodic displacement field u1(x, y, t) in
(58) and (59) can be assumed to be of the form

u1(x, y, t) = −χkh( y)Ekh(x, t)+ θ0ψ( y) (63)

where θ0 is the macro-scale temperature change, and E =
Ei j ei ⊗ e j = ∇(s)

x u0 is the macroscopic strain with ei

(i = 1, 2, 3) being the basis vectors in macro-scale. Here,

(k, h) = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (3, 1)} in χkh

are the Y-periodic characteristic displacement vectors in res-
ponse to six mutually-independent fundamental patterns of
unit macroscopic strains, which only the kh-component is
unity. Also, ψ is the Y-periodic characteristic displacement
vector in response to unit temperature change for thermal
expansion/contraction. By substituting (63) into (59), we
obtain the following equations for the characteristic displace-
ment vectors, χkh and ψ , respectively:

∫

Y ϑ

∇(s)
y ū1 : c : ∇(s)

y χkh dy =
∫

Y ϑ

∇(s)
y ū1 : c : Ikh dy

∀ū1 ∈ Ṽper
u (64)∫

Y ϑ

∇(s)
y ū1 : c : ∇(s)

y ψ dy =
∫

Y ϑ

∇(s)
y ū1 : β dy ∀ū1 ∈ Ṽper

u

(65)

where Ikh is the second-order tensors of unit macroscopic
strain, whose components are identified in

Ikh = 1

2

(
δkiδh j + δhiδk j

)
ei ⊗ e j (66)

We substitute the expression (63) for u1 into the macro-
scopic weak form (58) to arrive at the following equation for
the macroscopic displacement field u0 ∈ Uu :

∫

�

∇(s)
x ū0 : cH : ∇(s)

x u0 dx =
∫

�

∇(s)
x u0 : θ0βH dx

+
∫

�

ū0 · ρH b̂ dx +
∫

�t

ū0 · t̂ d� ∀ū0 ∈ Vu (67)

where cH and βH are the homogenized elasticity tensor of
the forth order and the homogenized thermal expansion stress
per unit temperature change, respectively, and are defined as

cH = 1

|Y |
∫

Y ϑ

ci jlm

(
I kh
lm − ∂χ

kh
l

∂ym

)
dy

(
ei ⊗ e j ⊗ ek ⊗ eh

)

(68)

βH = 1

|Y |
∫

Y ϑ

(
β − c : ∇(s)

y ψ
)

dy (69)

In summary, the strong form corresponding to the weak
form (67) can be written as follows:

∇x · 
 + ρH b̂ = 0 in � (70)

E = 1

2

{
∇x u0 + u0∇x

}
= ∇(s)

x u0 in � (71)


 = cH : E − θ0βH = cH :
(

E − θ0αH
)

in � (72)
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along with the boundary conditions

u0 = û on �u (73)


n = t̂ on �t (74)

Here, we have defined the macroscopic stress as 
 := 〈σ 〉
and the homogenized coefficient of thermal expansions as

αH := (cH)−1βH. (75)

3.3.2 Localization for deformation problem with thermal
expansion/contraction

Denoting the actual micro-scale displacement in the unit cell
by w(x, y, t), we write the micro-scale strain as

∇(s)
y w(x, y, t) = ∇(s)

x u0(x, t)+ ∇(s)
y u1(x, y, t) (76)

Then the w(x, y, t) is obtained as

w(x, y, t) = E(x, t) · y + u1(x, y, t)+ ũw(x, t) (77)

where an indefinite term ũw(x, t) is constant with respect to
the micro-scale and can be neglected without loss of general-
ity, because it has no effect on the values of the microscopic
strain and stress components. The substitution of the expres-
sion (63) for u1(x, y, t) into (77) yields

w(x, y, t)

= E(x, t) · y − χkh( y)Ekh(x, t)+ θ0(x, t)ψ( y)

=
[(
δikδ jh y j−χkh

i ( y)
)

Ekh(x, t)+θ0(x, t)ψi ( y)
]

ei (78)

4 Numerical verification of two-scale
thermo-mechanical model for porous solid

We conduct a numerical verification of the proposed two-
scale thermo-mechanical coupled model for porous solids
derived above. The model problem considered here is sim-
ple, but illustrative enough to demonstrate the relevancy of
the present formulation.

4.1 Analysis models, conditions and cases

The analysis model is a rectangular parallelepiped structure
shown in Fig. 4, which is composed of periodically arranged,
cubic microstructures (unit cells) with mutually connected
pores. In order to elucidate the effect of heat transfer at pore
surfaces, we consider the fluid phase in pores as a medium
that transports heat. The material parameters for the solid and
fluid phases are provided in Table 1.

The concrete assumptions and analytical conditions made
for the thermo-mechanical coupling analysis are itemized as
follows:

u2 = 0

T = 400 K

x1

x2

x3

RVE (Unit cell)

Solid

Pore (filled with fluid)

80 m
m

80 mm

A

B

C
120 mm

LRVELRVE

LRVE

40 mm

20 mm

10 mm
(Porosity)

1 2 3 0u u u

Fig. 4 Macro-structure and unit cell of a porous medium along with
boundary conditions for displacement and temperature: pores are filled
with fluid

Table 1 Material parameters for solid and fluid phases

Solid Fluid

Young’s modulus (MPa) 10,000 –

Poisson’s ratio 0.20 –

Density (kg/m3) 2,000 1,000

Thermal expansion coef. (1/K) 0.00001 –

Heat conduction coef. (W/mmK) 0.01 0.04

Specific heat (J/kgK) 100 400

Heat transfer coef. (W/mm2K) 0.00001 0.0

[Assumptions]

– Adiabatic condition is imposed on the external bound-
aries of the solid phase.

– Fluid flow is not allowed in the fluid phase.
– The fluid phase does not sustain stress, and is neither

expanded nor contracted with temperature change.
– Heat is transferred to the solid phase from the fluid phase

only at the pore surfaces, namely at their interfaces.
– Heat is not transferred to the fluid phase from the solid

phase, implying that the heat transfer coefficient of the
fluid is zero.

[Analytical conditions]

– There is no mechanical loading on the solid phase; that
is, only the thermal loading is considered.

– Displacement is prescribed on the bottom surface
(Surface B) as indicated in Fig. 4.

– Heat is given to the external boundaries of the fluid phase
only and is conducted in it with its own heat conductiv-
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ity; temperature 400 K is prescribed on Surface A of the
macro-structure; see Fig. 4.

– Initial temperature 300 K is given to both the solid and
the fluid phases.

Although the fluid flow is not considered in this numerical
example, it can be expected from the present setting that the
proposed two-scale thermo-mechanical coupled model can
be applied to a stress analysis of porous solids subjected to
heat transport by fluid advection.

In order to see the scale effect due to heat transfer via
pore surfaces, we consider three sizes of unit cells that have
the same volume fraction of pore; LRVE = 40, 20, 10 mm;
see Fig. 4. Thus, three separate macro-scale coupling analy-
ses are carried out after the micro-scale analysis to evaluate
homogenized material properties. The average properties cH,
αH, ρH, kH, RH, f H defined in Sect. 3 are the same for these
three unit cell models, but the higher the ratio of the pore sur-
face area to the unit cell volume, the larger the homogenized
heat transfer coefficient kH

S defined in (32), as estimated in
Sect. 3.2. The numerical analyses with these homogenized
properties based on the proposed formulation are referred to
as “two-scale analyses” in this study.

The finite element (FE) meshes for the two-scale thermo-
mechanical analyses are all generated with standard 8-node

80
 m

m

120 mm
80 mm

20
 m

m

Macro model Unit-cell (Micro)

Macro model Unit-cell (Micro)

40
 m

m

10
 m

m
20

 m
m

40
 m

m

10
 m

m

a

b

Fig. 5 Corresponding homogenized model with differently-sized unit-
cell (HOM-40, HOM-20, HOM-10): a homogenized finite element
model of fluid phase; b homogenized finite element model of solid
phase

hexahedral elements and are presented in Fig. 5. The three
unit cell models of different edge lengths as LRVE = 40,
20, 10 mm are separately prepared, while the common macro
model is used for the solid and fluid phases. In what follows,
the analysis models or cases corresponding to these unit cell
models are denoted by HOM-40, HOM-20 and HOM-10.
The heat transfer coefficient kS of the integrand of (32) is set
at 0.00001 W/mm2 K as in Table 1 and is common to all the
unit cell models.

It should be noted that the pores are assumed to be infin-
itesimally small in formulating the proposed mathematical
model by the application of the asymptotic homogenization
method, though actual porous media inevitably have finitely
sized unit cells. To validate such a model, we also obtain
the reference solutions for comparison by carrying out sin-
gle-scale analyses of porous media without homogenization;
in other words, we solve the original problems in Sect. 2.
The numerical analyses for this set of reference solutions are
referred to as “direct analyses” in this study.

The FE meshes prepared for the direct analyses are gen-
erated with standard tri-linear hexahedral elements and are
shown in Fig. 6 (LRVE = 40 mm), Fig. 7 (LRVE = 20 mm)
and Fig. 8 (LRVE = 10 mm), for which the boundary condi-
tions indicated in Fig. 4 and the material parameters in Table 1
are directly applied. Note here that the number of elements
and other conditions for a single unit cell in these models
are in accordance with those of the corresponding unit cell
prepared above for the two-scale analyses. The heat transfer

x1

x2

x3

80
 m

m

120 mm
80 mm

40 mm

40 mm

a

b

Fig. 6 Direct model with LRVE = 40 (DIR-40): a direct finite element
model of fluid phase; b direct finite element model of solid phase
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x1

x2

x3

80
 m

m

120 mm
80 mm

20 mm

20 mm

a

b

Fig. 7 Direct model with LRVE = 20 (DIR-20): a direct finite element
model of fluid phase; b direct finite element model of solid phase

coefficient of the pore surfaces kεS in (7) is assumed to be
the same as k∞ in (6) and is set at 0.00001 W/mm2 K. In
what follows, the three numerical models prepared for direct
analyses are respectively denoted by DIR-40, DIR-20 and
DIR-10 with reference to the corresponding edge lengths of
unit cells, LRVE.

4.2 Solution method and numerical algorithm

We employ a weak coupling solution method for both two-
scale and direct analyses of the unsteady thermo-mechanical
coupling problem and, as originally assumed, the coupling
is one way from the transient heat conduction problem to
the quasi-static deformation problem. That is, each problem
is solved separately, and the solution of the heat conduction
problem is given to the deformation problem unilaterally.

The standard Crank–Nicolson method is employed to sol-
ve the unsteady heat conduction problem along with the set-
ting provided above, and a time period of 200 s is discredited
into 100 time steps. The deformation problem is solved at
each time step, which is set for the heat conduction prob-
lem, with the solution of the heat conduction problem being
the data for evaluating thermal expansion/contraction of the
solid phase.

We adopt the following computational procedure for the
direct analyses:

x1

x2

x3

80
 m

m

120 mm
80 mm

10 mm

10 mm

a

b

Fig. 8 Direct model with LRVE = 10 (DIR-10): a direct finite element
model of fluid phase; b direct finite element model of solid phase

(1) Start the time stepping procedure.
(2) Solve the heat conduction problem of the fluid phase

with the initial and boundary conditions given above to
obtain the temperature distribution that is used for the
boundary data at the pore surfaces of the solid phase.

(3) Solve the heat conduction problem of the solid phase
by applying the boundary conditions. Here, only the
temperature values on the pore surfaces are assumed to
change with time.

(4) Using the temperature distribution in the solid phase
evaluated in Step (3), calculate the strain and stress in
the solid phase due to thermal expansion/contraction.

(5) Solve the deformation problem along with the boundary
conditions given and the “initial stress”, as evaluated in
Step (4).

(6) Set the time step forward and go back to Step (2).

The two-scale analyses are conducted in accordance with
the following computational procedure:

(1) Before starting the time stepping procedure, evaluate all
the effective material properties of the solid and fluid
phases used for the two-scale thermo-mechanical prob-
lem. For both the fluid and solid phases,
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– the average mass density, heat capacity and heat
source are calculated, and

– the homogenized heat conduction tensor is evaluated
by solving the corresponding micro-scale problems.

In addition, only for the solid phase, we evaluate

– the homogenized elasticity tensor,
– the homogenized coefficient of thermal expansion

and
– the homogenized heat transfer coefficient kH

S in (32).

(2) Solve the macroscopic heat conduction problem of the
fluid phase for its macroscopic temperature distribution.

(3) Solve the macroscopic heat conduction problem of the
solid phase for its macroscopic temperature distribu-
tion. Here, the heat transferred from the fluid phase is
brought into the solid phase as a kind of heat source/sink
according to the current temperature value, which may
varies in space according to the solution obtained in
Step (2).

(4) Using the macroscopic temperature distribution in the
solid phase evaluated in Step (3), calculate the macro-
scopic strain and stress due to the macroscopic thermal
expansion/contraction.

(5) Solve the macroscopic deformation problem along with
the macroscopic “initial stress” evaluated in Step (4).

(6) Set the time step forward and go back to Step (2).

4.3 Numerical verification

We here present the results of the two-scale analyses to ver-
ify the validity and effectiveness of the proposed two-scale
thermo-mechanical model in comparison with those of the
direct analyses. In particular, our attention in this verification
is drawn to the reproducibility of the effect of heat trans-
fer at the pore surfaces in performing the two-scale thermo-
mechanical coupling analyses. The relevance of the adopted
solution method explained above is also examined during the
course of the verification.

First, the heat conduction analyses for the fluid phase are
carried out, and the temperature distributions at time step
50/100 are shown in Fig. 9. As can be seen form this fig-
ure, the temperature distributions obtained by the two-scale
analyses are the same for the three models, HOM-40, HOM-
20 and HOM-10. This makes sense since there is no factor
to bring the scale effect on the heat conduction in the fluid
phase. That is, the possibility of the heat transfer from the
solid phase to the fluid phase has been excluded, and the
homogenized heat conduction coefficients calculated with
three separate unit cells of the same volume fraction of pores
must be the same in theory. For reference, the temperature
distributions in the fluid phase are very similar to those of

5906

(Min: 59.44, Max: 99.18)
DIR-10

(Min: 59.46, Max: 98.22)
DIR-20

(Min: 59.53, Max: 96.37)
DIR-40

(Min: 59.54, Max: 98.01)
HOM-10

(Min: 59.54, Max: 98.01)
HOM-20

(Min: 59.54, Max: 98.01)
HOM-40

(K)

Fig. 9 Comparison of temperature-change distributions in fluid phase
(time step: 50/100)

the two-scale analyses, and appear to exhibit convergence
trends.

As appeared in the last term of the governing equation (43)
for the solid phase, the proposed two-scale model has a heat
source/sink-like effect due to the “internal” heat transfer, the
amount of which is proportional to the difference in temper-
ature between the solid and fluid phases at the pore surfaces
T 0 − T̂S . The constant of proportionality is the homoge-
nized coefficient kH

S that causes the scale effect as demon-
strated earlier with Fig. 3. Here, the temperature distribution
obtained for the fluid phase can be regarded as the data distri-
bution of T̂S for the solid phase. With this one and only heat
supply, the temperature distributions in the solid phase at time
step 50/100 can be obtained for the three separate cases, as
shown in Fig. 10 along with those of the direct analyses. As
can be seen from the figure, the temperature distributions in
HOM-40, HOM-20 and HOM-10 are all different, with each
of them resembling the result of the corresponding direct
analysis. More specifically, the smaller the pore size, the
higher the maximum and the minimum temperature values
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0702

(Min: 48.60, Max: 73.02)
DIR-10

(Min: 36.44, Max: 54.12)
DIR-20

(Min: 23.05, Max: 34.03)
DIR-40

(Min: 48.77, Max: 72.87)
HOM-10

(Min: 36.70, Max: 54.22)
HOM-20

(Min: 23.55, Max: 34.59)
HOM-40

(K)

Fig. 10 Comparison of temperature-change distributions in solid
phase (time step: 50/100)

in the solid phase. This is because the constant of propor-
tionality kH

S , which reflects the ratio of the pore surface area
to the unit cell volume, increases, as the pore size, namely
LRVE, becomes smaller. The results verify the validity and
relevance of the present two-scale model, which involves the
effect of internal heat transfer.

Once the temperature distribution in the solid phase is
obtained, it can be used as a datum for the macroscopic equi-
librium problem of the solid phase subjected to the ther-
mal expansion/contraction. Figure 11 shows the comparison
of the macroscopic deformation patterns of the solid phase.
Here, the L2 norm ‖u‖ is employed for the contour plots. As
can be seen from the figure, the patterns in HOM-40, HOM-
20 and HOM-10, each of which reflects the corresponding
temperature distribution in Fig. 10, are consistent with those
of DIR-40, DIR-20 and DIR-10, respectively.

Figures 12 and 13, respectively show the changes in the
time of the temperature and the displacement values over the
internal surface C as defined in Fig. 4, which is perpendic-
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(Min: 0.00378, Max: 0.0514)
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(Min: 0.00243, Max: 0.0329)
HOM-40

(mm)

Fig. 11 Comparison of displacement-norm distributions in solid phase
(time step: 50/100)
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Fig. 12 Comparison of time histories of temperature-change in surface
C of solid phase

ular to the x1-axis and located at x1 = 60 mm. The vertical
axes in the figures are computed by the following evaluation
formulae:
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θ0 =
(∫
�C
(θ0)2 d�

)1/2

∫
�C

d�
, ‖u‖=

(∫
�C

u · u d�
)1/2

∫
�C

d�
(79)

where�C indicates the internal surface C. It can be found that
the macroscopic response obtained by the two-scale analyses
agree with those of the direct analyses quantitatively, even
though the unit cell sizes for the direct analyses are finite.
Also, these figures clearly illustrate the scale effect involved
in the proposed two-scale thermo-mechanical model derived
by the mathematical theory of homogenization. That is, a
larger amount of heat can be transferred from the fluid phase
to the solid phase as the proportion of the pore surfaces area
to the unit cell volume increases.

As in single-physics computational homogenization, it is
possible to evaluate the actual micro-scale thermo-mechani-
cal responses of a unit cell located at any macroscopic point,
if necessary. The numerical analysis for this process is called
‘localization’ and, in linear problems like the ones in this
investigation, it can be done with the characteristic functions
associated with the macroscopic temperature gradients for
the heat conduction problem or the macroscopic strain for the
deformation problem; that is, Eqs. (54) and (77) are utilized.
Figure 15 shows the micro-scale temperature distributions
as well as the micro-scale deformed configurations of unit
cells located at separate macro-scale points along with the
corresponding macro-scale responses at time step 10/100.

Finally, Fig. 14 shows the computation times spent for
the direct and two-scale analyses. In this study, we utilized
a standard personal computer with the CPU of intel Xeon
X5260 with clock frequency 3.33 GHz and the intel FOR-
TRAN compiler on a Windows OS. Needless to say, a direct
analysis requires a large amount of time, which increases
exponentially the smaller the size of the unit cell. On the
contrary, the computation time required for the two-scale
analyses is much less expensive than that of the direct analy-
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Fig. 14 Comparison of computation-time

ses and never changes. The superiority of the proposed two-
scale model over the full-scale model associated with direct
analyses is obvious.

5 Concluding remarks

A two-scale thermo-mechanical coupled model for porous
solids has been proposed. The model was derived by apply-
ing the homogenization method, which extensively utilizes
the method of asymptotic expansions, and enables us to take
into account the heat transfer at pore surfaces. This model was
implemented into our own two-scale analysis code, which is
based on the weak coupling method to deal with the cou-
pling between heat conduction and deformation problems.
The validity of this two-scale model and the effectiveness of
the developed two-scale analysis method have been verified
by making comparison with the single-scale direct analyses.
During the course of this numerical verification, it was well
demonstrated that the proposed model is capable of repro-
ducing the scale effect of heat exchange behavior between a
porous solid and fluid filling pores.

As anticipated in the numerical verification, one of the
straightforward application of the present framework is the
coupling with fluid flow in porous media. That is, the heat
is not only conducted in the fluid phase, but also transported
by fluid advection when a heated or cooled fluid flows into a
channel made of small pores.

Since neither geometrical nor material nonlinearities
were considered in this study, the method of two-scale analy-
sis becomes, consequently, very simple. In fact, all the
macroscopic material behaviors is determined prior to the
macroscopic analyses. That is, the homogenized material
properties can be evaluated either by the geometrical infor-
mation of microstructures or by the characteristic functions,
which are obtained from micro-scale problems.

However, once some sort of nonlinearities have to be
taken into account, the macroscopic mechanical behavior
becomes a function of the macroscopic deformation and the
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Fig. 15 Micro and macroscopic results in multi-scale analysis HOM-
10 (time step: 10/100): a temperature-change in fluid phase; b temper-
ature-change in solid phase; c strain norm in solid phase

macroscopic thermal behavior becomes a function of the
macroscopic heat. This means that microscopic problems
have to be solved for all the microscopic thermo-mechanical
behaviors associated with macroscopic material points at all
the time steps. Since solution strategies for such nonlinear
two-scale problems have been established as in [22,23,16],
the extension of the present framework to nonlinear problems

is relatively easy, though realized at a high computational
cost. In this context, the present formulation can be applied
to the two-scale nonlinear analysis for material deterioration
involving micro-cracks caused by thermal or chemical attack.
This is currently being prepared.
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