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Abstract It is still a challenge to model swelling pheno-
mena occurring in charged hydrated porous media. This is not
only due to the overall complexity of the model but also to the
fact that boundary conditions occur, which depend on inter-
nal variables. In the present contribution, a multi-component
model based on the Theory of Porous Media (TPM) is pre-
sented. The advantage of this model is that it is thermody-
namically consistent and it consists of only three primary
variables. As a result of the boundary conditions depending
on internal variables, the numerical treatment within the finite
element method (FEM) by use of the mixed finite element
scheme reveals artificial oscillations in the numerical results.
To overcome these oscillations, we propose to fulfil boundary
conditions weakly.

Keywords TPM · Swelling porous media · Charged
hydrated materials · Finite deformations · Weakly fulfilled
Dirichlet boundary conditions

1 Introduction

The aim of this contribution is to model swelling phenomena
which occur in charged hydrated media such as active soil
or soft biological tissue. These materials have a multiphasic
porous microstructure including a charged solid matrix and
an interstitial fluid. In particular, the solid matrix of, e.g.,
active clay is composed of negatively charged silicate plate-
lets, while the matrix of soft biological tissue such as articular
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cartilage or intervertebral discs is composed of collagen
fibres and proteoglycan aggregates (PGA) with adhering
fixed charges. Although inhomogeneities and anisotropies
may occur in reality, especially in the investigation of biologi-
cal tissue, the present article is restricted to homogeneous and
isotropic materials; for anisotropic and non-homogeneous
conditions, cf. [14]. Furthermore, the interstitial fluid itself
is a solution composed of multiple components, namely, the
liquid solvent and the positively and negatively charged ions
(cations and anions) of a dissolved salt. For a more precise
description of these constituents, cf. [17,35].

As one can imagine, there are many complex mechani-
cal and electrochemical effects like deformation, convection,
diffusion and osmosis as well as electrical currents interac-
ting with each other. The continuum mechanical description
of materials with these properties leads to a complex non-
linear system of strongly coupled partial differential equa-
tions (PDE), which have to be solved by numerical methods
such as the Finite Element Method (FEM) within the mixed
finite element scheme. Furthermore, it can be shown that it is
sufficient to proceed from three primary variables, the solid
deformation, the overall pore-fluid pressure and the molar
concentration of the cations dissolved in the pore-fluid solu-
tion. Correspondingly, the governing PDEs are the momen-
tum balance of the overall aggregate as well as the volume
balance of the overall pore fluid and the cation concentration
balance.

During the numerical solution of initial boundary-value
problems governing swelling processes, where the swelling
medium is surrounded by an external solution interacting
with both the swelling solid and its pore-fluid content, it
occurs that non-standard boundary conditions have to be
applied, where, at the internal boundary, the external values
cannot simply be matched through the degrees of freedoms
included in the set-up functions of the primary variables in
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combination with the constitutive equations of the model.
Instead, they additionally depend on internal variables such
as the fixed charges concentration of the swelling material
given as a function of the solid deformation. This induces a
jump of the primary variables across the boundary.

In the literature of swelling media, most of the publica-
tions up to now deal with one-dimensional (1-d) models and
simulations, cf. [29,33,40] or [21]. For the 1-d case, no nume-
rical problems could be observed. Only in case of higher
dimensional simulations, the deformation-dependent boun-
dary conditions lead to numerical instabilities, since the error
made at each boundary node by use of a non-matching fixed
charges concentration, such as the value of the last accepted
time step, yields gradients along the boundary, which in turn
sum up to spurious oscillations. These instabilities have also
been observed by other authors, cf. [39]. In their publica-
tion, [39] solved the problem of numerical instabilities in a
two-dimensional (2-d), axisymmetric model of the interver-
tebral disc by means of a least squares method, where, at the
boundary, the error of both the concentration and the pressure
weighted by certain factors was minimised. Other possibili-
ties, which we have used to overcome the numerical insta-
bilities, consist of taking the value of the respective internal
variable from an inner element layer, cf. [1], or of averaging
the value over several boundary nodes. These solutions are
first attempts to isolate the problem and need no additional
memory and numerical cost. A further possibility to describe
swelling behaviour is to take the chemical potentials of the
fluid components as primary variables instead of concentra-
tions, cf. [20,32,44]. While the obvious advantage of the lat-
ter approach is that the boundary conditions are continuous,
the disadvantage is the higher number of degrees of freedom,
which in turn results in higher memory requirements and lon-
ger simulation times. Finally, in [14,15], a model based on
the Lanir assumption [31] is discussed. Therein, it is assumed
that only very small concentration variations occur, which in
turn lead to an immediate chemical equilibrium. As a result,
the cation concentration is taken as a material parameter and
the set of primary variables reduces to the solid deformation
and the fluid pressure.

In frame of the full swelling model computed at shortest
simulation times without any model reduction, it appears
that including the molar concentration of the cations as a
primary variable instead of chemical potentials is the most
reasonable choice. However, the oscillation problem occur-
ring as a result of deformation-dependent boundary condi-
tions has to be overcome. This leads to the field of free
surface problems or of fluid–structure interactions (FSI),
where boundary conditions similar to those described above
are well known. For example, considering the Lagrangean
description, which is also used for the solid skeleton in the
present contribution, the mesh of a free surface problem
moves with the deforming fluid. The successful solution of

these problems range back to [37] who implemented the
additional boundary condition at the free surface into the
weak formulation of the Navier–Stokes equation, cf. also
[23,36,43]. Following this idea, we introduce a continuum
mechanical multi-field and multi-physical model, where two
of the three essential boundary conditions involved depen-
ding on internal and primary variables are included into the
weak formulation of the overall problem. Thus, these boun-
dary conditions are imposed weakly.

The present contribution starts in Sect. 2 with a brief dis-
cussion of the multiphase formulation of the TPM and the
underlying constitutive approach, where a consistent swel-
ling model with only three primary variables is derived. In
Sect. 3 , a numerically effective and consistent method to
account for the solution of numerical problems resulting
from deformation-dependent boundary conditions is presen-
ted. This method proceeds from the inclusion of weakly
imposed Dirichlet boundary conditions into the mixed finite
element formulation by use of a penalty-like method. Finally,
the model is validated in Sect. 4 by numerical computations,
where the capability and the stability of the model are shown
via a 2-d simulation of a free swelling hydrogel block exhi-
biting finite deformations.

2 Multiphase formulation

2.1 Basics

Proceeding from a continuum-mechanical approach, the
theory of porous media (TPM) [3,4,6,10,11,34] is used to
describe materials with a multiphasic composition of the
microstructure. The TPM is based on the well-known theory
of mixtures (TM) [5] extended by the concept of volume
fractions such that the constituents and their properties are
‘smeared’ over the spatial domain under consideration. Fol-
lowing this, the TPM can be understood as the result of either
a real or a virtual averaging procedure over representative ele-
mentary volumes (REV), cf. Fig. 1. In any case, one obtains
the most effective possibility to describe materials with a
multiphasic microstructural composition of components.

Fig. 1 Micro structure and macroscopic model
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The overall medium ϕ under consideration is composed of
multiple miscible and immiscible constituents ϕα . In particu-
lar, we start from a biphasic medium of immiscible
constituents modelled by the TPM: the charged solid matrix
(α = S) including the mass- and volume-free fixed charges
ϕ f c adhering to the solid material and the charged fluid
(α = F). Moreover, since the fluid itself represents a mixture
of three miscible components ϕβ , namely, the liquid solvent
(β = L) and the cations (β = +) and anions (β = −) of a
dissolved salt, the charged fluid is modelled in the framework
of the TM.

2.2 Constituents, volume fractions, densities
and concentrations

Proceeding from the TM or the TPM, the constituents of the
overall medium can be identified by their volume fractions
nα , which relate the local volume dvα of the constituent ϕα

to the local bulk volume dv of ϕ (nα = dvα/dv). Assuming
that there is no vacant space in the domain, the saturation
condition reads
∑

α=S,F

nα = nS + nF = 1,

where nF =
∑

β=L ,+,−
nβ = nL + n+ + n−.

(1)

Note in passing that the saturation condition is a constraint
to the composition of the overall model and has thus to be
included in the constitutive equations, cf. [11]. Introducing
the volume fractions, the individual components can be des-
cribed by two densities, the partial and the effective one.
The former relates the local mass dmα of the individual
constituents ϕα (α = S, L ,+,−) to the local bulk volume
(ρα = dmα/dv), whereas the latter relates the same mass to
the local constituent volume (ραR = dmα/dvα). Both den-
sities are related to each other by

ρα = nαραR . (2)

Moreover, the amount of matter of the components ϕβ consti-
tuting the pore fluid ϕF is given by the molar concentration

cβ
m = dnβ

m

dvF
(3)

defined as the ratio of the local number of moles dnβ
m of the

component ϕβ over the local bulk fluid volume dvF . The
partial density ρβ of the fluid component is related to its
molar concentration via

ρβ = nFρ
β
F = nF cβ

m Mβ
m . (4)

In the above relation, Mβ
m denotes the molar mass of ϕβ

and ρ
β
F the corresponding partial density with respect to

the fluid volume (ρβ
F = dmβ/dvF ). Finally, there exists

a further restriction to the behaviour of the overall model.
This restriction, the electrostatic counterpart of the satura-
tion condition, is the electroneutrality condition:

z+c+
m + z−c−

m + z f cc f c
m = 0,

z+c̄ +
m + z−c̄ −

m = 0.
(5)

Equation (5)1 states that there is neither a charge separation
within the overall medium given by the solid matrix and the
internal pore-fluid mixture nor within the external solution,
cf. (5)2. Using the valences z+ = 1 and z− = −1 of the ions
of a monovalent salt such as Na+Cl−, the electroneutrality
condition of the external solution reveals that the concentra-
tions of the ions therein, denoted by a bar, are equal and can
be addressed by only one variable, the cation concentration
c̄+

m . Thus, the external electroneutrality condition reads

z+c̄ +
m + z−c̄ −

m = 0 −→ c̄ −
m = c̄ +

m =: c̄m . (6)

Concerning the internal solution and considering that the
solid matrix is negatively charged, the cation concentration
c+

m is taken as a primary variable. This is convenient in so far
as in case of an infinitely dilute external solution, the anion
concentration within the overall medium tends to zero, thus
inducing numerical difficulties. Inserting the valences of the
ions and the fixed charges with z f c = −1, it is obvious
that the anion concentration c−

m can be given as a func-

tion of c+
m and the concentration c f c

m of the fixed charges,
cf. [27,30]:

z+c+
m + z−c−

m + z f cc f c
m = 0 −→

{
c+

m =: cm

c−
m = cm − c f c

m
.

(7)

2.3 Kinematics

As depicted in Fig. 1, the continuum mechanical approach
of the TPM proceeds from the assumption that all the consti-
tuents are smeared over the REV in the sense of superimposed
and interacting continua, cf. Fig. 2.
Furthermore, in the current configuration at time t , each spa-
tial point x is simultaneously occupied by all constituents

Fig. 2 Kinematics of an aggregate with solid phase ϕS and fluid
components ϕβ

123



548 Comput Mech (2009) 43:545–557

ϕα stemming from different initial positions Xα at t = t0.
Following this, each constituent follows its individual motion
function χα and, therefore, has its own Lagrangean velocity:

x = χα(Xα, t),
′
xα= dχα(Xα, t)

dt
. (8)

Therein, (·)′α denotes the material time derivative following
the motion of ϕα . The motion of the solid phase is expres-
sed within a Lagrangean representation by the displacement
vector

uS = x − XS, (9)

whereas the motion of the interstitial fluid ϕF and its com-
ponents ϕβ is given in an Eulerian setting by the seepage
velocities

wF = ′
xF − ′

xS and wβ = ′
xβ − ′

xS . (10)

Therein, the seepage velocity wF describes the motion of the
overall fluid, while wβ is the velocity of the fluid components
relative to the deforming skeleton. Combining Eqs. (8) and
(9), the solid deformation gradient yields

FS := ∂x
∂XS

= I + GradS uS . (11)

Therein, the operator GradS (·) = ∂(·)/∂XS denotes the par-
tial derivative of (·) taken with respect to the solid reference
position.

2.4 Balance relations

Proceeding from quasi-static processes (
′′
xα ≡ 0) and assu-

ming materially incompressible constituents (ραR ≡ const.)
incapable of mass exchanges (ρ̂α ≡ 0), one obtains a model
governed by the volume and momentum balances of the
constituents ϕα and the concentration balances of the fluid
components ϕβ , cf. [16]:

(nα)′α + nα div
′
xα = 0,

(nF cβ
m)′β + nF cβ

m div
′
xβ = 0,

div Tα + ρα b + p̂α = 0.

(12)

Therein, div(·) denotes the divergence operator correspon-
ding to grad(·) = ∂(·)/∂x, Tα is the Cauchy stress tensor,
ραb is the volume force, and p̂α is the interaction force (direct
momentum production) between the constituents with the
constraint

∑
α p̂α = 0. With the knowledge of the defor-

mation gradient (11), the solid volume balance (12)1 can be
time-integrated analytically. In addition, a volume balance
for the fixed charges is introduced and, since these charges are
attached to the solid matrix, thus following the solid motion,
this balance can be integrated analytically, as well. The result
is one equation for the solid volume fraction nS , the solidity,

and one for the concentration of the fixed charges:

nS = nS
0S(det FS)−1,

c f c
m = nF

0S c f c
m0S (det FS − nS

0S)
−1.

(13)

Note that the values indicated by (·)0S denote the correspon-
ding initial terms at t = t0. Moreover, concerning the compo-
nents of the overall fluid, it is assumed that cL

m � {c+
m , c−

m }
thus including

′
xL ≈ ′

xF and cL
m ≈const. Following this, the

concentration balance (12)2 of the liquid approximately coin-
cides with the volume balance (12)1 of the overall fluid,
which is rearranged such that

div [ (uS)′S + nF wF ] = 0 (14)

represents the saturation constraint. Furthermore, the cation
concentration balance (12)2 (β = +) is rearranged with c+

m =
cm by use of the solid volume balance and by expressing
the material time derivative with respect to the moving solid
skeleton. Thus,

nF (cm)′S + cm div(uS)
′
S + div(nF cm w+) = 0. (15)

Note in passing that the electroneutrality condition (7) for
the internal solution induces that only one of the ion concen-
tration balances is needed. The momentum balance of the
overall medium

0 = div (TS
E mech.

− p I) + ρ b (16)

is derived by summing over the momentum balances of ϕS

and ϕF and using the effective stress principle as described
in [16]. In the above equation, TS

E mech.
stands for the purely

mechanical part of the solid extra stress discussed later in
this contribution, while ρ b with ρ = ρS +ρF is the volume
force acting on the overall medium. Note additionally that
the entire pore-fluid pressure p consists of two portions and
is defined by the relation

p := P + π. (17)

Therein, the first term is the Lagrangean multiplier P iden-
tified as the hydraulic pressure acting on the saturation con-
straint of the overall model, while the second term is the
osmotic pressure π , cf. also Fig. 3 for the different occur-
ring pressures. Note that P is obtained from the respective
boundary conditions, while π develops from concentration
differences.

2.5 Constitutive theory

2.5.1 Solid matrix

It is well known that the solid matrix of swelling materials
can undergo large deformations. For example, when drilling
for oil through a layer of active clay, this layer may swell
such that the drill gets stuck in the bore hole. To be able
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Fig. 3 Pressure evolution across the boundary. It can be seen that the
difference between the pressures in both regions is the osmotic pressure
difference �π

to simulate these large elastic deformations accurately, the
solid matrix is modelled by a modified Neo-Hookean mate-
rial law accounting for non-linear deformations as well as
for the so-called compression point. The compression point
exhibits a specific characteristic of porous materials with a
materially incompressible solid skeleton. This point is rea-
ched, if the whole fluid is pressed out of the medium such that
only the solid is remaining. Recalling that the solid is incom-
pressible, further compression would lead to infinite stresses.
Following this, we proceed from the non-linear elasticity law
proposed by [12], which is based on an extension of the Neo-
Hookean model towards finite volumetric strains including
the compression point mentioned before:

τ S
E mech.

:= µS(BS − I)

+λS (1 − nS
0S)2

(
det FS

1 − nS
0S

− det FS

det FS − nS
0S

)
I. (18)

In the above relation, the Kirchhoff extra stress tensor
τ S

E mech.
is related to the Cauchy stress TS

E mech.
via τ S

E mech.
=

det FS TS
E mech.

, µS and λS are the Lamé constants and BS =
FS FT

S stands for the left Cauchy–Green deformation tensor.

2.5.2 Fluid flow and ion diffusion

In addition, relations for the fluid and the ion movement are
needed. These equations can then be inserted into the corres-
ponding balance relations, namely, the volume balance (14)
of the overall fluid and the concentration balance (15) of the
cations.

Firstly, to derive an equation describing the fluid flow, the
momentum production and the partial stress of the overall
fluid are inserted into the fluid balance of momentum, cf.
[16]. Following this, one obtains after some rearrangements
an extended Darcy-type equation:

nF wF = − k F

γ F R

[
grad P − ρF R b

+2cm − c f c
m

∑
β cβ

m

Rθ grad(2cm − c f c
m )

−z f cc f c
m grad E

]
. (19)

The same procedure applied to the momentum balance of the
ions ϕγ (γ = +,−) leads to the extended Fick-type equation

nF cγ
mwγ = −Dγ

(
sγ

Rθ
grad P

+ grad cγ
m + zγ cγ

m

Rθ
grad E

)
+ nF cγ

mwF (20)

describing the diffusion of the cations within the moving
fluid. In the above relations, k F is the Darcy permeability,
γ F R is the effective fluid weight, sγ is the ion saturation
(sγ = nγ /nF ), R denotes the universal gas constant, θ is the
absolute Kelvin temperature, and E is the electrostatic force
acting on one mole of positively charged ions. Note in passing
that the electrostatic force E is a Lagrangean multiplier like P,
however, acting on the electroneutrality condition. Since it is
assumed that there is no electrical current across the domain,
the gradient of E may be obtained from the condition of a
vanishing electrical current i, cf., e.g., [29]:

i = nF (c+
m w+ − c−

m w−) = 0. (21)

After insertion of the ion diffusion velocities (20) and rear-
ranging the resulting relation, the gradient of the electrostatic
force E yields

grad E = −Rθ

⎡

⎢⎢⎢⎢⎣
s+ D+ − s− D− + DL

Rθ �
(grad P−ρF R b)

−
D− − D+−2 DL

(
2 cm − c f c

m

2 cm −c f c
m + cL

m

)

�
grad cm

+
D−−DL

(
2 cm − c f c

m

2 cm −c f c
m + cL

m

)

�
grad c f c

m

⎤

⎥⎥⎥⎥⎦
. (22)

Therein, the abbreviation DL = c f c
m k F Rθ /(nFγ F R) has

been used and is interpreted as the diffusion coefficient of
the liquid, while � = D+cm + D−(cm − c f c

m ) + DLc f c
m .

Note that within the specimen, the electrical current origi-
nates from different sources which are not assumed to vanish
individually. In particular, convection current occurs because
of changes of the hydraulic as well as of the osmotic pressure
(grad P and grad cm), whereas diffusion current is caused by
concentration differences (grad cm). Both of these currents
compete with the conduction current resulting from diffe-
rences of the electrostatic force within the specimen (grad E).
For a more detailed explanation, the interested reader is refer-
red to [30].
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Now, the above equations can be inserted into each other
to obtain a model for swelling phenomena with finite defor-
mations. In particular, the gradient of the electrostatic force
is inserted into the fluid flow and the ion diffusion equations.
Thereafter, both equations are inserted into the correspon-
ding balance relations to replace the variables nF wF and
nF cm w+. Furthermore, the mechanical solid extra stress in
Eq. (16) is replaced by the Neo-Hookean law (18). Following
this, a new and thermodynamically consistent formulation is
derived with only three PDEs in the primary variables uS , p
and cm .

2.5.3 Electrochemical relations

For the above mentioned set of PDEs, initial and boundary
conditions are needed. Particularly, the osmotic pressure and
the cation concentration have to be initialised by non-zero
initial values. Therefore, the well-known Donnan theory is
used [8], which describes the interaction of large molecules
with the ions of a salt dissolved in a solution. Inserting the
electroneutrality condition (7) of the internal solution into the
Donnan equation (c+

m c−
m = c̄ +

m c̄ −
m ), it is possible to calculate

the cation concentration and the osmotic pressure difference
at the boundary. Thus,

cm =
√

c̄ 2
m + 1

4 (c f c
m )2 + 1

2 c f c
m and

�π = p − P̄ = Rθ
(∑

γ cγ
m − ∑

γ c̄γ
m

)

= Rθ (2 cm − c f c
m − 2 c̄m),

(23)

respectively, cf., e.g., [28,44]. Note that the osmotic pressure
is obtained by the osmolarity difference of the internal and
external solutions.

In Fig. 3, the different pressures inside and outside the
material domain along with the corresponding pressure curve
across the boundary are depicted. Therein, the internal pres-
sure is the overall pressure p, i.e., p = P + π , while the
external pressure is the hydraulic pressure P̄ plus the external
osmotic pressure π̄ . Note that the internal and the external
hydraulic pressures are equal. The excess pressure results
from the fact that each solution has an individual osmo-
tic pressure stemming from its own osmolarity (

∑
γ cγ

m and∑
γ c̄γ

m). However, only the difference �π of the osmotic
pressure, the pressure jump across the boundary, and not the
ambient π̄ is relevant at the boundary. It is important that
both of the above Eq. (23) are only used for prescribed equi-
librium states, i.e., as initial conditions and, as we assume that
the boundary layer elements are immediately in equilibrium
with the external solution, as boundary conditions. As was
already mentioned, the values indicated by a bar denote the
given values of the external solution. Already at this point, it
can be recognised that this kind of boundary conditions need
a special treatment.

3 Numerical implementation

The governing set of equations will be treated numerically
within the framework of the FEM. For this purpose, the weak
formulations of the PDEs will be derived in this section by
the Galerkin procedure. In particular, the momentum balance
(16) of the overall aggregate corresponding to the primary
variable uS , the volume balance (14) of the overall fluid cor-
responding to the overall pressure p and the concentration
balance (15) of the cations corresponding to the concentra-
tion cm are multiplied by their respective test functions δuS ,
δp and δcm and integrated by parts over the domain Ω via
the divergence theorem. Finally, applying the Gauß theorem
leads to the weak forms, cf. [2,11,13,46].

It is obvious from Eq. (13)2 that the concentration of
the fixed charges depends on the solid deformation (c f c

m =
c f c

m (uS)). As a result, the boundary conditions also depend
on uS , cf. (23). In order to include deformation-dependent
boundary conditions for c f c

m into the computation of a cur-
rent time step, a first attempt might be to take the values of
c f c

m from the time step before. However, in an implicit time-
integration scheme such as the backward-Euler scheme, this
procedure includes an element of an explicit time integra-
tion into the numerical procedure, thus leading to enormous
numerical instabilities, such as spurious oscillations. In par-
ticular, proceeding from the unconditionally stable implicit
time-integration scheme (backward/implicit Euler), wherein
the system of equations is solved by use of the variables com-
puted within the current time and Newton step, i.e., within
the residuum, the inclusion of c f c

m from the time step before
lets the whole algorithm react as if it would be an explicit
scheme.

To illustrate the importance of including deformation-
dependent values of c f c

m at the boundary into the computation,
a simple 1-d swelling example of hydrogel is considered,
where the results of deformation-dependent c f c

m at the
boundary are compared to constant c f c

m . Recall that, as was
mentioned in the introduction, a purely 1-d simulation is
numerically stable, since there are no gradients in a second
spatial direction. The geometry and the parameters of the
present example are basically the same as given in Sect. 4.1
and Table 1, where the salt concentration of the bathing solu-
tion is changed from 0.15 to 0.125 mol/l within 10 s. As one
can see in Fig. 4, there is a distinct difference in the verti-
cal displacement of the upper boundary if the concentration
of the fixed charges c f c

m at the domain boundary is taken as
constant or deformation-dependent.

Proceeding from boundary conditions depending on
c f c

m (uS) prescribes dependencies on both time and primary
variables. Boundary conditions of this kind are also well
known in the fields of modelling FSI, moving boundaries
or free surfaces [9,41,42]. From the fluid-mechanical point
of view, the conditions at the fluid boundary change with
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Table 1 Material parameters used for the equilibrium test

c f c
m0S = 0.2 meq/l nS

0S = 0.25

c̄m0 = 0.15 mol/l µS = 0.24 N/mm2

cL
m = 55.80 mol/l λS = 0.02 N/mm2

D+ = 0.5 × 10−3 mm2/s γ F R = 1 × 10−5 N/mm3

D− = 0.8 × 10−3 mm2/s k F = 1.07 × 10−8 mm/s

R = 8.3144 J/K mol θ = 298 K

ε = 1.0

Fig. 4 Comparison of the vertical displacement of the upper node using
boundary conditions with constant c f c

m (c f c
m = c f c

m0S) and deformation

dependent c f c
m (c f c

m = c f c
m (uS))

the deformation of the structure. For the solution of such
problems, there are basically three different possibilities, cf.
[18,42] or [19]: (1) simultaneous methods, (2) partitioned
methods and (3) field-elimination methods. In the case of a
simultaneous solution, both the fluid and the structure are
solved simultaneously within one combined computational
algorithm considering all physical properties, i.e., by use of
a monolithic solution of the coupled problem. In contrast,
applying the partitioned solution strategy, both parts, the
structure and the fluid solution, are computed in an itera-
tive manner (staggered scheme) using different specialised
and effective algorithms by applying the solution of the one
domain as a load onto the other. The third possibility, when
all the governing equations concerning one component are
eliminated such as describing the interaction between a fluid
and a stiff solid structure, is usually avoided in the field of
FSI [42].

In case of free surface flow problems, there is also an
additional restriction needed to model moving boundaries.
Depending on the basic choice of the setting, i.e.,
Lagrangean, Eulerian or arbitrary Lagrangean–Eulerian,
different possibilities for the implementation of the addi-
tional condition are possible, cf., e.g., [38] for a review in
Eulerian settings. Considering firstly the Lagrangean setting,
which is also used in the present contribution, the governing

equations are given such that the FE mesh moves with the
free surface. For this formulation, [26] introduced additional
primary variables maintaining the extra conditions at the free
surface boundary. Later, [23,36,37] incorporated the boun-
dary condition for the free surface into the Lagrangean weak
form of the Navier–Stokes equation for single-phasic fluids.
Considering secondly the Eulerian setting with a fixed mesh,
as it is usually chosen in fluid mechanics, one proceeds from
methods like the surface marker method to locate the boun-
dary. Currently, the arbitrary Lagrangean–Eulerian (ALE)
formulation is mostly used, where the boundary is described
in an Lagrangean and the domain in an Eulerian setting, cf.,
e.g., [25,43].

Since multiphasic and multi-physical problems within the
TPM generally result in a strongly linked system of volu-
metrically coupled PDEs, it is obvious that a simultaneous
solution of the governing equations is necessary. Applying
the above considerations made within the Lagrangean set-
ting to the problem under consideration, two of the essen-
tial boundary conditions of the three PDEs will be imposed
weakly. This is discussed in detail in the following section
by incorporation of the boundary conditions via a penalty-
like method into the weak formulation of the correspon-
ding balance relation, cf. [24,47]. By use of this procedure,
the boundary conditions are included into the residuum and
computed within each Newton step. As a result, they always
coincide with the current state of primary variables, thus
overcoming the problem of spurious oscillations. Note in
passing that, in this contribution, the weak imposition of Diri-
chlet boundary conditions is performed for multiple primary
variables simultaneously.

3.1 Weak formulations

In the frame of the Galerkin procedure to obtain the weak
form of the governing equations, this method is firstly applied
to the volume balance (14) of the overall fluid. Thus,
∫

Ω

nF wF · grad δp dv −
∫

Ω

div (uS)′S δp dv

=
∫

Γq̄

q̄ δp da. (24)

Therein, δp is the test function fulfilling the homogeneous
Dirichlet boundary conditions, while the Neumann boundary
condition q̄ is the scalar value of fluid volume efflux over the
boundary given by

q̄ = nF wF · n, (25)

where n denotes the outward-oriented unit surface normal.
As depicted in Fig. 5, the entire boundary of the domain
Ω corresponding to this PDE is denoted by ΓF and is the
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Fig. 5 Domain Ω with boundaries Γp and Γq̄ for ϕF

set union of the Dirichlet boundary Γp and the Neumann
boundary Γq̄ :

ΓF = Γp ∪ Γq̄ . (26)

Proceeding from (24), the Dirichlet boundary conditions
have to be fulfilled strongly. This implies that within the
numerical procedure, the DOF have to fulfil prescribed values
at the boundary. Because of the previously mentioned rea-
sons, this procedure will be avoided and the Dirichlet boun-
dary conditions will be imposed weakly.

Following this, the jump condition (23)2 for the osmotic
pressure at the boundary is rearranged to yield zero, mul-
tiplied by the test function δp, integrated over the surface
where the overall pressure is applied and inserted into the
weak form of the fluid volume balance:
∫

Ω

nF wF · grad δp dv −
∫

Ω

div (uS)′S δp dv

+
∫

Γp

ε
[

p − P̄ − Rθ (2cm − c f c
m − 2c̄m)

]
δp da

=
∫

Γq̄

q̄ δp da. (27)

Therein, the third term on the left-hand side corresponds to
the weak imposition of the Dirichlet boundary condition on
Γp, where the parameter ε is a penalty parameter, which has
to be chosen appropriately for the problem, i.e., as large as
possible to reach a high accuracy, but also as low as possible
to obtain convergence. Finally, the initial condition for the
overall pressure p0 is given by

p0 =�π0 + P̄0 = Rθ (2 cm0+ c f c
m0S − 2 c̄m0) + P̄0. (28)

Concerning the cation concentration balance, the deri-
vation of its standard weak form results in

−
∫

Ω

[ nF (cm)′S + cm div (uS)′S ] δcm dv

+
∫

Ω

nF cmw+ · grad δcm dv =
∫

Γj̄

j̄ δc da.
(29)

Therein, δcm is the corresponding test function and

j̄ = nF cmw+ · n (30)

is the scalar value of the cation efflux over the Neumann
boundary Γj̄ of the domain Ω , where the entire boundary of
Ω corresponding to the PDE of the cations is the set union

Γ+ = Γc ∪ Γj̄ . (31)

Therein, Γc is the Dirichlet boundary, where usually the pres-
cribed values of the cation concentration would have to be
fulfilled strongly. But, as the concentration boundary condi-
tion is deformation-dependent, this boundary condition will
also be included into the weak form as it has been done before
for the volume balance. Thus, (23)1 is rearranged to yield
zero, multiplied by the test function δcm and integrated over
the Dirichlet surface Γc where the cation concentration is
applied. Thereafter, the resulting expression is inserted into
(29). This leads to the weak form of the cation concentration
balance:

−
∫

Ω

[ nF (cm)′S + cm div (uS)′S ] δcm dv

+
∫

Ω

nF cmw+ · grad δcm dv

+
∫

Γc

ε

[
cm −

√
c̄ 2

m + 1
2 (c f c

m )2 − 1
4 c f c

m

]
δcm da

=
∫

Γj̄

j̄ δc da. (32)

Therein, the third term on the left-hand side is the weakly
imposed Dirichlet boundary condition. Finally, the initial
condition for the cation concentration cm0 is given by

cm0 =
√

c̄2
m0 + 1

4 (c f c
m0S)2 + 1

2 c f c
m0S . (33)

Since there is no need for a special treatment of the displa-
cement boundary conditions, the weak form of the momen-
tum balance, i.e.,
∫

Ω

(TS
E mech.

− p I) · grad δuS dv

−
∫

Ω

(ρS + ρF ) b · δuS dv =
∫

Γt

t̄ · δuS da (34)

did not change and keeps its well-known form.
As usual, the computation starts from a stress-free and,

therefore, from an undeformed reference state. Following
this, the referential extra stress is set to zero:

TS
E mech.0 = 0. (35)

During loading, the traction boundary conditions are given
by

t̄ = (TS
E mech.

− p I) n, (36)
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Fig. 6 Spatial discretisation using extended Taylor-Hood elements

where the overall boundary corresponding to this balance
relation is the set union

ΓS = Γu + Γt (37)

composed of the Dirichlet and Neumann parts, Γu and Γt,
respectively.

3.2 Discretisation

The values of the degrees of freedom are obtained by solving
the set (27), (32) and (34) of weak forms by the mixed finite
element scheme. Note that one has to use the mixed FEM,
since there are further primary variables in addition to the
solid displacement uS . Concerning the model proposed in
this contribution, these are the overall pore-fluid pressure p
and the cation concentration cm . The choice of convergent
approximation spaces in mixed methods is by no means auto-
matic, as in mixed methods the patch test or, more general, the
inf-sup condition (Babuška-Brezzi condition) has to be ful-
filled, cf. [7,45]. Both conditions are satisfied if the approxi-
mation of the displacement is chosen one order higher than
those of the pressure and the concentration in order to avoid
spurious modes in the pressure and the concentration fields.
Therefore, as depicted in Fig. 6, the spatial discretisation
proceeds from a quadratic approximation of the solid displa-
cement and linear approximations for the overall pore-fluid
pressure and the cation concentration (Q2P1C1). This type
of mixed finite elements is known as extended Taylor-Hood
elements. The discretisation in the time domain is carried out
by the unconditionally stable implicit Euler algorithm. The
whole model is implemented into the FE tool PANDAS1,
which has been especially designed for the solution of volu-
metrically coupled problems.

4 Numerical examples

4.1 Chemical equilibrium test

To validate the stabilised model, a 2-d free swelling expe-
riment under 1-d loading conditions is carried out using
hydrogel as the swelling material. In fact, the numerical expe-
riment consists of keeping the sample in its initial state by

1 Porous media Adaptive Nonlinear finite element solver based on
Differential Algebraic Systems (http://www.get-pandas.com).

Fig. 7 Left: Chemical loading, the concentration of the external
solution is kept constant. Right: Sketch of the geometry with the obser-
ved upper node

applying equilibrium boundary conditions. A sketch of the
geometry with the size 0.02 × 0.5 mm2 is given in Fig. 7.
This geometry is discretised by 1×30 quadrilateral extended
Taylor-Hood elements. Furthermore, the boundary condi-
tions consist of hindering the solid skeleton displacements
(Dirichlet, Γu) at the lower, the left and the right bounda-
ries in the direction perpendicular to the surface and, at the
same boundaries, hindering the fluid flow and the ion dif-
fusion (Neumann, Γq̄ and Γj̄ ). The equilibrium conditions
for both the osmotic pressure and the cation concentration
(Dirichlet, Γp and Γc) are applied at the upper edge by
keeping the concentration constant, cf. Fig. 7. The material
parameters used for the computation are listed in Table 1.
Considering the result of this computation, one would expect
that nothing happens and everything stays at its initial state.

In the first computation, the weak forms are evaluated in
their standard representations without the weakly imposed
Dirichlet boundary conditions, i.e., without the third term on
the left-hand side of Eqs. (27) and (32). With this method, the
boundary conditions have to be evaluated separately by rela-
tions (23) using the value of the internal variable c f c

m from
the last time step. As one can see in the upper diagram of
Fig. 8, the computation starts to oscillate apparently around
the equilibrium state after a while, even though the uncon-
ditionally stable implicit Eulerian time-integration scheme
is used. The reason for these oscillations result from small
numerical errors made at each time step by using c f c

m from
the time step before. Although the value of c f c

m is only used
for the boundary conditions, the whole code behaves by this
procedure as if it would be an explicit scheme. In contrast,
the result obtained using the weak forms (27) and (32) inclu-
ding the weakly fulfilled boundary conditions is stable. As
expected, the vertical displacement of the observed node on
the upper boundary is zero and the specimen persists in its
initial state. The reason is that the concentration and osmo-
tic pressure applied at the boundary by the weakly imposed
representation are always in line with the current deforma-
tion and therefore with the current concentration of the fixed
charges. Note that with ε = 1.0, there is no distinct weighting
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Fig. 8 Vertical displacement of node A. Strongly fulfilled boundary
conditions in the upper figure versus weakly fulfilled boundary condi-
tions in the lower one

of the boundary terms for this initial boundary-value problem
(IBVP).

4.2 2-d swelling example

The aim of this section is to show the capability of the
introduced model and its implementation by a 2-d computa-
tion of a free swelling experiment exhibiting finite deforma-
tions. Such an experiment has been carried out by the group of
Jacques Huyghe at the Biomedical Engineering department
of the Eindhoven University of Technology. In this expe-
riment, a soot-coloured cylindrical block was cut out of a
hydrogel stick made in a test-tube and was thereafter imme-
diately placed in a sodium chloride solution. While placing
the specimen in this solution, all its surfaces have been in
contact with the new bath. Therefore, the swelling procedure
was initiated at all surfaces at once. The concentration in the
new solution compared to the previous one was so low and,
as a result, the osmotic pressure was so high that the hydrogel
cylinder did undergo an enormous volumetric change until
its final equilibrium state, cf. Fig. 10.

To simulate this experiment, a rectangular cross section
is discretised under plane-strain conditions by use of sym-
metry conditions. In particular, half of the geometry, namely,
an area of 1.1 × 1.0 mm2 is meshed by 22 × 20 eight-noded
extended Taylor-Hood elements. During the computation,
the chemically uncharged hydrogel is firstly equilibrated in

Fig. 9 Chemical loading and geometry of the 2-d free swelling
simulation. The solid and the dashed concentration curves on the left
side belong to the respective boundaries on the right side. The dotted line
at the bottom’s left corner of the right-hand picture denotes the interval
with the transition zone from the value of the solid concentration curve
to the dashed one

a bathing solution with the initial concentration c̄m0. This
is necessary in order to transform the hydrogel from a fic-
titious non-loaded reference configuration in the sense of a
natural state at t = t0 towards a pre-swollen initial confi-
guration. Note in passing that in any real experiment, there
is no uncharged configuration, since swelling materials are
always somehow in a swollen state. In the fictitious non-
loaded reference configuration, there is neither a solid stress
(TS

E mech.0 = 0) nor an osmotic pressure (π0 = 0). To avoid
numerical problems during initial loading, the initial osmo-
tic pressure is applied slowly by increasing the referential
concentration of the fixed charges from 0 to the prescribed
value c f c

m0S over time.
After a certain time of computation, an equilibrium state

is reached defined as the “initial configuration” at which the
initial osmotic pressure π∗

0 , the initial concentration c∗
m0 and

the initial purely mechanical solid extra stress TS ∗
E mech.0 fits

the deformation (det FS)
∗
0S through the balance and consti-

tutive equations. Note that the quantities corresponding to the
deformed initial configuration (equilibrium state) are deno-
ted by (·)∗0S .

The boundary conditions applied to this geometry are
depicted in Fig. 9. In particular, on the right-hand side, the
symmetry conditions are applied (hindered horizontal move-
ment, undrained) and the bottom left node is fixed in vertical
direction. The intention of this displacement constraints is to
mimic the contact situation of the actual experiment. Compa-
red to this, the concentration and osmotic pressure boundary
conditions are quite complex. At the beginning of the simu-
lation, after having found the initial state, the concentration
is firstly changed at all boundaries. This is the time period,
where the specimen is placed in the new solution. As one
can see from the sequence of pictures of Fig. 10, there is
an irregular shape at the beginning of the deformation. The
reason for this initial irregularities is negative osmosis, cf.
[22], which means that there is an initial inflow of fluid into
the specimen and, at the same time, a flow of interstitial fluid
from the inner region of the specimen towards its boundary.
This effect leads to an initial shrinking of the inner part of
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Fig. 10 Qualitative comparison
between the numerical
simulation and the experiment
with a soot-coloured hydrogel
disc carried out by the group of
J. Huyghe. The most upper
geometry on the left is the
stress-free and non-swollen
reference configuration.
Beneath, there is the pre-swollen
initial state. The following
contour plots show the
deformation and the overall
pressure up to the final
equilibrium state

the hydrogel, while the circumferential edges are already
swelling. The resulting discrepancy in the deformation is
the cause of the frayed border of the soot-coloured cylin-
der. Negative osmosis happens only if c f c ∗

0S � c̄ ∗
m0. A closer

look at the equation

�π = 2 Rθ

[√
c̄ 2

m + 1
4 (c f c

m )2 − c̄m

]
(38)

obtained by inserting (23)1 in (23)2 reveals that the term
(c f c

m )2 is less relevant in this case, and the osmotic pressure
decreases initially with the faster decreasing c̄ 2

m such that the
fluid from the inner regions flows towards the outer ones.
After this period, the concentration is only changed at the

top and at the circumferential boundary. Note that there is
an additional boundary interval at the bottom left corner, cf.
Fig. 9 right, with a length of 0.3+0.3 mm for a seamless tran-
sition from the circumferential concentration to the bottom
concentration. This transition has been introduced to avoid
numerical problems resulting from discontinuous boundary
conditions at the corner.

Concerning the numerical simulation prior to the actual
swelling process, the specimen is equilibrated for a period of
t0 = 7,000 s in a cm0 = 4.1 molar NaCl solution, where c f c

m0S
is increased from 0 to 0.8 meq/l within the first 4,000 s. After
equilibrium is obtained, the initial configuration is reached,
and the hydrogel is placed in the new NaCl bathing solution.
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Table 2 Material parameters used for the simulation of the 2-d free
swelling experiment

c f c
m0S = 0.8 meq/l nS

0S = 0.25

c̄m0 = 4.10 mol/l µS = 0.12 N/mm2

cL
m = 55.80 mol/l λS = 0.02 N/mm2

D+ = 0.5 × 10−3 mm2/s γF R = 1 × 10−5 N/mm3

D− = 0.8 × 10−3 mm2/s k F = 1.07 × 10−8 mm/s

R = 8.3144 J/K mol θ = 298 K

c f c ∗
m0S = 0.51 meq/l nS ∗

0S = 0.18

ε = 40.0

Following this, the external salt concentration is decreased at
all boundaries from c̄m0 = 4.1 mol/l to c̄m1 = 2.7 mol/l until
t1 =7,080 s. Thereafter, only the boundaries denoted by the
solid line are exposed to the solution. Here, the concentration
is further decreased to c̄m2 = 0.3 mol/l until t2 =7,220 s,
while the concentration at the bottom is kept constant. At
t3 =8,000 s, the bottom of the hydrogel gets in contact with
the bathing solution as well. Therefore, c̄m1 is decreased here
to c̄m2 = 0.3 mol/l until t4 =10,000 s.

For the present 2-d simulation, the weighting factor ε

has been chosen to 40.0. Therewith, the computation of the
IBVP is stable and exhibits a good convergence. For conve-
nience, all material parameters used for the simulation are
summarised in Table 2. Note that it is well known that for
such high concentrations, osmotic and activity coefficients
should come into play. But since the concentrations vary
during the simulation on a very large range, these coefficients
would depend on the concentrations. Since the main atten-
tion within this contribution was on the weakly imposed Diri-
chlet boundary conditions, these factors have been omitted
here.

In Fig. 10, the simulation results on the left-hand side
are compared with the experiment on the right-hand side.
Besides the comparison of the deformation, the contour plots
show the development of the overall fluid pressure within the
material. The top picture at the left depicts the stress-free refe-
rence configuration (t = 0 s), where there is no deformation
and no osmotic pressure. Beneath, one can see the calcula-
ted initial configuration (t0 =7,000 s) after having increased
c f c

0S from 0 to its full amount and having reached equili-
brium. This is a swollen state, i.e., there is an osmotic pres-
sure and a deformation. The third line shows the phase of
the negative osmosis (t =7,107 s), during which the hydro-
gel shrinks initially in its inner region. Thereafter, the state
with the highest bending is shown (t = 7,224 s). The sub-
sequent pictures present how the final equilibrium state is
reached (t =7,650 s and t =11,000 s). Note that the cross-
sectional area of the specimen at the end of the simulation
is approximately 2.2 times the area of the (calculated) initial
state.

5 Conclusions

In this contribution, a consistent model for swelling materials
like charged, hydrated porous media based on the well-
founded TPM has been derived. Moreover, finite deforma-
tions of the solid skeleton have been considered by the
Neo-Hookean model presented by [12] such that swelling
experiments with finite volumetric deformations can be simu-
lated accurately. The advantage of this model is that only
three primary variables are necessary to model swelling
processes, namely, the solid displacement uS , the overall
pore-fluid pressure p and the cation concentration cm . This
reduction of the degrees of freedom results not only in a
numerically effective model, but also in deformation-
dependent boundary conditions which have to be treated
properly.

Therefore, we proposed in the present contribution to ful-
fil the Dirichlet boundary conditions for the osmotic pressure
and the cation concentration weakly by incorporation of the
corresponding conditions into the weak forms of the respec-
tive balance relations. Treating the boundary conditions by
this procedure, the numerical simulations remain stable.

Finally, in the last section, the numerical treatment of
the model has been validated by a 2-d simulation of a 1-d
swelling experiment. One could see that fulfilling the
Dirichlet boundary conditions strongly leads to oscillations
while the simulation with the weakly fulfilled boundary
conditions yields stable results. The capability and the sta-
bility of the implemented code has been finally exhibited
by a real free-swelling simulation with finite deformations,
and the results have been compared qualitatively with an
experiment.
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