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Abstract Under extreme loading conditions most often the
extent of material and structural fracture is pervasive in the
sense that a multitude of cracks are nucleating, propagat-
ing in arbitrary directions, coalescing, and branching. Perva-
sive fracture is a highly nonlinear process involving complex
material constitutive behavior, material softening, localiza-
tion, surface generation, and ubiquitous contact. A pure
Lagrangian computational method based on randomly close
packed Voronoi tessellations is proposed as a rational and
robust approach for simulating the pervasive fracture of mate-
rials and structures. Each Voronoi cell is formulated as a
finite element using the Reproducing Kernel Method. Frac-
ture surfaces are allowed to nucleate only at the intercell
faces, and cohesive tractions are dynamically inserted. The
randomly seeded Voronoi cells provide a regularized ran-
dom network for representing fracture surfaces. Example
problems are used to demonstrate the proposed numerical
method. The primary numerical challenge for this class of
problems is the demonstration of model objectivity and, in
particular, the identification and demonstration of a measure
of convergence for engineering quantities of interest.
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1 Introduction

Possible structural responses from extreme loading condi-
tions, such as blast loads and impact, can range from intact
vibrational response to complete fragmentation. A structure
transitions from an intact continuum to a discontinuum
through crack initiation and propagation. The extent of
fracturing is termed pervasive when a multitude of cracks
arbitrarily nucleate, propagate, coalesce, and branch. The
simulation of pervasive structural fracture is further compli-
cated by the ubiquitous self contact that accompanies new
crack surfaces. In order to design structures to withstand
extreme loading conditions it is imperative to have accu-
rate computational methods for simulating pervasive failure.
Any computational method that strives to model pervasive
fracture must include the ability to numerically represent
the progression of a body from a continuum description to
a discontinuum description. In addition any computational
method must be objective such that the simulation results
do not depend on subjective properties of the model such as
mesh design. One necessary condition for simulation objec-
tivity is that the numerical approximation converges with dis-
cretization refinement. Without convergence to the necessary
“engineering accuracy,” numerical results and predictions
are suspect, rendering validation, uncertainty quantification
efforts, and general use in engineering design suspect as well.

Currently, there is a very limited set of computational tools
available that can attempt to simulate the pervasive frac-
ture of structures. Common and often unsatisfactory tech-
niques include ‘element death’ in Lagrangian finite element
codes and ‘void insertion’ in hydrocodes. The enriched finite
element methods (Generalized Finite Element Method and
Extended Finite Element Method) have had success in mod-
eling dilute fracture problems [5,57]. Once crack branching
and crack coalescence phenomena appear, the prospect of
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modeling a multitude of arbitrary three-dimensional inter-
secting cracks quickly becomes untenable. However, great
progress in this area has been obtained by Ghosh and cowork-
ers [22,27,36,37] in the development of the Voronoi Cell
Finite Element Method (VCFEM) based on an assumed-
stress hybrid finite element method. The VCFEM has been
used extensively to model material microstructure and quasi-
static fracture. A variety of meshless or particle methods
have been developed in the past fifteen years with the goal
of modeling extreme deformation of solids including perva-
sive failure [6]. Examples include spherical particle hydrody-
namics [2], Element-Free Galerkin [7], Reproducing Kernel
Method [39], cracked particles [50], Material Point Method
[59], particle in element [47], and element to particle con-
version [32]. An interesting recent development is that of
peridynamics [55] which is based on a nonlocal reformula-
tion of the governing equations that eliminates the use of a
deformation gradient, thus expanding the function space of
possible deformations.

Ortiz [13,44–46,52,53] has pursued the concept of using
standard finite element methods for modeling pervasive
failure, in particular, tetrahedral meshes, but with fracture
surfaces allowed to nucleate and propagate only along the
interelement faces. At the inception of material softening and
the localization of damage, the mesh connectivity is modi-
fied to reflect the new surface and a cohesive traction with a
softening behavior is dynamically inserted. This seemingly
severe restriction of only allowing fracture surfaces to nucle-
ate at interelement faces, as opposed to unrestricted meth-
ods modeling single crack growth, offers several advantages
in the simulation of pervasive failure. In a continuum the
intersection of multiple arbitrarily intersecting general crack
surfaces can result in subdomains whose surface topology
is illposed for further computation. The restriction of only
allowing new surfaces to form at interelement faces provides
a necessary regularization of the resulting domain and sur-
face topologies. For example, variational methods for solv-
ing the governing equations of motion, e.g. the finite element
method, require that the domain have a Lipschitz continuous
boundary. Thus, as the original domain fractures and disas-
sociates into subdomains, each subdomain needs to have a
Lipschitz continuous boundary as well. Also, the resulting
subdomains could be arbitrarily small making further com-
putation impossible in an explicit-dynamics framework. The
restriction of only allowing new surfaces to form at interele-
ment faces provides apriori the constraint on minimum edge
size and subsequent critical-time step necessary in an explicit
dynamic numerical solution. Furthermore, the restriction of
only allowing new surfaces to form at interelement faces
results in a time varying domain whose volume is continu-
ous in time. This is not the case in most particle methods
whose continuum representation evolves into a collection of
spheres. (The theoretical maximum packing for equi-sized

spheres is only 74%.) This continuity of volume in time can
be very important in confined problems such as penetration
and reconsolidation.

Herein, the approach of Ortiz is adopted for modeling
pervasive fracture. Fracture surfaces are allowed to nucle-
ate and propagate only along interelement faces of a domain
mesh. At the inception of material softening and localization
the mesh connectivity is modified to reflect the new surface
and a cohesive traction with a softening constitutive behav-
ior is dynamically inserted. However, the use of a tetrahedral
mesh, albeit unstructured, is potentially biased with respect
to edge and face orientation which could lead to nonobjective
numerical predictions. Herein, instead of using a tetrahedral
mesh, a randomly close packed (RCP) Voronoi tessellation
[64] of the domain is used. The RCP Voronoi tessellation
provides a random face network for representing fracture
surfaces. The polyhedral cells of the RCP Voronoi tessella-
tion are formulated as finite elements using the Reproducing
Kernel Method [39]. The resulting polyhedral elements have
a number of desirable properties including convexity and rel-
atively large included angles. Additionally, the Voronoi face
network provides a convenient discrete structure for study-
ing fracture surface topology and percolation like processes
during impact and fragmentation. The main challenge is to
demonstrate that this finite basis set for representing fracture
surfaces is sufficiently large to enable the predictive simula-
tion of pervasive fracture processes.

The primary objectives of this paper are (1) to propose
the use of randomly close-packed Voronoi tessellations for
simulating pervasive fracture and (2) to elucidate the difficul-
ties in defining and demonstrating convergence for this class
of problems. Initially, only two-dimensional examples are
given. Future work will focus on three-dimensional examples
and quantitative comparisons with experiments. This paper
is organized as follows. The problem formulation is given
in Sect. 2. The randomly close-packed Voronoi tessellation
is described in Sect. 3. Section 4 discusses the polyhedral
finite element formulation based on the Reproducing Kernel
Method. Section 5 gives a description of the dynamic mesh
connectivity algorithm and an overview of the self-contact
algorithm. A two-dimensional example is given in Sect. 6.
A discussion on sensitivity to initial conditions and transient
chaos is given in Sect. 7. A summary is given in Sect. 8.

2 Problem formulation

Consider the motion of a body B with interior domain �
and boundary � subjected to a body force f and applied trac-
tions t. A pure Lagrangian description of the motion of B is
used. The initial or reference domain of the body is denoted
by �o with boundary �o. In the reference configuration, the
position vector of a material point is denoted by X. In the
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deformed configuration, the position of a material point is
denoted by x, and the displacement u = x−X. In the numer-
ical solution to follow, interpolation functions will be con-
structed directly on the reference configuration. Therefore,
a total Lagrangian formulation of the governing equations
is appropriate [8]. The conservation of linear momentum is
given by [7]

∂P
∂X

: I + ρof = ρoü, (1)

where P is the first Piola-Kirchhoff stress tensor, f is the body
force vector per unit mass, ρo is the reference density, and I
is the identity tensor. The weak form of Eq. 1 is given by∫

�o

ρoü · δu d�o =
∫

�o

to · δu d�o +
∫

�o

ρof · δu d�o

−
∫

�o

ρoP : (∂(δu)/∂X) d�o (2)

where δu is a virtual displacement vector, and to is the trac-
tion vector per unit reference area. The displacement u and
virtual displacement δu are members of the Sobolev function
space of degree one [8].

In the next section, a randomly close-packed Voronoi tes-
sellation is used to mesh the reference domain �o. The face
network of the Voronoi mesh will be used as a random basis
for representing new fracture surfaces in the deformed con-
figuration. In Sect. 4, Eq. 2 will be solved using a Galerkin
finite element approach where each Voronoi cell is formu-
lated as a finite element directly on the reference
configuration.

3 Randomly close-packed Voronoi tessellations

Voronoi tessellations have a rich history in mathematics and
science and have a number of advantageous properties [43].
Given a finite set of points Xi or nuclei, the Voronoi
tessellation is defined as the collection of regions or cells
Vi where

Vi =
⋂
i �= j

{X|d(Xi ,X) < d(X j ,X)}. (3)

Here, X represents an arbitrary point in the domain, and the
function d is the Euclidean distance between two points.
Each spatial point belonging to the Voronoi cell i is closer to
nucleus i than all other nuclei. Note that each Voronoi cell is
defined as the intersection of half-spaces and is thus convex.
An example of a two dimensional Voronoi cell is shown in
Fig. 1. While the Voronoi tessellation can be formed from
any finite set of points or seeds, a special structure arises
from the study of close packing of equi-sized hard spheres
[1]. A classic experiment of dropping hard spheres into a rel-
atively large container produces a structure known as random

Fig. 1 A collection of points and their associated Voronoi diagram
defined by Eq. 3

(a) (b)

Fig. 2 The associated Voronoi diagram for both (a) an hexagonal close
packed array of points, and (b) a randomly close packed array

close-packed (RCP) [64]. Unlike the well known hexagonal
close-packed (HCP) structure with a packing factor of 0.740,
the RCP structure exhibits a maximum packing factor of only
0.637. An example of the associated Voronoi tessellation for
both the HCP and RCP structures in two dimensions is shown
in Fig. 2. The RCP structure arises in a number of scientific
fields and has been extensively studied. The RCP structure
provides a foundation for the study of amorphous solids as
described by Zallen [64]. The statistical geometry aspects of
RCP structures and their associated Voronoi diagrams have
been studied by Finney [20]. In three dimensions the aver-
age number of nearest neighbors is 14.3. For comparison, the
number of nearest neighbors of the hexagonal close-packed
structure is exactly 14. For the RCP structure the average
aspect ratio of each Voronoi cell is approximately one. The
median number of cell faces is 14 with a large majority of
the face distribution in the range of 13 to 16. The median
number of edges of each cell face is 5 with a large majority
of the distribution in the 4 to 6 range. Most importantly each
junction or node of the RCP Voronoi structure is randomly
oriented with only a short range correlation to neighboring
nodes. In two dimensions the RCP Voronoi structure results
in cells with an average number of edges of exactly 6 and
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Fig. 3 Process used to create
the randomly close packed
Voronoi tessellation: (a) random
seeding until the theoretical
maximum packing is reached
with a constraint on minimum
distance between points,
(b) Delaunay triangulation, and
(c) dual Voronoi tessellation

(a) (b) (c)

an average interior vertex angle of approximately 120 deg
[64]. These relatively large interior angles compared to con-
ventional triangle and quadrilateral meshes are expected to
result in relatively robust behavior in problems with large
shear strains.

A common method for generating the RCP points is based
on a variant of a homogeneous Poisson process and is known
as random sequential adsorption or hard-core Gibbs process
[40]. For a given characteristic length h, points are randomly
and sequentially placed in the domain with a constraint on
minimum distance between points. The constraint is enforced
by merely discarding those new points that violate the con-
straint. The seeding process stops when the maximum pack-
ing threshold is reached within tolerance. Given the RCP
point distribution, a number of techniques can be used to
generate the Voronoi tessellation. Here, the domain is first
triangulated using the Bowyer-Watson insertion algorithm
resulting in a Delaunay triangulation (see Fig. 3) [12,61].
The Voronoi diagram is simply the dual of the Delaunay
triangulation in the sense that the Voronoi cell nuclei are
the vertices of the Delaunay triangulation, and the vertices
of the Voronoi cells are the circumcenters of the Delaunay
triangles. The generation of the Voronoi diagram is straight
forward in unbounded domains but is nontrivial near
geometrically ‘complex’ boundaries due to the need for inter-
section operations. Bolander [10,11,62,63] has used RCP
Voronoi tessellations in spring-lattice models, and has devel-
oped a number of numerical techniques for handling non-
convex domains.

In practice the RCP Voronoi tessellation can contain a
number of relatively small edges. These small edge lengths
would cause an unacceptably small critical time-step in an
explicit dynamics numerical solution. To regularize the mesh
for use in explicit dynamics, any edge whose length is below
a user specified tolerance is simply deleted and the attached
nodes equivalenced. Figure 4 shows the effect of this mesh
regularization step on the Voronoi tessellation given in Fig. 3.
There is no discernable change in the tessellation. Histogram
plots are also given showing the number of elements with a
given number of edges both before and after the deletion of
small edges. A majority of elements have six sides with all

Fig. 4 Regularization of the Voronoi tessellation by removing rela-
tively small edges and equivalencing nodes: (a) raw Voronoi tessella-
tion and (b) Voronoi mesh with constraint on minimum edge size. The
histogram of the number of elements for a given number of edges is
also given

elements having in the range of four to eight sides after the
small-edge regularization.

4 Finite element formulation

A general displacement based finite element formulation for
plane faceted polyhedra applicable to large deformations has
been achieved by Rashid [51] by developing incompatible
polynomial based shape functions defined on the reference
configuration that satisfy the minimum properties for con-
vergence. Ghosh and coworkers [22,27,36,37] have exten-
sively developed the Voronoi Cell Finite Element Method
based on an assumed-stress hybrid finite element method.
Idelsohn [31] used natural neighbor coordinates of a Del-
aunay tessellation of points to develop a “meshless” finite
element method. Wachspress [60] used perspective geome-
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try concepts to develop rational shape functions on polyhe-
dra. Dai [18] has used the Smoothed Finite Element Method
to develop Voronoi based finite elements. Sukumar [58] has
developed a finite element formulation for convex polygons
using shape functions defined on regular polygons. An alter-
native polyhedral finite element formulation is introduced
here. The Reproducing Kernel Method [39] is used to gener-
ate compatible shape functions directly on the original con-
figuration of the element. Thus, there is no mapping to a “par-
ent” configuration. Without the need to map the polyhedron
to a parent configuration, there is no apparent restriction on
the shape of the element. In particular, non-convex elements
are allowed.

4.1 Shape functions

Before applying the Reproducing Kernel Method [39] to
the Voronoi mesh, the standard meshless development of
the method is briefly reviewed. In the Reproducing Kernel
Method, for a given node I , the shape function ψI (X) is first
generated by defining a nodal weight functionwI (X) that (1)
has compact support, (2) has a maximum value at the node,
and (3) is smoothly and monotonically decreasing away from
the node. In typical meshfree applications the nodal weight
function is given a circular support in two dimensions and a
spherical support in three dimensions. The nodal shape func-
tion is defined as a spatial modulation of the nodal weight
function [6],

ψI (X) = CI (X)wI (X) (4)

where the nodal modulation function CI (X) is chosen so
that ψI (X) satisfies the desired reproducing and consistency
requirements [6]. As described by Belytschko [6] a necessary
condition for convergence is that the shape functions be able
to at least reproduce polynomials through first order (linear
consistency). Let gT(X) be the vector of desired scalar-
valued basis functions, gi (X), i = 1, 2, . . . , n

gT(X) = { g1(X) g2(X) g3(X) . . . gn(X) }. (5)

For the special case of linear consistency only, the vector of
basis functions g(X) is simply

gT
LC(X) = { 1 X Y Z }. (6)

In general the basis could contain higher order polynomials
or other “enrichment” functions. Let N be the set of all nodes
whose weight function support contains the location X. The
reproducing property of the shape functions takes the form
∑
I∈N

ψI (X)g(XI ) = g(X). (7)

In order to satisfy Eq. 7, CI (X) is taken to be of the form

CI (X) = aT(X)g(X − XI ) (8)

where

aT(X) = { a1(X) a2(X) a3(X) . . . an(X) } (9)

is a vector of unknown scalar valued functions, ai (X), i =
1, 2, . . . , n.

For the present development only linear consistency is
enforced. The restriction to linear consistency does not imply
that the resulting shape functions are piecewise linear. In gen-
eral the shape functions are rational functions [7]. Substi-
tuting Eqs. 8 and 6 into Eq. 7 yields, after some algebraic
manipulation, the matrix equation

aT(X) = { 1 0 0 0 }A−1(X) (10)

where the 4 × 4 symmetric matrix A(X) is given by

A(X) =
∑
J∈N

wJ (X − XJ )gLC(X − XJ )gT
LC(X − XJ ) (11)

where gLC(X) is defined in Eq. 6. Calculation of the inverse
of A(X) in Eq. 11 allows for the solution of a(X) in Eq. 10
and subsequently CI (X) in Eq. 8. By construction both the
reference coordinate X and the displacement field u are inter-
polated by the shape functions ψI (X)

X =
∑
I∈N

ψI (X)XI , u =
∑
I∈N

ψI (X)uI (12)

where XI and uI are the nodal positions and displacements,
respectively. Thus, by definition this element formulation is
isoparametric. The spatial derivatives of the shape functions
can be calculated by direct differentiation of Eqs. 8, 10, and
11 as described in [7].

Now consider the application of this general shape func-
tion construction to a Voronoi mesh of a domain �o with
boundary �o. First, the nodal weight function wI is defined
as follows. The compact support of wI is chosen to be the
union of element domains attached to node I as with stan-
dard finite elements. Let this domain be denoted by �I with
boundary �I and unit normal n. The nodal weight function
wI (X) is defined as the solution to the Poisson boundary
value problem,

∇2wI + 1 = 0 in �I

wI = 0 on �I ∩ �o = Ø (13)

∇wI · n = 0 on �I ∩ �o �= Ø.

Given the nodal weight functionwI , Eqs. 4–11 can be used to
calculate the nodal shape function ψI . It is important to note
that by construction, for any two nodes I and J , ψI (XJ ) =
δIJ , so that the shape functions satisfy the Kronecker
delta property as with standard finite elements. This property
greatly simplifies the imposition of displacement boundary
conditions, and is absent in the general use of the reproducing
kernel method as a meshless method [6]. Figure 5 shows the
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Fig. 5 a Contour plot of the nodal weight function for an interior node
of a regular hexagonal mesh. The weight function is obtained by solving
the local boundary value problem defined by Eq. 13. b Contour plot of
the shape function resulting from the application of the Reproducing
Kernel Method

weight function and resulting shape function corresponding
to an interior node of a regular hexagonal mesh.

Since the value of the shape function and its partial deriv-
atives are only needed at the Voronoi cell integration points,
Xk, k = 1, . . . ,M , the weight function and its partial deriva-
tives need only be evaluated there as well. Since the solution
to the Poisson problem Eq. 13 is needed only at a finite num-
ber of points, a boundary element solution method would
be the most efficient [35]. However, in the two-dimensional
example problem given in Sect. 6, a finite element method
based on first-order triangles was used. Since a total
Lagrangian formulation of the momentum equation is used,
the shape functions and their derivatives only need to be cal-
culated once at the beginning of the analysis and stored for
later use.

4.2 Element integration

Rashid [51] has proposed a general method for developing
Gauss points and their weights for integrating three-dimen-
sional polyhedral elements. For the two-dimensional appli-
cations presented here, a reduced approach is adopted since
each element domain is star shaped and can be triangulated by
connecting the element nodes to the element centroid. Stan-
dard Gauss rules for triangles can then be applied. Addition-
ally, Chen [16] has noted that the linear consistency enforced
in the construction of the shape functions does not guarantee a
linear exactness in the element formulation, i.e. satisfaction
of the patch test. Fundamentally, this is due to a violation
of the discrete form of Gauss’ theorem and can result in a
reduced accuracy and rate of convergence. For a given shape
functionψ the continuous version of Gauss’ theorem over an
element subdomain �e with boundary �e and outward unit
normal ni , i = 1, 2, 3 is given by∫

�e

ψ,i d�e =
∫

�e

ψni d�e. (14)

The discrete approximation resulting from numerical inte-
gration is then
∑

k

ωkψ,
k
i �

∑
k

ω�k ψ
knk

i (15)

where ψk ≡ ψ(Xk) and Xk are the integration points with
weights ωk in the domain and ω�k on the element boundary.
While Eq. 14 is a mathematical identity for any sufficiently
smooth function, Eq. 15 does not hold in general. Herein, to
maintain equality in Eq. 15 the shape function derivatives at
the integration points are modified by solving a least squares
problem of the difference of the shape function derivatives
and their original values with equality in Eq. 15 imposed as
a constraint:

min
aik∈�

M∑
k=1

(
ψ,ki − aik

)2
(16)

subject to the constraint
∑

k

ωkaik −
∑

k

ω�k ψ
knk

i = 0 (17)

where aik is the modified shape function derivative at the kth
integration point. The solution to Eqs. 16 and 17 was obtained
using the method of Lagrange multipliers. Typical correc-
tions in the shape function derivatives are a few percent.
These corrections are local to each element and thus do not
require a global equation solution. Since a total Lagrangian
formulation of the momentum equation is used, the shape
function derivatives are only corrected once at the start of
the analysis.

4.3 Verification

For an element verification study, the boundary value prob-
lem of a cantilevered beam with an end load is used (see
Fig. 6). The exact boundary conditions and solution in both
plane stress and plane strain are given in Hughes [28]. For
reproducibility a mesh of regular hexagons is used. The length
to thickness ratio of the beam is fixed at 4.62. Figure 7 shows
the effect of the shape function derivative correction on the
L2 norm of the displacement error as a function of cell size, h.
The L2 convergence rate is only 1.13 without the correction,
but 1.88 with the correction. Figure 8 shows the sensitivity
of the L2 norm of the displacement error to random spatial
perturbations in the regular hexagonal mesh. The normalized
maximum perturbation for each mesh is denoted by r . There
is only a small sensitivity to the initial shape of the elements.

To handle near incompressibility, a standard mean dila-
tion formulation is used [29,51]. Figure 9 shows the effect of
Poisson’s ratio, ν, on the L2 norm of the displacement error
for the case of plane strain. The mean dilation formulation
effectively eliminates the typical locking behavior. Figure 10
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Fig. 6 Beam-bending element
verification problem (plane
stress or plane strain, length to
thickness ratio is 4.62)

Fig. 7 Effect of integration consistency on the L2 norm of the displace-
ment error for the beam-bending verification problem using a regular
hexagonal mesh with cell size, h (plane stress, Poissons ratio = 0.3,
three integration points per element vertex)

Fig. 8 Sensitivity of the L2 norm of the displacement error to random
perturbations in the regular hexagonal mesh for the beam-bending ver-
ification problem (plane stress, Poissons ratio = 0.3, three integration
points per element vertex). The normalized maximum perturbation for
each mesh is given by r

Fig. 9 Effect of Poissons ratio, ν, on the L2 norm of the displacement
error for the beam-bending verification problem using a mean dilation
formulation (plane strain, three integration points per element vertex,
r = 0.2)

Fig. 10 Effect of number of element integration points on the L2 norm
of the displacement error for the beam-bending verification problem
(plane stress, Poissons ratio = 0.3, r = 0.2)
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shows the effect of the number of integration points per ele-
ment vertex on the L2 norm of the displacement error for
the case of plane stress. The use of one integration point per
vertex results in increased accuracy for the plane stress case
while avoiding zero-energy modes. Conversely, for the plane
strain case (not shown) an opposite trend was observed.

4.4 Time integration

To numerically integrate Eq. 2 in time, a typical explicit-
dynamics central difference time integration scheme is used
[9]. To obtain a diagonalized mass matrix, the “special lump-
ing technique” of Hinton [25] is used. This mass lumping pro-
cedure is recommended by Hughes for non-standard element
formulations as it is guaranteed to produce positive lumped
masses [30].

5 Dynamic mesh connectivity and contact

5.1 Dynamic mesh connectivity

The creation of one or more new fracture surfaces (faces in
three dimensions and edges in two dimensions) can occur
in each time step in a simulation. For crack initiation in the
interior of the body, at least two cracked edges are needed
to realize a change in the mesh connectivity in two dimen-
sions. In three dimensions at least three faces are needed. For
crack initiation on the boundary of a body, only one cracked
edge is needed to realize a change in the mesh connectivity
in two dimensions, while in three dimensions at least two
faces are needed. To facilitate this change in mesh connec-
tivity during the simulation, an efficient algorithm and data
structure is needed that is also simple and free of special
cases. Pandolfi [46] has presented a general algorithm and
data structure for tetrahedral meshes. Herein, an algorithm
based on equivalence classes is used. In abstract algebra an
equivalence relation is a generalization of equality [21]. An
equivalence relation on a set S is a set R of ordered pairs
of elements of S such that (1) (a, a) ∈ R for all a ∈ S,
(2) (a, b) ∈ R implies (b, a) ∈ R, and (3) (a, b) ∈ R and
(b, c) ∈ R imply (a, c) ∈ R. If R is an equivalence rela-
tion on a set S, one can write more clearly a Rb instead of
(a, b) ∈ R. Let ∼ denote an equivalence relation on S and
a ∈ S, then the set [a] = {x ∈ S|x ∼ a} is the equivalence
class of S containing a. A partition of a set S is a collection of
nonempty disjoint subsets of S whose union is S. The equiv-
alence classes of an equivalence relation on a set S constitute
a partition of S [21].

To simplify the algorithm discussion, consider the case
of a two-dimensional mesh. (The three-dimensional algo-
rithm is identical in structure.) Three types of programming
objects are used: (1) element objects, (2) edge objects, and

(3) global node objects. An element object consists of its
vertices and a mapping to global nodes. This mapping to
global nodes will change after a mesh connectivity update.
An edge object consists of two attached elements (one of
which may be null if the element is on the boundary) and
four element vertices (two for each attached element). The
node object consists of solution information such as position
and velocity. If an edge object is not fractured then its set
of four element vertices will map to only two unique global
node objects. Let ai represent the i th vertex of the ath ele-
ment. Let S be a set of element vertices. The equivalence
relation ∼ is defined such that ai ∼ b j if the two element
vertices are part of an uncracked edge and each is from a
different element. This equivalence relation may be used to
partition any set of element vertices into equivalence classes.
Each equivalence class may then be identified as a new global
node. An example of this algorithm is given in Fig. 11, and
is detailed below:

1. Initialization

(a) Create an element work set, W , consisting of all
elements connected to fractured edges.

(b) Create an edge object work set, We, consisting of
all edge objects whose attached elements are in W .

(c) Let S the set of all element vertices of W ; S =
{a1, . . . , an, b1, . . . , bm, . . .}

(d) Initialize the partition P of S by taking each ele-
ment vertex to be a set; Pinit = {{a1}, . . . , {an},
{b1}, . . . , {bm}, . . .}

2. Partition Loop over all edge objects in We.

(a) if fractured then equivalence element vertices
attached to this edge object by uniting sets in P .

3. Each item in P is now an equivalence class. Create a
global node object for each equivalence class.

4. Transfer nodal data (e.g. position, velocity) from old
global nodes to new global nodes.

Note that the partition step requires only a single pass through
the set of edges in the edge work set We.

5.2 Contact

Pervasive fracture involves a large amount of self-contact
between new fracture surfaces. It is essential to have a sim-
ple and robust contact algorithm that can handle large sliding
and changes in surface topologies. To avoid any constraints
on surface topology that is typical of master/slave contact
algorithms, a simple penalty approach is adopted here. Each
polyhedral element is treated independently and checked
for mutual penetration as in the discrete element method
[41]. Only those elements that are on the initial boundary
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Fig. 11 Example of the dynamic mesh connectivity algorithm: (a) a
four element submesh with two edges marked as fractured and three
edges marked as intact; global nodes are shown with solid circles, (b)
fully disconnected mesh with edge connectivities shown with dashed
lines; interim equivalence classes are shown with open circles/ellipses;
intact state of edge 1 is used to unite interim equivalence classes, (c)
intact state of edge 2 is used to unite interim equivalence classes, (d)
intact state of edge 4 is used to unite interim equivalence classes, (e)
after all intact edges have been visited, final equivalence classes become
new global nodes

of the domain or have a fractured face need to be considered
for contact. If penetration is detected, a penalty force based
on both the penetrating velocity and penetration is applied

following Heinstein [24]. Due to the faceted nature of the
polyhedral elements, surface normals are smoothed to pre-
vent discontinuous sliding behavior.

6 Example

For an example with pervasive fracture that involves both ini-
tial impact fragmentation as well as late time structural frac-
ture, consider a low-strength concrete column (0.3×1.83 m)
impacting a rigid plane at a striking velocity of 7.6 m/s and
45◦ angle-of-attack as shown in Fig. 12. The column is ide-
alized as a two-dimensional plane strain structure composed
of a linear elastic material (Young’s modulus E = 28.3 GPa,
Poisson’s ratio ν = 0.2, density ρ = 2.25 g/cc) with a Mohr-
Coulomb damage-localization criterion containing a tensile
cutoff σo as shown in Fig. 13. The Mohr–Coulomb criterion
is given by

|τ | = c − µσ (18)

where τ is the limiting shear stress on a plane, σ is the normal
stress on the same plane, c is the cohesion, andµ is the coeffi-
cient of internal friction. For this example, c = σo = 3.7 MPa
and µ = 0.75. The cohesive traction model follows that of
Camacho and Ortiz [13]. The cohesive parameters presented
in reference [49] for mortar are used with an overall frac-
ture energy G = 57 J/m2. An estimate of the cohesive-zone
length can be obtained using an equivalent linear elastic frac-
ture mechanics model in which the length of the cohesive
zone, L , is given by L = klch, where lch = E ′G/σ 2

o is
Hillerborg’s characteristic size, E ′ = E/(1 − ν2), and k is
a dimensionless constant in the range 2 to 5 [4,17]. Using
the above material values gives lch = 0.12 m and a minimum
value for L of 0.25 m. This value for the length of the cohe-
sive zone is roughly equal to the thickness of the concrete
column in the present example, and should be adequately
resolved.

Fig. 12 A low-strength concrete column striking a rigid wall at a 45◦
degree angle
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Fig. 13 Mohr-Coulomb failure surface in shear (τ )—normal (σ ) stress
space, with cohesion c, tensile cutoff σo, and internal friction µ

A two-dimensional explicit-dynamics program imple-
menting the RCP Voronoi method of Sects. 3, 4, and 5 was
developed using the C++ programming language. The Stan-
dard Template Library [33], providing the set, vector, list,
and map dynamic data structures, was particularly useful. In
order to detect if the localization criterion Eq. 18 has been met
at an interelement face, the stress field is interpolated from

the integration points of the two attached elements. Once the
localization criterion is met at an interelement face, the con-
nectivity of the finite element mesh is updated as described
in Sect. 5.1, and the cohesive traction model is invoked. The
normal tractions are taken to be zero under over-closure. The
contact algorithm of Sect. 5.2 is used to prevent interelement
penetration.

For the results and discussion to follow, the i th realization
of a RCP Voronoi tessellation with a characteristic cell size
h will be denoted by Rh

i . Four characteristic cell sizes will
be considered, 8, 4, 2, and 1, with h = 1 corresponding to
a physical dimension of 0.635 cm. Three realizations of the
RCP Voronoi mesh are shown in Fig. 14 for h = 8, h = 4, and
h = 2. Figure 15 shows a series of snapshots in time of the
concrete column during the impact event using the R2

1 mesh.
In addition to the boundary, fracture surfaces whose cohe-
sive tractions have fully softened are also shown. There is
extensive fragmentation at the impact corner. Note the bend-
ing induced fracture at the midsection involving crack coa-
lescence and branching. There is additional fragmentation
after the column rotates and the rear section strikes the rigid
plane at approximately 200 ms. The fragmentation process is
essentially complete by 300 ms. Due to the ubiquitous contact
and pervasive fracture present in this problem, the simulation
results are expected to be extremely sensitive to initial con-
ditions and system parameters. To illustrate the extreme sen-
sitivity to initial conditions, the simulation was rerun using
an identical RCP mesh but with an initial angle-of-attack of
44.99◦, only a 0.02% change in initial conditions. The sim-
ulation results are shown in Fig. 16. Note that the fracture

Fig. 14 Randomly close
packed Voronoi realizations for
three different characteristic cell
sizes, h = 8, h = 4, and h = 2.
Three realizations are shown for
each characteristic cell size
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Fig. 15 Deformed state and
crack surfaces of the concrete
column at a number of instances
in time after impact with an
impact angle of 45.00◦ (R2

1
mesh). Only cracks that have
fully softened (no cohesive
tractions) are shown. Impact
times are 2, 10, 30, 150, and
230 ms

and fragmentation results are qualitatively similar but dis-
tinctly different with respect to specific cracks and resulting
fragment sizes.

Since the concrete column is idealized as spatially
homogenous in these simulations, the random orientation of
the RCP Voronoi structure provides in effect a non-physically
based variation in the localization properties of the material.
Performing multiple simulations with different RCP Voronoi
realizations will result in a distribution of results. (Of course,
ideally, one would use correlated random fields to model the
material properties including those used in the localization

criterion, Eq. 18.) Suppose the engineering quantity of inter-
est is the cumulative distribution of fragment mass-fraction,
a common measure used in describing fragmentation results.
The cumulative distribution at the simulation time of 300 ms
is shown in Fig. 17 for twelve RCP Voronoi realizations of
the R8

i mesh family. Note the large variation in results. The
maximum fragment size for a given simulation may be iden-
tified by the last step in the curve.

The cumulative distributions in fragment mass-fraction
for the R4

i , R2
i , and R1

i mesh families are shown in
Figs. 18, 19, and 20, respectively. The convergence of the
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Fig. 16 Deformed state and
crack surfaces of the concrete
column at a number of instances
in time after impact with an
impact angle of 44.99◦ (R2

1
mesh). Only cracks that have
fully softened (no cohesive
tractions) are shown. Impact
times are 2, 10, 30, 150, and
230 ms

distribution of cumulative distributions with mesh refinement
is not apparent, although twelve realizations is a very small
sample size for what is expected to be a complex statistical
distribution for fragment size. A definitive demonstration of
convergence, if present, could necessitate thousands of such
simulations. Such Monte Carlo analyses would be challeng-
ing for large scale three-dimensional problems.

The computational problem is further complicated by the
fact that the use of interelement cohesive based finite ele-
ment simulations is predicated on a mesh resolution that is

finer than the cohesive zone size, which is certainly true for
this example, but for many material systems such as brittle
ceramics the cohesive zone size is relatively small and can
be computationally expensive to resolve. Recently, Molinari
[42] has performed a detailed investigation into the conver-
gence behavior of the total dissipated cohesive energy for a
fragmenting ceramic ring in a one dimensional setting using
a random mesh. Extremely fine meshes were needed to dem-
onstrate convergence in the mean value. Resolving a full
probability distribution would be even more challenging.
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Fig. 17 Cumulative distribution of the fragment mass-fraction at a sim-
ulation time of 300 ms for the R8

i , i ∈ {1, . . . , 12} RCP Voronoi mesh
family. The mean of the maximum-fragment mass-fraction is denoted
by the arrow

Fig. 18 Cumulative distribution of the fragment mass-fraction at a sim-
ulation time of 300 ms for the R4

i , i ∈ {1, . . . , 12} RCP Voronoi mesh
family. The mean of the maximum-fragment mass-fraction is denoted
by the arrow

An additional consideration arises with the use of bulk
constitutive models that include internal state variables for
representing continuum damage from microcracking. The
presented computational method provides an explicit rep-
resentation of macroscopic cracks. Continuum damage

Fig. 19 Cumulative distribution of the fragment mass-fraction at a sim-
ulation time of 300 ms for the R2

i , i ∈ {1, . . . , 12} RCP Voronoi mesh
family. The mean of the maximum-fragment mass-fraction is denoted
by the arrow

Fig. 20 Cumulative distribution of the fragment mass-fraction at a sim-
ulation time of 300 ms for the R1

i , i ∈ {1, . . . , 12} RCP Voronoi mesh
family. The mean of the maximum-fragment mass-fraction is denoted
by the arrow

mechanics provides an implicit homogenized representation
of microcracks. As an RCP Voronoi mesh is refined to smaller
scales the question of self-consistency between the explicit
macroscopic representation of cracks and the implicit homog-
enized representation comes into question. This notion of
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self-consistency and scale dependence is a central theme in
fractal geometry descriptions of materials [14,15,26,48], and
is important for understanding the size effect in quasi-brittle
materials such as concrete [3,4].

7 Sensitivity to initial conditions

The previous example illustrates the challenge of defining
and demonstrating a measure of convergence for the per-
vasive failure class of problems. Fundamentally, this diffi-
culty arises due to extreme sensitivity in initial conditions
and system parameters. The face network provided by the
Voronoi tessellation provides a convenient discrete structure
for studying this sensitivity.

7.1 Transient chaos

In the mathematical field of nonlinear dynamics it is now well
known that there exist many deterministic systems that are
inherently unpredictable beyond a certain critical time, the so
called predictability horizon [54,56]. Such problems exhibit
an exponential growth in time of small variations in the initial
conditions and therefore possess an inherent predictability
limit in time [56]. To see this let x(t) represent a trajectory in
phase space for a dynamical system. Let x(t)+δ(t) represent
a slightly different trajectory in which the initial conditions
are varied by a very small amount δo. The difference in the
two trajectories δ(t) can be described by the relation

‖δ(t)‖ ∼ ‖δo‖eλt (19)

where λ is the Liapunov exponent. If λ is positive then the
predictability horizon is given by [56]

thorizon ∼ O

(
1

λ
ln

a

‖δo‖
)

(20)

where a represents an acceptable accuracy with respect to the
true trajectory x(t), and a> ‖δo‖. The logarithmic depen-
dence on ‖δo‖ defeats any hope of long term system pre-
dictability. For example suppose an acceptable accuracy in
the model prediction is 10% (a = 10−1) and the preci-
sion in the initial conditions is ‖δo‖ = 10−3. From Eq. 20,
thorizon ≈ 2(ln 10)/λ. If the precision in the initial conditions
is increased to 10−6 then thorizon ≈ 5(ln 10)/λ. Increasing
the precision in the initial conditions by three orders of mag-
nitude only increases the predictability horizon by a factor of
2.5. For linear systems the predictability horizon is infinite.
For stochastic systems (nondeterministic) the predictability
horizon is zero.

Chaotic behavior is quite prevalent in mechanical systems
that undergo intermittent contact-impact and stick-slip [19].
Beyond the predictability horizon it is more appropriate to
describe the dynamic system behavior using statistical theory

even though the governing equations are completely deter-
ministic. Furthermore, in this regime, more general notions
of convergence are necessary, ones based on statistical the-
ory and measure theory [38]. Certain quantities of interest
may be more predictable than others. Global quantities such
as dissipated energy, depth of penetration, and the ballistic
limit are expected to be more predictable than local quantities
such as fracture paths.

7.2 Fracture state space

As the example in Sect. 6 demonstrated, due to the extensive
interactions among advancing cracks and ubiquitous self con-
tact-impact, pervasive fracture problems are extremely
sensitive to initial conditions. Thus, they exhibit a finite
predictability horizon. In an attempt to quantify this pre-
dictability horizon for pervasive fracture, consider a given
RCP Voronoi mesh with N internal faces. At a high level of
abstraction the fracture state of a given face may be described
as either uncracked (0) or cracked (1). If the set of all faces is
enumerated from 1 to N , the fracture state of the entire body is
described by the sequence (a1, a2, . . . , aN ) where each ai is
either 0 or 1. The set of all such binary sequences forms a frac-
ture state space denoted by Eh . Now let Xn represent a crack
state at a given time tn in an explicit dynamics simulation.
The sequence (Xn)n≥0, defines the fracture history. Many
other fracture state spaces could be defined as well. If the
fracture state is described by the sequence (c1, c2, . . . , cN )

where each ci is the crack face opening displacement (cfod)
of face i , the set of all such sequences forms a new fracture
state space denoted by Fh .

A metric space [34] is a set M and a distance function d
defined on M such that for all x, y, z ∈ M the following four
axioms hold: (1) d is real valued, finite, and nonnegative, (2)
d(x, y) = 0 if and only if x = y, (3) d(x, y) = d(y, x), and
(4) d(x, y) ≤ d(x, z)+ d(z, y). For the fracture state space
Eh one possible distance function is the Hamming distance
[23] used in coding and information theory. In this case the
Hamming distance function dH (x, y), x, y ∈ Eh is defined
as the number of faces that have different fracture states
(0 or 1). With this metric the distance between two frac-
ture states can be calculated either at different times during
one simulation or between two distinct simulations using a
specific RCP Voronoi mesh. The Hamming distance between
a fracture state at time tn and the initial fracture state t0 is a
monotonically increasing function of time. For the fracture
state space Fh , one possible distance function is the sum
of the absolute difference between the crack face opening
displacements at two states, X and Y

dcfod(X,Y ) =
N∑

i=1

|cfod(xi )− cfod(yi )| (21)
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where the sum is over all faces. Unlike the distance function
dH in the metric space Eh , the distance function dcfod is not
necessarily a monotonically increasing function in time due
to crack closure.

For an example consider the impact of a concrete beam
by a rigid projectile with a striking velocity of 20.0 m/s. The
length of the beam is 4.0 m and the thickness is 0.3 m. The
RCP Voronoi mesh has a characteristic length of 12 mm with
a total of approximately 6,000 elements and 16,000 internal
edges. The results of the simulation are shown at the top of
Fig. 21 at a simulation time of 3.0 ms. The remaining six cases
are simulations using the same mesh and material parameters
but with increasingly accurate values of the striking veloc-
ity from 20.1 m/s (a difference of 0.5% from the reference
value) down to 20.000001 m/s (a difference of 5 × 10−6%
from the reference value). Only in the last two cases are the
outer structural cracks visually identical. The distance func-
tion dH can be used to quantify the differences in the crack
states. Figure 22 gives the distance between each crack state
and the reference as a function of the explicit dynamic simu-
lation step. The last time step shown (6,400) corresponds to
the simulation time of 3.0 ms used in Fig. 21. In all cases the

distance diverges exponentially (as described by Eq. 19) and
then saturates. An accuracy of 5 × 10−9% in the initial strik-
ing velocity is needed to achieve an identical final crack state.

8 Summary

A pure Lagrangian computational method based on randomly
close-packed Voronoi tessellations and dynamic mesh con-
nectivity was proposed as a rational approach for simulat-
ing the pervasive fracture of materials and structures. Each
Voronoi cell was formulated as a finite element using the
Reproducing Kernel Method. The randomly seeded Voronoi
cells provide a regularized random network of facets for rep-
resenting cracks. Examples were given of a concrete column
impacting a rigid wall and a rigid sphere impacting a con-
crete beam. It was demonstrated that the fracture patterns
and fragmentation statistics are extremely sensitive to ini-
tial conditions and display a form of transient chaos. The
primary challenge for this class of problems is the definition
and demonstration of convergence with mesh refinement for
engineering quantities of interest.

Fig. 21 Crack states resulting
from a rigid projectile impacting
a concrete column. Each image
represents the results from a
different simulation with a
slightly different striking
velocity using the same RCP
Voronoi mesh. The simulation
time is 3.0 ms after impact
which corresponds to the final
simulation step (6,400) reported
in Fig. 22

20.0 m/s

20.1

20.01

20.001

20.0001

20.00001

20.000001
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Fig. 22 Distance between crack states resulting from a rigid projectile
impacting a concrete column (see Fig. 21) as a function of simulation
step. Each curve represents a different simulation with a slightly dif-
ferent striking velocity using the same RCP Voronoi mesh. Distances
are with respect to the reference simulation shown at the top of Fig. 21
(striking velocity = 20.0 m/s). The final simulation step (6,400) corre-
sponds to the time of 3.0 ms used in Fig. 21
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