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Abstract A mixed formulation is developed and numeri-
cally validated for the general 2D anti-plane shear problem
in micro-structured solids governed by dipolar strain gra-
dient elasticity. The current mixed formulation employs the
form II statement of the gradient elasticity theory and uses
the double stress components and the displacement field as
main variables. High order, C0-continuous, conforming basis
functions are employed in the finite element approximations
(p-version). The results for the mode III crack problem reveal
that, with proper mesh refinement at the areas of high solu-
tion gradients, the current approximation method captures
the exact solution behaviour at different length scales, which
depend on the size of material micro-structure. The latter is
of vital importance because, near the crack tip, the nature of
the exact solution, changes radically as we proceed from the
macro- to micro-scale.

Keywords Dipolar strain gradient elasticity · Mixed
formulations · Mixed finite elements · p-Version

1 Introduction

The goal of the present work is the development and nume-
rical verification of a mixed formulation for the general 2D
anti-plane shear problem in micro-structured solids gover-
ned by dipolar strain gradient elasticity (strain gradient
theory of grade-two [4,15]). The proposed mixed formula-
tion employs the form II statement of the gradient elasticity
theory. The main variables are the double stress tensor and
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the displacement field. The current formulation falls in the
general category of mixed methods developed in [13], see
also [3,12,18]. The solution function spaces are appropria-
tely defined and the final weak forms have the standard
(symmetric) mixed structure. High order, C0-continuous,
conforming basis functions are employed in the finite ele-
ment approximations (p-version or p-extension), see Sect. 4
for details.

Mixed finite element methods for strain gradient elasti-
city and couple stress problems, employing different sets of
main variables from those used herein, are also developed in
[1]. Boundary element techniques may be found in [10,16].
Analytical methods for the mode III crack problem, in the
framework of Form II strain gradient elasticity, are given in
[7]. Closed form solutions for the same problem, in the fra-
mework of couple stress theory are contained in [9,19].

The practical necessity of strain gradient theories is jus-
tified by experimental studies, which reveal that the mate-
rial behaviour at micro-scale is significantly different from
that of the bulk material. More precisely, when the charac-
teristic length scale of the experiment is comparable to the
intrinsic length of the microstructure, strong size effects are
present (e.g., bending of ultra-thin beams [8,11]). Even for
large scale structures, the gradient effects become important
near areas with steep gradients of the strain (like corners,
cracks, etc.).

The results for the mode III crack problem (Sect. 4) show
that, with proper mesh refinement at the areas of high solu-
tion gradients, the current approximation method captures
the exact solution behaviour at both micro- and macro-scales.
The latter is very important because, near the crack tip, the
nature of the exact solution (for both true stress and dis-
placement fields), changes radically as we proceed from the
macro- to micro-scale, where the strain gradient effects domi-
nate the phenomena [7,9,11,19].
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The basic characteristic of the gradient elasticity theory
(as well as, the main departure from classical elasticity) is
that the strain energy density is a positive-definite functional
of the standard strain (as in the classical elasticity), as well
as, of the second gradient of the displacement field (Form
I) or the first gradient of strain (Form II). The new material
constants introduced contain certain characteristic lengths,
related to the size and topology of the micro-structure. In this
way, size effects are incorporated in the stress analysis. Typi-
cal real materials that can be modeled are materials with per-
iodic microstructure like crystals (crystal lattices), polycrys-
tal materials (crystallites), polymers (molecules) and granu-
lar material (grains); the respective micro-media are given
in the parentheses [14].

Summarizing, the paper is organized into the following
parts: Sect. 2 introduces the governing equations and boun-
dary conditions of the anti-plane shear problem in the fra-
mework of strain (dipolar) gradient elasticity. The propo-
sed mixed formulation is developed in Sect. 3. Section 4
contains the results from the numerical experimentations.
Finally, concluding remarks are given in Sect. 5.

2 Governing equations and boundary conditions

The detailed description of the assumptions leading to the
governing equations of 2D anti-plane shear problem, based
on the general 3D dipolar gradient elasticity theory, may be
found in [7]. In the following we outline the results that will
be used in Sect. 3, in order to develop the mixed formulation
of the present work.

A pure anti-plane shear state is reached if the body has the
form of a thick slab in the z-direction (Fig. 1). Moreover, the
external tractions act along the z-direction. Considering unit
width along the z-direction, the following two-dimensional
displacement field is generated,

x

y

µ xxz

yyz

xxz

yyz

 = 0 

µ  = 0 

µ  = 0 

µ  = 0 

tz = P

tz = -P

Cross-Section of a thick slab 

Fig. 1 Anti-plane shear boundary value problem description

ux = uy = 0 (2.1a)

uz = w(x, y) (2.1b)

where w(x, y) is a scalar valued function of two independent
variables, (x, y) ∈ � (�denotes the problem domain); repre-
senting the out-of-plane displacement field.

Assuming isotropic constitutive relations (hence, there
are no coupling terms between standard and double stresses
[13,14]), the following stress-strain relations may be stated
for the non-vanishing stress components in a given Cartesian
coordinate system x, y, z,

Standard (monopolar) Cauchy stresses:

τxz = µ
∂w

∂x
= τ13 (2.2a)

τyz = µ
∂w

∂y
= τ23 (2.2b)

Double (dipolar) stresses:

µxxz = µc
∂2w

∂x2 = µ113 (2.3a)

µxyz = µc
∂2w

∂x∂y
= µ123 (2.3b)

µyxz = µc
∂2w

∂y∂x
= µ213 (2.3c)

µyyz = µc
∂2w

∂y2 = µ223 (2.3d)

where µ > 0 is the standard shear modulus [Force/Length2]
and c > 0 is a (small) constant (the so-called, gradient coef-
ficient [Length2]), related to the nature of the material micro-
structure. The definition, as well as the physical meaning of
the double stress components may be found in [14].

According to [7], c = O(0.1h2), where h is an intrinsic
material length, while according to [19], c ≈ 0.50l2, where
l is a characteristic material length. Both h and l are directly
associated with the size of the material microstructure.

The so-called Form II formulation has been employed in
the development of the above equations [7,15]. The symme-
tries µi jk = µik j , encountered in the Form II statement of
the gradient elasticity theory, have already been taken into
account. On the other hand, it is well known that ∂2w

∂x∂y =
∂2w
∂y∂x in the sense of distributions, hence µxyz = µyxz , as
well. However, in a general Form II formulation it holds that
µxyz �= µyxz . Therefore, for the purpose of generality, we
currently consider them as independent variables.

Using (2.2), (2.3) and the equilibrium equations of the
dipolar gradient elasticity theory [4,13,15], the following

123



Comput Mech (2009) 43:715–730 717

fourth order governing differential equation is derived, see
[7] for details,

c∇4w − ∇2w = 0 (2.4)

where ∇2 := ( ∂2

∂x2 ) + ( ∂2

∂y2 ) and ∇4 := ∇2 · ∇2.
The above partial differential equation is accompanied by

suitable boundary conditions. The structure of the boundary
conditions, which depend on the particular application, may
be deduced by proper reduction from the general gradient
elasticity boundary conditions [4,13,15]. Assuming that the
surface double traction, as well as, the body double force are
absent, the proper boundary conditions are as follows [13]:

Traction boundary conditions:

n j (τ jk − ∂iµi jk) − D j (niµi jk) + (Dlnl)n j niµi jk = tk

on Sk
N ,t (2.5a)

Moment boundary conditions:

ni n jµi jk = 0 on Sk
N ,m (2.5b)

Jump conditions:

[m j niµi jk] = 0 on C (2.5c)

where
n j : components of the outer unit vector normal to the

surface.
τi j : components of the (symmetric) Cauchy stress tensor.
µi jk : components of the double stress tensor (moment per

unit area).
tk : components of surface (true) traction (force per unit

area).
D j (∗) := (δ jl − n j nl)∂l(∗): surface gradient operator.
δ jl : Components of Kronecker delta operator.
C : collectively denotes the curve(s) on the boundary where

the normal unit vectors exhibit jumps (i.e., corners, edges,
etc.).

[y]: the difference of the values of quantity y between both
sides of curve C .

m j := elk j slnk : where sl denotes the components of the
tangential vector of curve C and elk j is the well known alter-
nating tensor.

Sk
N ,t : part of the boundary where the k component of the

right hand side of the traction condition (2.5a) is specified
(a given point of the boundary either belongs to Sk

N ,t or the
displacement field uk must be specified on this point).

Sk
N ,m : part of the boundary where the k component of the

right hand side of the moment condition (2.5b) is specified
(a given point of the boundary either belongs to Sk

N ,m or the
normal derivative Duk := nl∂luk must be specified on this
point).

Denoting by Sk
E,t the boundary part where uk is prescribed

and Sk
E,m the part where Duk is specified, it holds that Sk

N ,t ∪
Sk

E,t = S, Sk
N ,t ∩ Sk

E,t = ∅ and Sk
N ,m ∪ Sk

E,m = S, Sk
N ,m ∩

Sk
E,m = ∅. Only zero (homogeneous) essential conditions

are considered herein. Moreover, in the following we use the
symbols x, y, z instead of 1, 2, 3 of the indicial notation.

Assuming for simplicity that the boundary curves are
straight lines parallel to x or y axis, see Fig. 1 and using (2.5),
the following boundary condition cases can be formulated for
the general anti-plane shear problem. We omit the interme-
diate algebra.

(1) Boundary curve which is part of S3
N ,t and parallel to

the y axis, with applied true traction t3 ≡ tz , along z
axis

tz =
(

τxz − ∂µxxz

∂x
− ∂µyxz

∂y
− ∂µxyz

∂y

)
nx (2.6)

(2) Boundary curve which is part of S3
N ,t and parallel to

the x axis, with applied true traction t3 ≡ tz , along z
axis

tz =
(

τyz − ∂µxyz

∂x
− ∂µyyz

∂y
− ∂µyxz

∂x

)
ny (2.7)

(3) Boundary curve which is part of S3
N ,m and parallel to

the y axis

µxxz = 0 (2.8)

(4) Boundary curve which is part of S3
N ,m and parallel to

the x axis

µyyz = 0 (2.9)

(5) Boundary curve which is part of S3
E,t and parallel to

the x or y axis

uz = 0 (2.10)

(6) Boundary curve which is part of S3
E,m and parallel to

the y axis

∂uz

∂x
= 0 (2.11)

(7) Boundary curve which is part of S3
E,m and parallel to

the x axis

∂uz

∂y
= 0 (2.12)
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(8) Jump conditions at the (right angle) corners, see (2.5c)
and Appendix I

µxyz + µyxz = 0 ⇒ µxyz = µyxz = 0 (2.13)

(9) Anti-symmetry conditions:
If a parallel to x axis boundary line is an axis of anti-
symmetry, then

µyyz = 0 (2.14)

If a parallel to y axis boundary line is an axis of
anti-symmetry, then

µxxz = 0 (2.15)

(10) Symmetry conditions:
If a parallel to x axis boundary line is an axis of sym-
metry, then

µyxz = 0 (2.16)

If a parallel to y axis boundary line is an axis of sym-
metry, then

µxyz = 0 (2.17)

3 Formulation of the mixed method

Let rxxz, rxyz, ryxz, ryyz be proper weighting functions asso-
ciated with the double stresses given by (2.3). The following
integral equations may be formed:∫
�

rxxzµxxz

µc
d� =

∫
�

rxxz
∂2w

∂x2 d� (3.1a)

∫
�

rxyzµxyz

µc
d� =

∫
�

rxyz
∂2w

∂x∂y
d� (3.1b)

∫
�

ryxzµyxz

µc
d� =

∫
�

ryxz
∂2w

∂y∂x
d� (3.1c)

∫
�

ryyzµyyz

µc
d� =

∫
�

ryyz
∂2w

∂y2 d� (3.1d)

Employing the standard Gauss theorem in (3.1) there follows,∫
�

rxxzµxxz

µc
d�

=
∫
S

rxxz
∂w

∂x
nx dS −

∫
�

∂rxxz

∂x

∂w

∂x
d� (3.2a)

∫
�

rxyzµxyz

µc
d�

=
∫
S

rxyz
∂w

∂y
nx dS −

∫
�

∂rxyz

∂x

∂w

∂y
d� (3.2b)

∫
�

ryxzµyxz

µc
d� =

∫
S

ryxz
∂w

∂x
nydS −

∫
�

∂ryxz

∂y

∂w

∂x
d�

(3.2c)∫
�

ryyzµyyz

µc
d�

=
∫
S

ryyz
∂w

∂y
nydS −

∫
�

∂ryyz

∂y

∂w

∂y
d� (3.2d)

Adding (3.2a–d), the following weak equation is formed,

∫
�

(rxxzµxxz + rxyzµxyz + ryxzµyxz + ryyzµyyz)

µc
d�

+
∫
�

(
∂rxxz

∂x

∂w

∂x
+ ∂rxyz

∂x

∂w

∂y
+ ∂ryxz

∂y

∂w

∂x

+ ∂ryyz

∂y

∂w

∂y

)
d�

=
∫
S

(
rxxz

∂w

∂x
nx + rxyz

∂w

∂y
nx

+ryxz
∂w

∂x
ny + ryyz

∂w

∂y
ny

)
dS (3.3)

Depending on the direction of the unit, outward, normal
vector, some of the boundary terms in (3.3) are known a
priori (thus, they remain in the forcing functional), while
other boundary terms contribute to the bilinear functional.
For example, if part of the boundary is parallel to the y axis,
i.e., nx = +1 or nx = −1, the respective contribution of
the term

∫
S

(
rxxz

∂w
∂x nx

)
d S is known a priori; since, from the

double traction (moment) condition (2.5b), either Dw = ∂w
∂x

or µxxz is known (in the latter case rxxz = 0, as usually consi-
dered in the weighted residual methods). Moreover, the term∫

S

(
rxyz

∂w
∂y nx

)
d S is not known a priori and must be trans-

ferred to the left hand side of the weak equation (it contri-
butes to the stiffness matrix of the respective finite element
approximation, see Sect. 4).

Note that for boundary curves which are not aligned with x
or y axis, one has to write each partial derivative as the sum
of normal and tangential derivatives, see [13] and Sect. 2.
Next we consider the equilibrium equation, which leads to
(2.4), see [7], for details.
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∂

∂x

(
τxz − ∂µxxz

∂x
− ∂µyxz

∂y

)

+ ∂

∂y

(
τyz − ∂µxyz

∂x
− ∂µyyz

∂y

)
= 0 (3.4)

Let s be a proper weighting function for the displacement
field w. Then, multiplying (3.4) by s, integrating over the
problem domain and using the Gauss’ theorem, it follows,
∫
�

(
∂s

∂x

∂µxxz

∂x
+ ∂s

∂x

∂µyxz

∂y
+ ∂s

∂y

∂µxyz

∂x
+ ∂s

∂y

∂µyyz

∂y

)
d�

−
∫
�

(
∂s

∂x
µ

∂w

∂x
+ ∂s

∂y
µ

∂w

∂y

)
d�

= −
∫
S

s

(
τxz − ∂µxxz

∂x
− ∂µyxz

∂y

)
nx dS

−
∫
S

s

(
τyz − ∂µxyz

∂x
− ∂µyyz

∂y

)
nydS (3.5)

The (true) traction condition, for straight boundary lines
aligned with x or y axis (which are parts of S3

N ,t ), is written
as follows:

tz =
(

τxz − ∂µxxz

∂x
− ∂µyxz

∂y
− ∂µxyz

∂y

)
nx

+
(

τyz − ∂µxyz

∂x
− ∂µyyz

∂y
− ∂µyxz

∂x

)
ny (3.6)

where tz is the externally applied (true) traction along the z
axis, see Fig. 1.

Using (3.6), the right-hand side of the weak equation (3.5)
takes a more familiar form,

G(s) = −
∫
S

stzdS −
∫
S

s
∂µxyz

∂y
nx dS −

∫
S

s
∂µyxz

∂x
nydS

(3.7)

The boundary terms appearing in (3.7) depend on tan-
gential derivatives of the double stresses µxyz and µyxz .
Applying the surface divergence theorem [4,14], one may
show that,

−
∫
S

s
∂µxyz

∂y
nx dS −

∫
S

s
∂µyxz

∂x
nydS

=
∫
S

∂s

∂y
µxyznx dS +

∫
S

∂s

∂x
µyxznydS (3.8)

hence,

G(s) = −
∫
S

stzdS +
∫
S

∂s

∂y
µxyznx dS +

∫
S

∂s

∂x
µyxznydS

(3.9)

The jump condition (2.5c) has been employed in (3.8), see
also (2.13) and Appendix I. It is not difficult to see that the
boundary terms on the right-hand side of (3.8) are conjugate
to the boundary terms of (3.3), which are not known a priori.
Now we are in the position to demonstrate the final structure
of the current mixed formulation.
Mixed formulation 3.1. Find (µxxz, µxyz, µyxz, µyyz)

belonging to Z ⊂ H1(�)4 and w ∈ X ⊂ H1(�) such that

∫
�

(rxxzµxxz + rxyzµxyz + ryxzµyxz + ryyzµyyz)

µc
d�

+
∫
�

(
∂rxxz

∂x

∂w

∂x
+ ∂rxyz

∂x

∂w

∂y
+ ∂ryxz

∂y

∂w

∂x

+∂ryyz

∂y

∂w

∂y

)
d� −

∫
S

(
rxyz

∂w

∂y
nx + ryxz

∂w

∂x
ny

)
dS

=
∫
S

(
rxxz

∂w

∂x
nx + ryyz

∂w

∂y
ny

)
dS (3.10)

for every (rxxz, rxyz, ryxz, ryyz) belonging to U ⊂ H1(�)4

and

∫
�

(
∂s

∂x

∂µxxz

∂x
+ ∂s

∂x

∂µyxz

∂y
+ ∂s

∂y

∂µxyz

∂x
+ ∂s

∂y

∂µyyz

∂y

)
d�

−
∫
S

∂s

∂y
µxyznx dS −

∫
S

∂s

∂x
µyxznydS

−
∫
�

(
∂s

∂x
µ

∂w

∂x
+ ∂s

∂y
µ

∂w

∂y

)
d� = −

∫
S

stzdS (3.11)

for every s ∈ Q ⊂ H1(�).
Assuming that (µxxz, µxyz, µyxz, µyyz) and w vanish at

the respective essential boundaries (i.e., Z = U and X = Q)

the above mixed formulation has the following standard struc-
ture of the general theory of mixed methods [2,5,6]

Find µ := (µxxz, µxyz, µyxz, µyyz) ∈ U and w ∈ Q
such that

A(µ, r) + B(r, w) = F(r), ∀r ∈ U (3.12a)

B(µ, s) − C(w, s) = G(s), ∀s ∈ Q (3.12b)

where r := (rxxz, rxyz, ryxz, ryyz) ∈ U
Note that the bilinear form A(µ, r) is coercive (hence

positive definite) on the space L2(�)4 and the bilinear form
C(w, s) is coercive on Q (assuming non-zero essential condi-
tions for the displacement field, i.e., no rigid body motions).
Mathematical analysis regarding solution existence, unique-
ness and stability of the above mixed formulation can be
found in [3,13].
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Table 1 The stiffness matrix of the mixed finite element formulation

µxxz (N1 j ) µxyz (N2 j ) µyxz (N3 j ) µyyz (N4 j ) w (N5 j )

rxxz (N1i )
∫
�

N1i N1 j
µc d� 0 0 0

∫
�

N1i,x N5 j,x d�

rxyz (N2i ) 0
∫
�

N2i N2 j
µc d� 0 0

∫
�

N2i,x N5 j,yd� − ∫
S N2i N5 j,ynx dS

ryxz (N3i ) 0 0
∫
�

N3i N3 j
µc d� 0

∫
�

N3i,y N5 j,x d� − ∫
S N3i N5 j,x nydS

ryyz (N4i ) 0 0 0
∫
�

N4i N4 j
µc d�

∫
�

N4i,y N5 j,yd�

s(N5i )
∫
�

N5i,x N1 j,x d�
∫
�

N5i,y N2 j,x d�
∫
�

N5i,x N3 j,yd�
∫
�

N5i,y N4 j,yd� − ∫
�

N5i,xµN5 j,x d�

− ∫
S N5i,y N2 j nx dS − ∫

S N5i,x N3 j nydS − ∫
�

N5i,yµN5 j,yd�

4 Numerical results

Finite element interpolations of equal polynomial orders
are used for all main variables. The elements employed are
general quadrilaterals, with bilinear coordinate mapping
and Legendre polynomial based hierarchical shape functions
[17]. Denoted by N1 j , N2 j , N3 j , N4 j and N5 j are the basis
functions associated with the double stress components
µxxz, µxyz, µyxz, µyyz and the displacement field w, respec-
tively. The typical block of the total stiffness matrix is shown
in Table 1, whereas the typical force vector block is shown
in Table 2.

Values of index j ranging from 1 to 4 correspond to the
standard bilinear basis functions (i.e., polynomial interpola-
tion order p equals 1). Values of index j greater or equal
to 5 are associated with the higher order hierarchical basis
functions (i.e., p ≥ 2).

Topologically, the higher order basis functions are of two
kinds; side modes, which are related to mesh edges and inter-
nal (bubble) modes, which are related to the interior of the
elements. It is noted that the polynomial interpolation order
increases without introducing new physical nodes. Moreover,
the finite element spaces expand in a hierarchical fashion.
When increasing the polynomial order from p to p + �p
the previous basis functions (i.e., up to order p) remain and
higher order corrections (i.e., of order p + 1 up to p + �p)

are added to the approximation spaces.
In Table 2, fz(x, y) denotes a body force term [Force/

Length3] which may be added appropriately on the right
hand side of the governing Eq. (3.4). Note that, in the cur-
rent formulation, the number of unknowns could be reduced
by imposing the condition µxyz = µyxz , see (2.3). Then the
modified stiffness matrix produces the same results as the
full stiffness shown in Table 1.

Four different model problems are considered. The first
two have linear and bilinear displacement fields and serve
as consistency tests (or patch tests). These examples verify
that the proposed mixed finite element formulation captures
a linear or bilinear exact solution for arbitrary geometry
meshes. The third model problem assumes a fictitious body
force fz(x, y), which results in a smooth exact solution. This

Table 2 The force vector of the mixed finite element formulation

rxxz (N1i )
∫

S N1i
∂w
∂x nx dS

rxyz (N2i ) 0

ryxz (N3i ) 0

ryyz (N4i )
∫

S N4i
∂w
∂y nydS

s (N5i ) − ∫
S N5i tzdS − ∫

�
N5i fzd�

example is used to validate the accuracy and convergence of
the present implementation scheme in the framework of the
p-extension.

Finally, the last example (which is the most interesting)
refers to the mode III crack problem in the framework of
dipolar strain gradient elasticity. The exact solution for the
true stress field is highly singular near the crack tip, varying
as O

(
r−3/2

)
, within a neighborhood of O

(√
c
)
. This model

problem verifies the ability of the current mixed formulation
to capture the exact solution behaviour at different length
scales, provided that proper mesh refinement has been per-
formed.

It is emphasized, that for all model problems, the constants
have the proper dimensions, so that the final formulas are
dimensionally correct. For example, in model problem 2,
w = 1 · xy where 1 must have units [Length−1] or in model
problem 3, w = sin(2 · πx), where 2 must also have units
[Length−1].

Model problem 1. Linear displacement field (pure Cauchy
shear stress state)

The problem geometry and boundary conditions are shown
in Fig. 2. The exact solution fields are as follows,

uz = w = My, µxxz = µxyz = µyxz = µyyz = 0
(4.1)

where M = P
µ

(non-dimensional constant), µ is the standard
shear modulus and tz = P is the applied constant, external,
true traction, with units of [Force/Length2], see (2.2).

For any domain, with dimensions W , H and general qua-
drilateral meshes of arbitrary polynomial order, the finite ele-
ment solution coincides with the exact solution. A typical
mesh configuration employed in the numerical tests is depic-
ted in Fig. 2.
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Fig. 2 Typical mesh used for model problem 1 (pure shear stress state)
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Fig. 3 Typical mesh used for model problem 2 (bilinear displacement
field)

Model problem 2. Bilinear displacement field
The problem geometry and boundary conditions are shown
in Fig. 3. The exact solution fields are as follows,

w = xy (4.2a)

µxxz = 0, µxyz = µyxz = µc, µyyz = 0 (4.2b)

where c is the gradient coefficient, see (2.3).
The external true tractions along the edges BD and CD are

tz = µy and tz = µx , respectively, see (2.6) and (2.7). It is
also important to note that, due to (4.2b), the jump condition
(2.5c), for the right angle at point D, becomes,

µxyz + µyxz = 2µc (4.3)

Hence, a point load −2µc must be added at the fifth block
of the force vector for the node located at D, see Appendix I
and [13] for more general cases.

For any domain, with dimensions W , H and general qua-
drilateral meshes of arbitrary polynomial order, the finite ele-
ment solution essentially coincides with the exact solution. A
typical mesh configuration employed in the numerical tests
is depicted in Fig. 3.

Model problem 3. Smooth exact solution, based on a fictitious
body force.

The boundary value problem and the discretization of the
problem domain are shown in Fig. 4. A mesh of 12 general
quadrilateral elements is used. The exact solution fields are
as follows,

w = sin(2πx)y (4.4a)

µxxz = −(2π)2µcy sin(2πx) (4.4b)

µxyz = µyxz = (2πµc) cos(2πx) (4.4c)

µyyz = 0 (4.4d)

The body force applied is

fz(x, y) = (2π)2µy sin(2πx) + (2π)4µcy sin(2πx) (4.5)

Fig. 4 Mesh used for model
problem 3

123



722 Comput Mech (2009) 43:715–730

variable : µxxz

h = 1/12

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1 10 100 1000

Total number of nodes per variable in the structure

M
ax

im
u

m
 n

o
d

al
 p

o
in

t-
w

is
e 

re
la

ti
ve

 e
rr

o
r 

%

variable : µxyz

h = 1/12

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1 10 100 1000

Total number of nodes per variable in the structure

M
ax

im
u

m
 n

o
d

al
 p

o
in

t-
w

is
e 

re
la

ti
ve

 e
rr

o
r 

%

variable : µyyz

h = 1/12

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1 10 100 1000

Total number of nodes per variable in the structure

M
ax

im
u

m
 n

o
d

al
 p

o
in

t-
w

is
e 

re
la

ti
ve

 e
rr

o
r 

%

variable : w
h = 1/12

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1 10 100 1000

Total number of nodes per variable in the structure

M
ax

im
u

m
 n

o
d

al
 p

o
in

t-
w

is
e 

re
la

ti
ve

 e
rr

o
r 

%

Variable : µxxz

12 Elements 

Variable : µyyz

12 Elements 

Variable : µxyz

12 Elements 

Variable : w
12 Elements 

Fig. 5 Maximum nodal relative error convergence, for the main variables. Model problem 3

The true traction applied along edge CD is

tz = µ sin(2πx) + 2(2π)2µc sin(2πx) (4.6)

The problem parameters are,

µ = 100.0

[
Force

Length2

]
, c = 0.00405

[
Length2

]
. (4.7)

The convergence of the maximum point-wise relative
errors of the main variables at the vertex nodes of the mesh,
versus the total number of nodes per variable (including
the hierarchical nodes), are depicted in Fig. 5. The rela-
tive errors have been evaluated with respect to the maximum
exact value of each variable. The only exception is the µyyz

variable for which the maximum exact value of µxxz has
been used.
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Fig. 6 Maximum point-wise relative error at the centre of the elements for the 1st derivative, of the main variables, with respect to x . Model
problem 3

The convergence of the maximum point-wise relative
errors of the 1st derivatives with respect to x , at the middle
of the elements, are depicted in Fig. 6. Finally, the conver-
gence of the relative errors of the 1st derivatives with respect
to y, are depicted in Fig. 7. The relative errors are compu-
ted with respect to the maximum point-wise values of the

derivatives of the variables. In all of the aforementioned
figures logarithmic scale is used for both axes.

In general, it can be said that all variables converge expo-
nentially (typical behaviour in p-extension analyses) when
they get past the pre-asymptotic area. The rate of conver-
gence is not the same for all the variables. In particular, the
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Fig. 7 Maximum point-wise relative error at the centre of the elements for the 1st derivative, of the main variables, with respect to y. Model
problem 3

best convergence appears, as expected, for the out-of-plane
displacement variable, w.

Model problem 4. Mode III Crack problem in dipolar strain
gradient elasticity
The problem geometry and boundary conditions are shown
in Fig. 8, see also [7]. Due to the anti-symmetric nature of the
problem, the upper right quarter of the total problem domain
is analyzed. The dimensions of this quarter are shown in
Fig. 9. The problem parameters are c = 0.005 [Length2],

µ= 100 [Force/Length2] and tz = P = 10 [Force/Length2].
The total length of the crack (20 Length Units) is 1/4 of the
total slab width (80 Length Units).

According to theoretical analysis, see [7,19], next to the
crack tip, within a neighborhood of radius O(

√
c), the dis-

placement field has an asymptotic behaviour O(r3/2), where
r is the distance from the crack tip. Away from this neigh-
borhood, but still far from the external boundaries, the exact
solution displacements approach the behaviour of the stan-
dard Elasticity asymptotic solution, i.e. O(r1/2).
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Fig. 8 Boundary value problem
of mode III central crack
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Fig. 9 Mesh used in mode III
crack problem (upper right
quarter)

Fig. 10 Displacement field w

of the crack face
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Fig. 11 Detail of Displacement
field w, over the crack face, near
the crack tip (zoom of Fig. 10)
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Fig. 12 True stress field in
front of the crack tip. Elasticity
and gradient solutions compared
against Mixed FEM solutions
for various p
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Moreover, due to gradient effects, the true stress, namely
the y component of the true traction on a section parallel to
x axis, see (3.6), near the crack tip, has opposite sign from
that of the elasticity solution and approaches infinity as
O(r−3/2). Far from the neighborhood of radius O(

√
c), but

still near the crack tip, compared to the problem domain
size, the exact solution for the true stress approaches the
asymptotic behaviour of the standard elasticity solution, i.e.
O(r−1/2). Of course, far away from the crack tip, the true
stress approaches the stress field applied macroscopically.

All the above are verified by the extensive numerical expe-
rimentation carried out in the present work. The mesh
employed in the analysis is shown in Fig. 9. Figure 10 shows
the displacement field of the crack face, at the macroscopic
level, which approaches the shape of the standard elasticity

solution. Figure 11 zooms near the crack tip, within the neigh-
borhood of O(

√
c). As predicted by the theoretical asymp-

totic and full field solution analyses, [7,19], in the vicinity
of the crack tip, the crack face displacement demonstrates a
cleaving (cusp-like) behaviour, contrary to the classical elas-
ticity displacement field, which is more blunted, see Fig. 11.

For the current mode III crack model problem, the asymp-
totic displacement and true stress fields for standard and gra-
dient elasticity are given in Appendix II.

Figure 12 depicts the variation of the true stress, ahead
of the crack tip, compared to standard elasticity and gra-
dient elasticity asymptotic solutions. As predicted by the full
field analysis [7,19] the true stress exhibits a local maximum.
Then it reduces, changes sign and becomes infinite within a
neighborhood of O(

√
c), see Fig. 13.
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Fig. 13 True stress field in
front of the crack tip (zoom of
Fig. 12)
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Fig. 14 FEM solution of the out-of-plane displacement field w of the
crack face near the crack tip, for various interpolation orders (Log–Log
axes)

The Log–Log Fig. 14 depicts the FEM displacement dis-
tribution at the crack face, near the crack tip. Figures 15
and 16 show the distribution of the partial derivative of the
displacement with respect to x(strain γxz), at the crack face
near the crack tip and its Log–Log plot, respectively. Last but
not least, Fig. 17 shows the Log–Log plot of the true stress
at the crack head, near the crack tip. All of these Log–Log
plots verify the respective asymptotical r dependence of each
variable, which have been stated above.

5 Conclusions

A mixed formulation has been developed and numerically
tested for the general 2D anti-plane shear problem, in the

Fig. 15 FEM solution of the 1st derivative of out-of-plane
displacement field with respect to x at the crack face near the crack
tip, for interpolation order p = 6

framework of dipolar strain gradient elasticity (form II).
The current formulation employs the double stress compo-
nents and the displacement field as main variables (µ − u
formulation, [12]). High order, C0-continuous, conforming
basis functions were used in the finite element approximation
(p-extension), with equal polynomial interpolation order for
all main variables.

The numerical examples demonstrate the accuracy and
effectiveness of the proposed mixed method, in terms of error
convergence versus the number of degrees of freedom. The
results for the mode III crack problem reveal that, with pro-
per mesh refinement near the crack tip, the current method
is capable of capturing the exact solution features at several
length scales. Theoretical predictions for the mode III crack
problem are verified [7,19], namely, that the true stress near
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Fig. 16 FEM solution of the 1st derivative of out-of-plane
displacement field with respect to x for interpolation order p = 6 (Log–
Log axes)

Fig. 17 FEM solution of the true stress field at the crack head near the
crack tip for interpolation order p = 6 (Log–Log axes)

the crack tip exhibits a local maximum within a neighbo-
rhood of the order of the characteristic size of the material
microstructure.

For practical purposes, this local maximum value may
serve as a measure of the critical stress level at which further
advancement of the crack may occur. Also, it may be used to
develop certain failure criteria for the given structure, see [7]
for a more comprehensive discussion. Finally, as predicted by
the theoretical asymptotic (and full field solution) analyses,
in the vicinity of the crack tip, the crack face displacement
exhibits a cusp-like behaviour, as compared to classical elas-
ticity predictions of a more blunted front.

Future research directions could be the development and
numerical investigation of similar mixed formulations for
plane stress and strain problems in the framework of gradient
elasticity as well as full 3D numerical models. Finally, since
the effectiveness of the approximate solutions is improved

dramatically with proper mesh refinements, the development
of a posteriori error estimators and adaptive techniques is
necessary to reduce the error at high-gradient regions, with
as low computational cost, as possible.
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Appendix I: Deduction of the jump condition at right
angle corners, for the anti-plane shear problem

The starting point is a more general version of (2.5c), see
[4,13,14],

[m j niµi jk] = [m j Tjk] on C (I.1)

where Tjk denotes the externally applied double traction
components (if any).

The above relation holds for cases of non-zero jump condi-
tion (e.g., model problem 2, Sect. 4). Then, in our mixed for-
mulation, point load terms must be added to the force vector,
corresponding to the nodes at the corners, see (3.8), (3.9)
and (3.11). The formal analysis of the general 3D formula-
tion is given in [13]. In 3D scenarios, when [m j Tjk] �= 0,
distributed line loads (along curve C) are added in the force
vector.

Consider now a right angle corner of the boundary. Recall
that m j := elk j slnk , where sl denotes the components of
the tangential vector of curve C . The problem domain is
two-dimensional, nevertheless, the respective 3D body has
the form of a thick slab along z-direction. Hence, the respec-
tive curve C is actually a line, parallel to z-axis, which passes
from the given corner point (e.g., s1 = s2 = 0 and s3 = 1)

We are now in the position to write extensively m j =
elk j slnk . Without affecting the generality, we consider an
upper right corner (e.g., point D in Fig. 3). Then, for the
side which is parallel to the y-axis we have n1 = 1 and
n2 = n3 = 0 and

m j = e3k j s3nk = e31 j s3n1 = e31 j (I.2)

Based on the definition of the alternating tensor elk j ,
m1 = m3 = 0 and m2 = 1. Therefore, for the side which is
parallel to the y-axis,

m j niµi jk = m2niµi2k = m2n1µ12k = µ12k (I.3)

Based on the hypotheses of the anti-plane shear model, (I.3)
is meaningful only for k = 3. Resuming, for the side which is
parallel to the y-axis, the terms in the brackets of (I.1) reduce
to

m j niµi jk = µ123 = µxyz (I.4a)

m j Tjk = T23 = Tyz (I.4b)
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Next, we focus attention on the side which is parallel to the
x-axis (n1 = n3 = 0 and n2 = 1),

m j = e3k j s3nk = e32 j s3n2 = e32 j (I.5)

From (I.5), there follows m2 = m3 = 0 and m1 = −1.
Therefore, for the side which is parallel to the x-axis,

m j niµi jk = m1niµi1k = m1n2µ21k = −µ21k (I.6)

Once again, (I.6) is meaningful only for k = 3. Resuming,
for the side which is parallel to the x-axis, the terms in the
brackets of (I.1) reduce to

m j niµi jk = −µ213 = −µyxz (I.7a)

m j Tjk = −T13 = −Txz (I.7b)

Based on the definition of the bracket operator [∗], see Sect. 2
and [3,14], from (I.4) and (I.7), the following jump condition
at the right angle corners is deduced,

µxyz + µyxz = Tyz + Txz (I.8)

In the practical case where Tyz = Txz = 0, (I.8) leads to
(2.13). The latter has been employed in the formation of
(3.8). Finally, recall that µxyz = µyxz , due to double stress
definitions, see (2.3b, c). Therefore, Tyz = Txz = 0 gives
µxyz = µyxz = 0 at the right angle corners.

Appendix II : Mode III crack problem—asymptotic fields
near the crack tip

Asymptotic displacement fields at the crack face:

Standard elasticity

w(r) = KIII

µ

√
2r

π
[Length] (II.1)

where for the given model problem of Sect. 4,
µ = 100 [Force/Length2] and

KIII ≈ P
√

πα, α is half-crack length. (II.2)

Hence for the given problem

KIII ≈ 10
√

10π = 56.0499 [Force · Length−3/2] (II.3)

Gradient elasticity [7]

w(r) = Br3/2 [Length] (II.4)

where

B = 8KIII

3µ
√

2c
√

6π
= 3.44265 [Length−1/2] (II.5)

Asymptotic true stress fields at the crack head, near the
crack tip

Standard elasticity

tyz = KIII√
2πr

= 22.3606r−1/2 [Force · Length−2] (II.6)

Gradient elasticity [7]

tyz =
√

3cKIII

4
√

π
r−3/2 = 0.96824r−3/2 [Force · Length−2]

(II.7)
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