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Abstract Accurate evaluation of nearly singular integrals
plays an important role in the overall accuracy of the Boun-
dary Element Method (BEM). A new approach for the eva-
luation of nearly singular integrals particularly those with
severe near singularity is described in this paper. This method
utilizes a degenerate mapping to first reduce near singularity
and then employs a variable transformation to further smooth
out the resultant integrand. The accuracy and efficiency of the
method are demonstrated through several examples that are
commonly encountered in the applications of the BEM. Com-
parison of this method with some of the existing methods is
also presented.
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1 Introduction

An important step in the implementation of the Boundary
Element Method (BEM) is the evaluation of various integrals
containing kernel functions of the type O

(
1
/

rγ
)
, where r is

the distance between the evaluation point (also called source
point) and the field point. These integrals become singular
or nearly singular when the source point collides with or is
very close to the field point. Accurate evaluation of singular
and nearly singular integrals plays a key role in the overall
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accuracy of the method because they are often the dominant
components in the final discretized system.

It is well known that conventional Gaussian quadrature
becomes inefficient or even inaccurate when applied to eva-
luate these integrals directly. Extensive research has been
conducted to search for accurate and efficient methods. For
singular integrals, the proposed methods include, but are
not limited to, analytical and semi-analytical methods [10,
11,28], degenerate mappings [1,24], and various non-linear
transformation techniques [20,22,31,32,35]. For nearly
singular integrals, which sometimes are more difficult to
compute, methods such as domain division [2,4,9,24], sin-
gularity subtraction [3], the line integral method for stress
analysis of thin structures [27], a method based on continuous
integral formulation for linear elasticity [29], and a variety
of variable transformation techniques [5,7,12–19,21,23,25,
26,31–34] have been proposed. In the variable transforma-
tion techniques, nonlinear transformations are employed to
smooth out the integrands before conventional Gaussian qua-
drature is applied. Impressive results obtained from these
variable transformation techniques have been demonstrated
on various examples. It is, however, difficult to find one par-
ticular method that is effective for a wide range of nearly
singular integrals. In a recent study conducted by Johnston
et al. [21], several variable transformation methods have been
compared. It was concluded that the sinh transformation pro-
posed by the authors of [21] was superior for a relatively large

range of integrals with mild near singularity, while the L
− 1

5
1

transformation [15] is the best for integrals with severe near
singularity, i.e., when the source point is very close to the
integration domain.

In this paper, a new approach based on variable transfor-
mations for evaluating nearly singular integrals with kernel
type of O

(
1
/

rγ
)

is introduced. The aim of this work is at
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developing a general method that is suitable for a wide range
of nearly singular integrals. Particular focus is on integrals
with severe near singularities, for example, near “hypersingu-
lar” integrals and beyond. In the sections that follow, a review
of the existing variable transformation methods is given first,
followed by the introduction of the new variable transfor-
mation method. Results on several 1-D and 2-D examples
obtained from various methods are presented and compa-
red next. Finally, a summary of the work is given in the last
section.

2 Variable transformation techniques

The integrals considered in this work are of O
(
1
/

rγ
)

type,
i.e., the integrands can be generalized as f (r, �x)

/
rβ , where

f ≈ O (rα) , γ = β − α ≥ 1 for surface integrals and
γ = β − α ≥ 2 for volume integrals, r = ‖�x − �xs‖, �x ∈ �,
and �xs is the evaluation point that is located either very close
to the integration domain � (nearly singular case) or inside
the domain (singular case). In both cases, the direct applica-
tion of numerical quadratures, such as Gaussian quadrature,
for the evaluation of such integrals yields large errors. For
weakly singular integrals, various forms of degenerate map-
pings have proven to be very effective in eliminating the sin-
gularity. When they are applied to nearly singular integrals,
particularly when γ is large and/or r is small, the resultant
integrands can still exhibit severe singular behavior as shown
in the following analysis.

Consider a triangular element T shown in Fig. 1a, where
�xs is the evaluation point and �x p is the closest point on the
element to �xs . Note �x p is not always the projection point of
�xs on the element and it can locate either inside the domain
or on one of the edges or vertices of the element. Based
on the location of �x p, the triangular element is then split
into several subelements, each with �x p as one of its vertices
(Fig. 1b). For example, if �x p locates inside the element, three
subelements result. If �x p locates on one edge of the element,
two subelements are sufficient. Consider the subelement,T ′,
shown in Fig. 1c and let �x = η1 �x1+η2 �x2+(1 − η1 − η2) �x p.
This subelement is transformed into a rectangular triangle in
a coordinate system described by (η1, η2) (Fig. 1d) and the
corresponding integral is
∫

T ′

f (r, �x)

rβ
d S (�x) =

∫∫

T ′

f̃ (r, η1, η2)

rβ
J1 (η1, η2) dη1dη2,

(1)

where r = ‖�xs − �x‖ = ‖η1(�x p − �x1) + η2(�x p − �x2)+
(�xs − �x p)‖ and J1 is the Jacobian of the transformation.

Applying the degenerate mapping described in [1] and let-
ting η1 = ρ cos2 θ and η2 = ρ sin2 θ , the subelement T ′ is
further transformed into a rectangle as illustrated in Fig. 1e.

The Jacobian of this transformation has a common factor,
ρ. In weakly singular cases, this ρ cancels out the singu-
lar source, ρ, in the denominator and the resultant integrand
becomes regular. In nearly singular cases, the original inte-
gral is transformed into
∫

T ′

f (r, �x)

rβ
d S (�x)

=
π
2∫

0

1∫

0

f̂ (ρ, θ, �xs) J̃1 (ρ, θ) ρ sin 2θ
[
d2 + 2dρ f1 (θ) + ρ2 f2 (θ)

]β/2
dρdθ, (2)

where d is the distance between �xs and �x p, f1 (θ) = (�xs−�x p)
d ·[

cos2 (θ)
(�x p − �x1

) + sin2 (θ)
(�x p − �x2

)]
and f2 (θ) =

cos4 θ
∥
∥�x p − �x1

∥
∥2 + 2 cos2 θ sin2 θ

(�x p − �x1
) · (�x p − �x2

) +
sin4 θ

∥∥�x p − �x2
∥∥2. A plot of the integrand as a function of ρ,

at f̂ = 1, J̃1 = 1, θ = π
4 , f1 = f2 = 1 and various d and

β, reveals that this integral, although is not singular, exhi-
bits singular behavior when d is small (Fig. 2). This singular
behavior becomes more severe when β increases. Various
variable transformations were proposed in the past to further
regularize the integrand [17,26,33,34]. A common feature
of such integrands is the coexistence of two vastly different
scales. As shown in Fig. 2, the integrands are typically com-
prised of two regions: a fast changing region near ρ = 0 and
a slowly varied region. Thus a good transformation technique
would be the one that reduces the discrepancy between scales.
This can be achieved by efficiently enlarging the fast varing
region, thus more Gaussian points can be distributed in this
region, and shrinking the slowly varing part. In the following
sections, some existing variable transformation techniques
in the literature are reviewed and a new method is presented
next.

2.1 Existing variable transformation techniques

In this section, we review and analyze some existing variable
transformation techniques by inspecting their transformation
(ρ − r ) maps as well as the smoothness of the transfor-
med integrands. As an example, the integral shown in the
expression (3) with β = 5 and the evaluation point located
at ρ = −d is used as the model integral.

1∫

0

ρ
[
d2 + ρ2

]β/2
dρ (3)

(a) Monomial polynomial transformations
As one of the pioneers in applying nonlinear transforma-

tion techniques to regularize weakly singular integrals and
nearly singular integrals, Telles proposed a second-order and
third-order polynomial transformations for nearly singular
integrals [31,32]. When applied to the integral shown in (3),
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Fig. 1 Schematic of the
degenerate 2-D mapping

Fig. 2 Plots of an integrand as
a function of ρ: a β = 1,
b β = 3

Telles’ transformations correspond to ρ = r2 and ρ = r3

respectively. A generalized form of this type of transfor-
mations is ρ = rm which maps ρ ∈ [0, 1] to r ∈ [0, 1].
Such a transformation has been employed in [26]. Figure 3
shows the ρ − r maps of this transformation corresponding
to different m, from which it is clear that this transformation
distributes more Gaussian points near the “singular” point,
i.e.,ρ = 0. But one drawback of such a transformation is that
the effectiveness of this transformation is limited. This can
be observed from Fig. 4 where the transformed integrands
corresponding to the integral shown in (3) are plotted for
different m and d = 0.001. It seems that the best transforma-
tion is the one corresponding to m = 8. Further increasing
m would result in a decreasing efficiency because too many
Gaussian points are clustered in a tiny region near the origin

and very few points are left for the rest of the domain. Even
at m = 8, the transformed integrand is not as smooth as one
would like to have, indicating further improvement may be
possible.
(b) The “Huang–Cruse”, “Wu” transformations

The “Huang–Cruse” transformation was proposed for eva-
luating nearly singular integrals in the form of

∫ a
0

g(x)

(x f (x)+d)n

dx , where f (x) is a positive and slowly changing function
within the integration interval [17]. The superior efficiency of
this method was demonstrated on several examples. Howe-
ver, as pointed out by Wu [33], Huang and Cruse’s method
is only valid for certain cases. Their method was later exten-
ded by Wu and Lu for more general integrals [33,34]. For
a detailed description of their methods, please refer to the
papers [17,33,34].

123



460 Comput Mech (2008) 42:457–466

Fig. 3 The ρ − r maps of
monomial polynomial
transformations at two different
orders. Circles represent
Gaussian points on r ∈ [0, 1]
and stars represent the
corresponding points on ρ

Fig. 4 The transformed integrands of the integral shown in (3) using
ρ = rm

(c) The PART method and the “L” transformations
In a series of papers published during 80’s and 90’s, the

Projection and Angular and Radial Transformation (PART)
method was introduced for the evaluation of nearly singular
integrals [12–16]. Various radial transformations such as the

“Log-L1” transformation [12] and the L− 1
5 transformation

[16] have been proposed to weaken the near singularity in the

radial direction. According to [16], the L− 1
5 transformation

performs the best among different L transformations for the
calculation of nearly singular flux integrals.

Figure 5 shows the ρ − r map of the L− 1
5 transformation

and the transformed integrand corresponding to the model
integral shown in (3). Comparing Fig. 5 with Figs. 3 and 4,

one may conclude that the L− 1
5 transformation is more effec-

tive than the monomial polynomial transformations for the
types of integrals similar to the model integral. One advan-
tage of this transformation is that it incorporates the distance
d into the transformation.

(d) Sigmoidal transformations (STs)
Sigmoidal transformations are a class of non-linear

transformations that were initially proposed for evaluating
singular integrals [6,8,19,30,35]. They can nevertheless also
be applied to weaken near singularity and thus are useful for
evaluating nearly singular integrals [18]. A common feature
of various Sigmoidal transformations, such as the simple Sig-
moidal transformation [6,8], the Sidi transformation [30], is
that Gaussian points are clustered very fast towards the end
points. For integrals with near singularity at only one end,
semi-Sigmoidal transformations [19,23] are more effective
than the classical Sigmoidal transformations. Figure 6 shows
the ρ − r map of the simple semi-Sigmoidal transforma-
tion, ρ = 2·(r/2)m

(r/2)m+(1−r/2)m with m = 3, and the transformed
integrand. One may conclude, based on the plots, that the
effectiveness of the simple semi-Sigmoidal is similar to that
of the monomial polynomial transformation with m = 2.
Another popular Sigomoidal transformation is the Sidi trans-
formation and the corresponding semi-Sidi transformation

isρ = 2 ·
√

π	((m+1)/2)
	(m/2)

∫ r/2
0 (sin πξ)m−1dξ . The effect of

this transformation on reducing the near singularity is simi-
lar to that of the simple semi-Sigmoidal transformation.
(e) The sinh transformation

Following the notations used by Johnston et al. [21], the
sinh transformation is described by the equations shown in
(4).

s = s0 + b sinh (µ1u − η1)

t = t0 + b sinh (µ2v − η2)
(4)

where

µ1 = 1

2

[
arc sinh

(
1 + s0

b

)
+ arc sinh

(
1 − s0

b

)]
,

η1 = 1

2

[
arc sinh

(
1 + s0

b

)
− arc sinh

(
1 − s0

b

)]
,

µ2 = 1

2

[
arc sinh

(
1 + t0

b

)
+ arc sinh

(
1 − t0

b

)]
,

η2 = 1

2

[
arc sinh

(
1 + t0

b

)
− arc sinh

(
1 − t0

b

)]
,
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Fig. 5 The ρ − r map of the

L− 1
5 transformation and the

transformed integrand

Fig. 6 Left: the ρ − r map of
the simple semi-Sigmoidal
transformation (m = 3); Right:
the transformed integrand

s0, t0 are the nearest point on the element to the evaluation
point, b is the distance between them. This transformation
maps (s, t) ∈ [−1, 1] to (u, v) ∈ [−1, 1]. When applied to
the model integral, the sinh transformation becomes ρ = d
sinh

(
arc sinh

( 1
d

)
r
)
. Figure 7 shows the ρ − r map and the

transformed integrand which are quite similar to that of Fig. 5.
An advantage of this transformation is that it incorporates
both the distance of the evaluation point to the element and
the position of the projection of the source point.

2.2 New variable transformation technique

The proposed variable transformation is expressed in Eq. (5).

ρ = 1

m − 1

(
1 − rm

1 − r
− 1

)
, (5)

where m is a parameter that can be chosen to suit for different
level of near singularity. This transformation maps ρ ∈ [0, 1]
to r ∈ [0, 1]. Figure 8 shows the mapping and the distribu-
tion of Gaussian points in both domains for m = 10 and
m = 100. Similar to most of the existing variable transfor-
mations, Gaussian points are clustered towards the singular
point ρ = 0. But unlike the monomial polynomial trans-
formations in which the map behaves more like a step func-
tion when m is large, this transformation distributes Gaussian

points more evenly which leads to a much smoother integrand
after transformation as illustrated in Fig. 9. The motivation of
the proposed variable transformation is based on the obser-
vation from Fig. 4 that for each different m, the correspon-
ding monomial polynomial transformation shifts the “pulse”
in the integrand, i.e. the source of near singularity initially
located at ρ = 0, to a different location and at the same time,
broadens the pulse to a certain extend. This naturally leads
to the thought of that the sum of all these transformations
would result in a much broader “pulse”, i.e., a much smoo-

ther integrand. Equation (5) is equivalent to ρ =
∑k=m−1

k=1 rk

m−1 ,
which is the original form of the proposed transformation.
However, Eq. (5) is recommended because it is much more
computational efficient. It is also possible to derive several
variations of (5) by assigning different weights to different
orders of monomial polynomials, which may lead to better
results in some cases.

3 Results and discussion

Several integrals are chosen to validate the accuracy as well
as the efficiency of the proposed transformation technique
for the evaluation of nearly singular integrals. For the one-
dimensional integrals, results obtained from the proposed
transformation with those obtained from the existing variable
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Fig. 7 The ρ − r map of the
sinh transformation and the
transformed integrand

Fig. 8 Mapping between ρ and
r , circles represent Gaussian
points on r ∈ [0, 1] and stars
represent the corresponding
points on ρ

transformation techniques are compared. In the two-
dimensional example, the integration of 1

rβ on a square of
[−1, 1]× [−1, 1]with the evaluation point located at various
places is considered. This example was used in several refe-
rences [17,26,33,34] in which methods such as the modi-
fied triangle polar co-ordinate mapping and the Huang–Cruse
and the Wu’s transformation techniques were employed. The
results published in these references are used for
comparison.

3.1 One-dimensional example

Consider one-dimensional integrals in the form of∫ 1
0

ρ

[d2+ f1·2dρ+ f2·ρ2]β/2 dρ.

Based on the results presented in Tables 1, 2, 3 and 4, it is

clear that the performances of the L− 1
5 transformation, the

sinh transformation and the proposed transformation are far
better than that of monomial polynomial transformations and
various semi-Sigmoidal transformations. Among the three, it
is noted that the performances of both the sinh transformation

and the L− 1
5 transformation vary with the integrals, particu-

larly when low-order Gaussian quadratures are employed.

While the L− 1
5 transformation performs extremely well in

case (4), its efficiency decreases when integrands vary
slightly as shown in cases (1), (2) and (3). The sinh trans-
formation, on the other hand, does very well in evaluating

Fig. 9 The transformed integrand

integrals presented in cases (1) and (2), but not so well in
cases (3) and (4). The proposed transformation, however,
does very well for all the cases considered. This is largely
attributed to the adjustable parameter, m. While it is usually
regarded as a disadvantage to have a parameter in the for-
mulation, in this case it is actually advantageous to have
such an adjustable parameter which can be tuned to make
the transformation optimal for a wide range of nearly sin-
gular integrals. This has been clearly demonstrated in the
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Table 1 β = 5, f1 = 0, f2 = 1, d = 0.01, n: number of Gaussian points, exact solution: 333333.000049

n = 5 n = 10 n = 15 n = 20

Monomial polynomial transformation m = 3 472317.2156 318441.9470 333751.1105 333420.6197

m = 4 283724.1253 375364.0461 338746.5625 333362.7874

m = 8 488251.2222 357863.4595 316629.1402 335699.9242

L− 1
5 transformation 334704.6112 333430.6683 333332.1298 333333.0043

Simple semi-Sigmoidal transformation (m = 3) 445602.1808 361389.5263 331604.5568 333074.9740

Semi-Sidi transformation (m = 5) 188225.6464 382375.4884 349512.6276 335319.2399

Sinh transformation 313260.0940 333306.0462 333333.0107 333333.00007

Proposed transformation (m = 50) 336339.6843 333335.6640 333332.9968 333333.00003

Proposed transformation (m = 100) 334880.1271 333333.1649 333332.9839 333332.99882

Table 2 β = 5, f1 = 0, f2 = 1, d = 0.001, n: number of Gaussian points, exact solution: 333333333.000

n = 5 n = 10 n = 15 n = 20

Monomial polynomial transformation m = 3 80268938.67 275756303.2 326177863.9 333484116.5

m = 4 135940040.4 490916778.8 297825887.4 332732841.6

m = 8 65688215.50 478029462.0 382969658.5 325858474.9

L− 1
5 transformation 292823140.7 333815379.0 333338032.4 333333279.4

Simple semi-Sigmoidal transformation (m = 3) 41640433.56 337742755.2 361781499.9 335958058.9

Semi-Sidi transformation (m = 5) 36322299.08 301852015.1 309566829.9 347004108.0

Sinh transformation 320840548.6 333317475.2 333333501.1 333333334.1

Proposed transformation (m = 400) 339644063.5 333324116.5 333333341.8 333333333.8

Proposed transformation (m = 800) 331845860.7 333334079.6 333333329.0 333333332.8

Table 3 β = 5, f1 = 0.5, f2 = 1.2, d = 0.001, n: number of Gaussian points, exact solution: 130952865.897

n = 5 n = 10 n = 15 n = 20

Monomial polynomial transformation m = 3 62247503.87 141085813.7 138107729.7 132789155.0

m = 4 50184983.89 174181537.0 129884258.9 129767759.3

m = 8 27264838.66 150430192.5 142847011.2 131867026.6

L− 1
5 transformation 123772591.4 130935220.2 130952855.6 130952865.9

Simple semi-Sigmoidal transformation (m = 3) 20802996.09 115870547.3 133029376.1 131524187.3

Semi-Sidi transformation (m = 5) 119435703.6 150205027.9 118230688.9 134208728.9

Sinh transformation 145801573.2 130877957.5 130953111.3 130952865.2

Proposed transformation (m = 800) 130898582.2 130952864.9 130952863.2 130952865.7

Table 4 β = 5, f1 = 1, f2 = 1, d = 0.001, n: number of Gaussian points, exact solution: 83333333.0012

n = 5 n = 10 n = 15 n = 20

Monomial polynomial transformation m = 3 50532581.84 92168498.41 86372991.49 83668494.26

m = 4 40411356.81 99673259.86 83959298.19 83158975.32

m = 8 24944864.02 89584775.60 86389978.75 83591134.83

L− 1
5 transformation 83933407.59 83333333.00 83333333.00 83333333.00

Simple Semi-Sigmoidal transformation (m = 3) 19803076.55 75599328.32 83220877.20 83360491.40

Semi-Sidi transformation (m = 5) 83454287.81 95388152.00 78943505.28 83856747.53

Sinh transformation 93106638.35 83539570.48 83334541.69 83333337.55

Proposed transformation (m = 800) 83333347.25 83333332.73 83333328.89 83333332.76
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Fig. 10 The transformed
integrands at different m

Table 5 Numerical results for β = 3, n is the total number of Gaussian points and the exact value is 5.20709224336

n = 6 × 6 n = 10 × 10 n = 15 × 15

Huang and Cruse’s transformation [17] 5.20709226281 5.20709224335 NA

L− 1
5 transformation 5.20793150726 5.20709265930 5.20709224339

Sinh transformation 5.20709237304 5.20709224335 5.20709224335

Proposed transformation (m = 10) 5.20735170908 5.20709223291 5.20709224336

Table 6 Numerical results for β = 5, n is the total number of Gaussian points and the exact value is 51.5674930652

n = 6 × 6 n = 10 × 10 n = 15 × 15

Huang and Cruse’s transformation 51.5674889113 51.5674930652 NA

L− 1
5 transformation 51.7633674951 51.5677884036 51.5674931112

Sinh transformation 51.5675379998 51.5674930621 51.5674930652

Proposed transformation (m = 10) 51.5687049270 51.5674930618 51.5674930653

results obtained. The key question is that how to select m
for various different integrals. One approach is to employ
a careful optimization process such as the one proposed by
Telles in [31]. Another approach, despite its simplicity, has
proved to be quite effective based on our experience. One
can simply inspect the transformed integrands for various m
and select the one that yields the smoothest integrand after
transformation. Figure 10 shows the transformed integrands
of the integrals considered in cases (1) and (2). Clearly for
case (1), both m = 50 and m = 100 are good choices and
for case (2), m = 800 is the best choice. These observations
are indeed consistent with our results.

3.2 Two-dimensional example

I =
∫

�

1

rβ
d A, � is a square of [−1, 1] × [−1, 1] .

(1) Evaluation point located at (−1.1,−1.1, 0)

This example was considered in references [17,26].
In reference [26], a modified triangle-polar coordinate

mapping, which is equivalent to the degenerate mapping
plus the monomial polynomial transformation mentioned
above, was employed. Similar to the trend that was obser-
ved in the one-dimensional cases, this method is much less
effective than some other transformations. Thus its results
are not presented. Only those obtained from more effective

transformations, i.e., the L− 1
5 transformation, the sinh trans-

formation, the proposed transformation technique and the
Huang and Cruse’s transformation [17], are listed in Tables 5
and 6.

Based on the results shown in these tables, the most effec-
tive transformation for this case is the Huang and Cruse’s
transformation in which a 8/6-digit accuracy can be achie-
ved by using only 6×6 Gaussian points. However, as pointed
out by Wu [33], the Huang and Cruse’s method, has certain
limitation. For the case presented next, their method cannot
be applied. For the other three transformations, while all of
them produce almost the same results when n ≥ 15 × 15,
the sinh transformation technique performs the best at low
orders, followed by the proposed transformation technique.
Note in the sinh transformation, there is no need to discretize
the domain into triangles.
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Table 7 Numerical results for β = 5, d = 0.02848427, exact solution is 92558.50373

n = 5 × 5 n = 10 × 10 n = 20 × 20 n = 30 × 30 n = 40 × 40

Huang–Cruse–Wu’s transformation NA 92550.513 92558.496 92558.496 92558.496

L− 1
5 transformation 95081 92555.93751 92558.50358 92558.50373 92558.50373

Sinh transformation 86836 92539.87605 92558.50368 92558.50373 92558.50373

Proposed transformation (m = 30) 93096 92553.68529 92558.50362 92558.50373 92558.50373

Table 8 Numerical results for β = 5, d = 0.002848427, exact solution is 92560071.88

n = 10 × 10 n = 20 × 20 n = 30 × 30 n = 40 × 40

Huang–Cruse–Wu’s transformation 92403606 92560120 92560131 92560132

L− 1
5 transformation 92603966.17 92560071.40 92560071.88 92560071.88

Sinh transformation 91371416.30 92559671.34 92560071.81 92560071.88

Proposed transformation (m = 300) 92555271.94 92560071.83 92560071.88 92560071.88

(2) Evaluation point located at (0.0, 0.0, d)

In references [33,34], Wu pointed out the limitation of
Huang and Cruse’s method and proposed several modifica-
tions so that this transformation method could be applied to
more general integrals, i.e., to the cases when the closest point
to the evaluation point locates inside the element. This was
demonstrated by the same example that Huang and Cruse
used but with the evaluation point located at (0.0, 0.0, d),
where d varies from 0.1414 to 0.002828427, corresponding
to a d

/
D, D is the diagonal of the panel, of 5–0.1% res-

pectively. Such integrals were also evaluated using other
variable transformation methods. Results together with Wu’s
best results obtained from Eq. (20) in [34] are presented in
Tables 7 and 8. For a concise presentation, only cases with
severe near singularity are shown. For mild near singularity,
for example, cases with d

/
D = 5% and d

/
D = 2%, the

trend is similar to that of the previous example.
Based on the results presented in the above tables, we

found that the performance of the proposed transformation

was better than that of the L− 1
5 transformation and the sinh

transformation, particularly when low-order Gaussian qua-
drature was employed. When the order of Gaussian quadra-
ture increases to a certain level (n > 20), all three transfor-
mations produce almost identical results. The accuracy and
the efficiency of the Huang–Cruse–Wu’s transformation at
low-order Gaussian quadratures are comparable to that of the
proposed transformation. However, it is observed the results
from their transformation seem to converge to a set of values
that are not consistent with the exact solutions presented in
the tables.

4 Conclusions

A new approach is proposed as an alternative method for
evaluating nearly singular integrals particularly for those with

severe near singularity. This approach utilizes one form of
the degenerate mapping to first reduce the near singularity
and then to further smooth out the integrand by a variable
transformation. Such a method is valid for both 1-D and 2-D
integrals and can be easily extended to nearly singular volume
integrals.

The accuracy and efficiency of the method was tested
on several examples and compared with some existing
methods. It has been found that the performance of the pro-
posed method is relatively kernel independent, owing to an
adjustable parameter in the formulation, while the perfor-
mances of some other transformation based methods vary
with the kernels. It has also been found for some mild nearly
singular integrals considered, the sinh transformation outper-
forms the proposed method and others. However, for severe
nearly singular cases, the proposed method is the best, par-
ticularly when low-order Gaussian quadratures (n ≤ 10) are
employed.
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