
Comput Mech (2008) 41:607–615
DOI 10.1007/s00466-007-0218-2

ORIGINAL PAPER

On the effect of linear algebra implementations in real-time
multibody system dynamics

Manuel González · Francisco González ·
Daniel Dopico · Alberto Luaces

Received: 14 May 2007 / Accepted: 22 August 2007 / Published online: 25 September 2007
© Springer-Verlag 2007

Abstract This paper compares the efficiency of multibody
system (MBS) dynamic simulation codes that rely on diffe-
rent implementations of linear algebra operations. The dyna-
mics of an N -loop four-bar mechanism has been solved
with an index-3 augmented Lagrangian formulation combi-
ned with the trapezoidal rule as numerical integrator.
Different implementations for this method, both dense and
sparse, have been developed, using a number of linear
algebra software libraries (including sparse linear equation
solvers) and optimized sparse matrix computation strategies.
Numerical experiments have been performed in order to mea-
sure their performance, as a function of problem size and
matrix filling. Results show that optimal implementations can
increase the simulation efficiency in a factor of 2–3, compa-
red with our starting classical implementations, and in some
topics they disagree with widespread beliefs in MBS dyna-
mics. Finally, advices are provided to select the implementa-
tion which delivers the best performance for a certain MBS
dynamic simulation.

M. González (B) · F. González · D. Dopico · A. Luaces
Escuela Politécnica Superior, Universidad de A Coruña,
Mendizábal s/n, 15403 Ferrol, Spain
e-mail: lolo@cdf.udc.es
URL: http://lim.ii.udc.es

F. González
e-mail: fgonzalez@udc.es

D. Dopico
e-mail: ddopico@udc.es

A. Luaces
e-mail: aluaces@udc.es

Keywords Multibody dynamics · Real-time ·
Performance · Lineal algebra · Implementation

1 Introduction

Dynamic simulation of multibody systems (MBS) is of great
interest for dynamics of machinery, road and rail vehicle
design, robotics and biomechanics. Computer simulations
performed by MBS simulation tools lead to more reliable,
optimized designs and significant reductions in cost and time
of the product development cycle. The computational effi-
ciency of these tools is a key issue for two reasons. First,
there are some applications, like hardware-in-the-loop set-
tings or human-in-the-loop devices, which cannot be deve-
loped unless MBS simulation is performed in real-time. And
second, when MBS simulation is used in virtual prototy-
ping, faster simulations allow the design engineer to perform
what-if-analyses and optimizations in shorter times, increa-
sing productivity and interaction with the model. Therefore,
computational efficiency is an active area of research in MBS,
and it holds a relevant position in MBS-related scientific
conferences and journals.

A great variety of methods to improve simulation speed
have been proposed during the last years [1–3]. Most of these
methods base their efficiency improvements on the deve-
lopment of new dynamic formulations. However, although
implementation aspects can also play a key factor in the per-
formance of numeric simulations, their effect on real-time
multibody system dynamics has not been studied in detail.
Some recent contributions have investigated the possibilities
of parallel implementations [4], but comprehensive compa-
risons about serial implementations in MBS dynamics have
not been published yet.

123

http://lim.ii.udc.es

608 Comput Mech (2008) 41:607–615

Multibody dynamics codes make an intensive use of linear
algebra operations. This is especially true in global methods,
which use a relative big number of coordinates and constraint
equations to define the position of the system; these methods
usually lead to O(N 3) algorithms, where N is the number
of bodies, and spend around 80% of the CPU time in matrix
computations. Topological methods lead to O(N) algorithms
due to the reduced size of the involved matrices, and therefore
the weight of matrix computations is also reduced. However,
if flexible bodies are considered, matrix computations take a
significant percentage of simulation time even for topological
methods.

As a result, the implementation of linear algebra opera-
tions is critical to the efficiency of MBS dynamic simula-
tions. These operations can be grouped into two categories:
(a) operations between scalars, vectors and matrices, and (b)
solution of linear systems of equations; two additional ortho-
gonal categories can be established based on the data sto-
rage format: dense storage or sparse storage. Many efficient
implementations for these routines have been made freely
available in the last decade. Their performance has been com-
pared in previous works, both in an application-independent
context [5–7] and under the perspective of a particular appli-
cation like Finite Element Analysis [8] or Computational
Chemistry [9]. But, as it will be explained in this paper, these
studies do not fit the particular features of MBS dynamics,
and therefore their conclusions cannot be extrapolated to this
field.

The goal of this paper is to compare the efficiency of
different implementations of linear algebra operations, and
study their effect in the context of MBS dynamic simulation.
Results will provide guidelines about which numerical libra-
ries and implementation techniques are more convenient in
each case. This information will be very helpful to resear-
chers developing high-performance or real-time multibody
simulation codes.

The remainder of the paper is organized as follows: Sect. 2
describes the test problem and the dynamic formulation used
in the numerical experiments to compare the efficiency of
different implementations; Sects. 3 and 4 present efficient
implementations for dense and sparse linear algebra, respec-
tively; Sect. 5 compares the results obtained in Sects. 3 and 4
and extrapolates them to other dynamic formulations; finally,
Sect. 6 provides conclusions, advices for efficient implemen-
tations and areas of future work.

2 Benchmark setup

In order to study the effect of linear algebra implementations
in MBS dynamic simulations, a test problem will be solved
with a particular dynamic formulation using different soft-
ware implementations. A starting implementation will also

be described, since its efficiency will serve as a reference to
measure performance improvements.

2.1 Test problem

The selected test problem (Fig. 1) is a 2D one degree-
of-freedom assembly of four-bar linkages with N loops, com-
posed by thin rods of 1 m length with a uniformly distributed
mass of 1 kg, moving under gravity effects. Initially, the sys-
tem is in the position shown in Fig. 1, and the velocity of the
x-coordinate of point B0 is +1 m/s. The simulation time is
20 s. This mechanism has been previously used as a bench-
mark problem for multibody system dynamics [3,10].

2.2 Dynamic formulation

The N -four-bar mechanism has been modeled using planar
natural coordinates (global and dependent) [11], leading to
2N+2 variables (the x and y coordinates of the B points),
and 2N+1 constraints, associated with the constant length
condition of the rods. The equations of motion of the whole
multibody system are given by the well-known index-3 aug-
mented Lagrangian formulation in the form:

Mq̈ + �T
q α� + �T

q λ* = Q
(1)

λ∗
i+1 = λ∗

i + α�i+1, i = 0, 1, 2, . . .

where M is the mass matrix (constant for the proposed test
problem), q̈ are the accelerations, �q the Jacobian matrix
of the constraint equations, α the penalty factor, � the
constraints vector, λ∗ the Lagrange multipliers and Q the
vector of applied and velocity dependent inertia forces.
The Lagrange multipliers for each time-step are obtained
from an iteration process, where the value of λ∗

0 is equal to
the λ∗ obtained in the previous time-step.

As integration scheme, the implicit single-step trapezoidal
rule has been adopted. The corresponding difference

B
0

A
0

A
1

A
N-1

A
N

B
1

Loop 1 Loop N

B
N-1

B
N

g = 9.81 N/kg

y

x

Fig. 1 N -four-bar mechanism

123

Comput Mech (2008) 41:607–615 609

equations in velocities and accelerations are:

q̇n+1 = 2

�t
qn+1 + ˆ̇qn; ˆ̇qn = −

(
2

�t
qn + q̇n

)
(2)

q̈n+1 = 4

�t2 qn+1 + ˆ̈qn; ˆ̈qn = −
(

4

�t2 qn + 4

�t
q̇n + q̈n

)

Dynamic equilibrium can be established at time-step n + 1
by introducing the difference Equation (2) into the equations
of motion (1), leading to a nonlinear algebraic system of
equations with the dependent positions as unknowns:

f (q) = Mqn+1 + �t2

4
�T

qn+1
(α�n+1 + λn+1)

− �t2

4
Qn+1 + �t2

4
M ˆ̈qn = 0 (3)

Such system, whose size is the number of variables in the
model, is solved through the Newton–Raphson iteration[

∂f(q)

∂q

]
i
�qi+1 = − [

f (q)
]

i (4)

using the approximate tangent matrix (symmetric and
positive-definite)[

∂f (q)

∂q

]
∼= M + �t

2
C+�t2

4

(
�T

q α�q + K
)

(5)

where C and K represent the contribution of damping and
elastic forces of the system (which are zero for the test pro-
blem). Once convergence is attained into the time-step, the
obtained positions qn+1 satisfy the equations of motion (1)
and the constraint conditions � = 0, but the corresponding
sets of velocities q̇∗ and accelerations q̈∗ may not satisfy
�̇ = 0 and �̈ = 0. To achieve this, cleaned velocities q̇
and accelerations q̈ are obtained by means of mass-damping-
stiffness orthogonal projections, reusing the factorization of
the tangent matrix:[
∂f(q)

∂q

]
q̇ =

[
M + �t

2
C+�t2

4
K

]
q̇∗ − �t2

4
�T

q α�q

[
∂f(q)

∂q

]
q̈ =

[
M + �t

2
C+�t2

4
K

]
q̈∗ (6)

− �t2

4
�T

q α
(
�̇qq̇ + �̇t

)
This method, described in detail in [12], has proved to be a

robust and efficient global formulation [13,14]. All numerical
experiments will be performed using a time-step�t of 1.25 ×
10−3 s and a penalty factor α of 108s.

2.3 Starting implementation

In our starting implementation, the simulation algorithm was
implemented using Fortran 90 and the Compaq Visual For-
tran compiler. Two versions were developed: (a) a dense
matrix storage version, using Fortran 90 matrix manipulation

Table 1 Percentage of the total CPU time required by each algorithm
phase in the starting implementation for typical problem sizes: dense
version in small problems (10 loops, 22 variables) and sparse version
in medium-size problems (40 loops, 82 variables)

Stage Dense (%) Sparse (%)

Evaluation of residual and tangent matrix,
Eqs. (3) and (5)

48 15

Evaluation of right-term in orthogonal projec-
tions, Eq. (6)

4 13

Tangent matrix factorizations and back-
substitutions, Eqs. (4 and 6)

44 51

Other 4 21

capabilities and the linear equation solver included with this
compiler (IMSL Fortran Library, from Visual Numerics), and
(b) a sparse matrix storage version, using the MA27 sparse
linear equation solver from the Harwell Subroutine Library.
These two implementations, typical in the multibody com-
munity, have been tuned and improved by our group during
the last years, and they have proved to be faster than com-
mercial codes [13,14]. Its efficiency will serve as a reference
to measure the performance improvements achieved with the
new implementations proposed in this paper.

Table 1 shows the results of a CPU usage profiling in
our starting implementations, for both dense and sparse ver-
sions, applied to representative problem sizes. As stated in
the introduction, matrix computations consume most of the
CPU time.

In order to test alternative implementations, the authors
have developed a new MBS simulation software, implemen-
ted in C++, which can be easily configured to use different
matrix storage formats and linear algebra algorithms and
implementations. Numerical experiments have been perfor-
med on an AMD Athlon64 CPU. After testing different ope-
rating systems and compilers, results show that their effect
on the performance is an order of magnitude lower than the
effect of linear algebra implementations. Final CPU times
have been measured using the GNU gcc compiler and the
Linux O.S., without loss of generality.

3 Efficient dense matrix implementations

Global formulations applied to reduced rigid models (e.g.
an industrial robot), or topological formulations applied to
medium-sized rigid models (e.g. a complete road vehicle),
lead to algorithms that operate with small-sized matrices of
dimensions less than 50×50. In these cases, dense linear
algebra is frequently used in MBS dynamics, since it is sup-
posed to provide equal or higher performance than sparse
implementations. Achieving real-time in the simulation of
these small problems can be a challenge in hardware-in-the

123

610 Comput Mech (2008) 41:607–615

loop settings (e.g. advanced Electronic Stability Control
systems for automobiles), due to the low computing power
of embedded microprocessors, the small time-steps required
for hardware synchronization and the added control logic.

A straightforward way to increase the performance of
dense matrix computations is by using an efficient imple-
mentation of Basic Linear Algebra Subprograms (BLAS).
BLAS [15] is a standardized interface that defines routines to
perform low level operations between scalars, dense vectors
and dense matrices. A Fortran 77 reference implementation
is available, and more efficient implementations have been
developed by hardware vendors and researchers. These opti-
mized BLAS versions exploit hardware features of modern
computer architectures to get the best computational effi-
ciency. In addition to the reference Fortran 77 implemen-
tation, three optimized BLAS implementations have been
tested:

• Automatically Tuned Linear Algebra Software (ATLAS),
which employs empirical techniques to generate an opti-
mal implementation for any hardware architecture [7].

• GotoBLAS, based on optimized assembler kernels, hand-
written for the most popular hardware architectures [16].

• ACML, developed by the microprocessor manufacturer
AMD for its CPUs [17]. Other hardware vendors also pro-
vide their own implementations (MKL from Intel, SCSL
from SGI, etc.).

Dynamic simulations can also make a profit of these opti-
mized BLAS implementations in the solution of dense linear
equation systems, provided the LAPACK library is used [18],
since its linear equation solvers are based on low-level BLAS
operations. In addition to the reference LAPACK implemen-
tation, written in Fortran 77, some optimized BLAS imple-
mentations like ATLAS and ACML supply their own
optimized versions of the LAPACK linear solvers.

The proposed test problem, with a number of loops ran-
ging from 1 to 20 (i.e. number of variables ranging from 4 to
42), was solved using different BLAS and LAPACK imple-
mentations to perform all matrix computations. Since the
tangent matrix in the proposed dynamic formulation is sym-
metric and positive-definite (SPD), only the lower triangular
part of the matrix is computed, and the LAPACK routines
DPOTRF and DPOTRS have been used as linear equation
solver. Performance results are shown in Fig. 2, where the
legend text is encoded in the form “BLAS implementation
+ LAPACK implementation” (except for the starting imple-
mentation), and the combinations are ordered by increasing
efficiency.

Results in Fig. 2 clearly show the advantage of using
BLAS and LAPACK, which speed-up the simulation in a
factor between 2 and 5, depending on the problem size, com-
pared with our previous starting implementation. The low

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45

Number of variables

C
P

U
 ti

m
e

(s
)

Starting implementation
ATLAS+Ref.
ATLAS+ATLAS
ACML+Ref.
Ref.+Ref.
GotoBLAS+Ref.
 ACML+ACML

Fig. 2 Performance of different dense BLAS and LAPACK
implementations

performance of the ATLAS implementation, compared to
the BLAS reference implementation, can be explained by
its high sensitiveness to the development environment (e.g.
compiler version) and its current unstable state (it is under
strong development). The vendor implementation (ACML)
and GotoBLAS deliver the best results except for very small
problems (up to 10 variables). The implementation named
“Ref. + Ref.” delivers the best performance for very small
problems, and 70–80% of the performance of the best imple-
mentations for medium-size problems (three times more effi-
cient than our starting implementation); in addition, it has a
very good portability (it is written in plain Fortran 77) and
usability: the installation process is straightforward, which
is not always true for other implementations.

Since some MBS dynamic formulations lead to a non-
symmetric tangent matrix [19], the same numerical expe-
riment has been executed using general algorithms (not
SPD-specific) to compute all matrix operations; CPU times
are about 15% higher, but the efficiency ranking of Fig. 2 is
maintained.

4 Efficient sparse matrix implementations

In MBS dynamics, sparse matrix techniques are used in glo-
bal formulations applied to medium- or big-sized rigid
models; as an example, a global model of an automobile leads
to matrices of dimension about 200×200 [14]. If flexible
bodies are considered, the matrix size increases, making
sparse techniques profitable even if topological formulations
are used: a topological model of the same automobile, with
some of its bodies characterized as flexible elements (des-
cribed by component mode synthesis), leads to matrices of
dimension about 100×100. In any case, MBS models deve-
loped with real-time formulations hardly ever lead to matrix
sizes bigger than 1,000×1,000, significantly smaller than

123

Comput Mech (2008) 41:607–615 611

the typical sizes in other applications like Finite Element
Analysis (FEA) or Computer Fluid Dynamics (CFD).

Regarding the sparsity, the proposed test problem and
MBS dynamic formulation lead to a tangent matrix of size
2N+2 and 12N+4 structural non-zeros. For matrices of size
50×50, 100×100 and 500×500, the corresponding num-
ber of non-zeros is 12, 6 and 1%. These are representative
values for MBS simulations, and they are quite higher than
typical values in other applications that require sparse matrix
technology (FEA, CFD).

Hence, MBS dynamics has two characteristics which
make its sparse matrix computations different from other
applications:

(a) Matrix computations are very repetitive, and the sparse
patterns remain constant during the simulation. There-
fore, symbolical preprocessing can be applied to almost
all matrix expressions at the beginning of the simula-
tion, in order to accelerate the numerical evaluations
during the simulation. Section 4.1 presents some tips to
exploit this feature.

(b) The involved sparse matrices are relatively small and
dense, compared with the typical values in sparse matrix
technology. Section 4.2 evaluates how sparse linear
equation solvers perform in these circumstances.

4.1 Optimized sparse matrix computations

Several numerical libraries are available nowadays to support
sparse matrix computations: MTL, MV++, Blitz++, Spar-
seKIT, etc. For our new implementations, we have chosen
uBLAS, a C++ template class library that provides BLAS
functionality for sparse matrices [20]. Its design and imple-
mentation unify mathematical notation via operator overloa-
ding and efficient code generation via expression templates.
Even though, the performance of some matrix operations
can be further improved if some special algorithms are used.
Results of CPU usage profiling (similar to Table 1) guided
us to optimize three operations.

The first optimized operation is the rank-k update of sym-
metric matrix, �T

q α�q, computed in Eq. (5). Since the sparse
structure of the Jacobian matrix �q is constant, a symbo-
lic analysis is performed in order to pre-calculate the sparse
pattern of the result matrix and to create a data structure
that holds the operations needed to evaluate it during the
simulation. In our starting sparse implementation, a simi-
lar approach was taken, but the Jacobian matrix was stored
as dense, to simplify the operations at the cost of a higher
memory usage.

The second optimized operation is the matrix addition
computed in Eq. (5). Our starting sparse implementation used
the Harwell MA27 routine as linear equation solver, which
requires the sparse matrix to be stored in coordinate format

1 0 0

2 3 4

0 5 6

A

1,2, 3, 4, 5, 6

1,2, 2, 2, 3,3

1,1,2, 3, 2, 3

val

indx

jndx

1,2, 3, 5, 4, 6

1,2, 2, 3, 2, 3

1,3,5, 7

val

indx

pntr

Compressed column formatCoordinate format

Fig. 3 Sparse storage formats used in out implementations

(Fig. 3), and allows duplicated entries in the matrix structure.
Therefore, the matrix addition is not actually computed, since
the different terms are appended as duplicated entries in the
tangent matrix. Our new implementation uses the compres-
sed column storage format (Fig. 3), since it is required by
the sparse linear equation solvers tested in Sect. 4.2. With
this storage format, matrix additions require complex data
traversing that slows down the performance. The following
approach was taken in order to optimize the operation:

B = t1A1 + t2A2 (7)

In the preprocessing stage, the sparse pattern of B is cal-
culated as the union of A1 and A2 sparse patterns, and the
resulting pattern is added to A1 and A2. In this way, A1, A2

and B share the same sparse pattern (same indx and pntr
arrays in the compressed column storage format shown in
Fig. 3), and therefore, the matrix addition can be computed
as a vector addition of the val arrays:

valB = t1valA1 + t2valA2 (8)

This technique increases the number of non-zeros (NNZ)
of the addend matrices. In the proposed MBS dynamic for-
mulation, the NNZ of the mass matrix M is increased in
a 10% approximately, which slows down the matrix–vector
multiplications needed in the right terms of Eqs. (3) and (6).
However, the simulation timings show that this slowdown
is negligible compared with the gains derived from the fast
matrix addition.

Finally, the third optimized operation concerns sparse
matrix access. The write operation A(i, j) = ai j , straight-
forward in dense storage, needs additional position lookup
when the compressed column storage is used. In the pro-
posed formulation, the update of the Jacobian matrix �q in
each iteration takes 10–15% of the CPU time. The involved
operations are rather simple, and most of this time is spent in
matrix access. In order to optimize this procedure, a prepro-
cessing stage evaluates the Jacobian matrix and registers the
order in which entries �q(i, j) are written in the val array of
the compressed column format, creating a vector that holds
indices to these positions, in the same order of evaluation.

123

612 Comput Mech (2008) 41:607–615

Table 2 Efficiency of the optimized sparse matrix operations

Sparse operation CPU time (ms) Ratio

Not optimized Optimized

(1) Rank-k update of symme-
tric matrix

2528.2 9.4 269

(2) Matrix addition 140.9 1.9 74

(3) Jacobian matrix evaluation 11.6 3.8 3

Latter, in the simulation stage, access to the Jacobian matrix
is performed using this index vector, without the need to map
(i, j) indices to memory addresses for each write operation.

Table 2 summarizes the performance gains delivered by
the proposed optimizations, compared with the performance
delivered by the uBLAS default algorithms (which are simi-
lar to other generic sparse matrix libraries). The numerical
experiment used the matrix terms derived from an
N -four-bar mechanism with N = 40 loops, which leads to a
tangent matrix of size 82×82. Results show the importance
of optimizing rank-k updates and matrix additions, since the
performance delivered by off-the-shelf sparse matrix libra-
ries is not satisfactory for these repetitive operations.

4.2 Evaluation of sparse linear equation solvers

Data in Table 1 shows that, in our starting sparse implemen-
tation, about 50% of the total CPU time is spent in tangent
matrix factorizations and back-substitutions, Eqs. (4) and (6).
Thus, the main performance improvements in MBS dyna-
mic simulation can be achieved by using a more efficient
sparse linear solver. During the last decade, sparse solvers
have significantly improved the state of the art of the solution
of general sparse linear equation systems, and more than 30
sparse solver libraries are freely available in the World Wide
Web [21].

The efficiency of sparse solvers varies greatly depending
on the matrix size, structure, number of non-zeros, etc. In
addition, solving a sparse linear equation system usually
involves three stages: preprocessing (ordering, symbolic fac-
torization), numerical factorization and back substitution;
some solvers are very fast in the first stage, while others
perform better in the second or third stage. The performance
of sparse solvers has been compared in previous works [5,6],
but the conditions of these studies (in particular, matrix sizes
and percentage of non-zeros) do not fit the above-mentioned
particular features of MBS dynamics, and therefore their
conclusions cannot be extrapolated to this field. As a result, it
is almost impossible to determine, without numerical experi-
ments, which sparse solver will deliver the best performance
in an MBS dynamic simulation.

Given the large number of existing sparse solvers, a selec-
tion process is required in order to narrow the scope. Solvers

for shared memory or distributed memory parallel machines
have been discarded, since the small matrix sizes in MBS
real-time dynamics (almost fit in the CPU cache memory)
makes them unprofitable. The same argument applies to ite-
rative solvers and out-of-core solvers, designed for very big
linear equation systems. From the remaining solvers, those
that performed best in previous comparative studies have
been selected:

• Cholmod, a left-looking supernodal symmetric positive
definite solver [22].

• KLU, a solver specially designed for circuit simulation
matrices [23].

• SuperLU (serial version), an unsymmetric general pur-
pose solver [24].

• Umfpack, an unsymmetric multifrontal solver [25].
• WSMP, a symmetric indefinite solver [26].

Despite the coefficient matrix is symmetric positive-
definite in the proposed dynamic formulation, we have
included in the numerical experiments some general, non-
symmetric solvers (KLU, SuperLU, Umfpack), since other
dynamic formulations lead to a non-symmetric coefficient
matrix [19]. In these cases, the whole coefficient matrix
(upper and lower parts) is computed, while with symmetric
solvers only half matrix is used in the formulation
equations. Each solver supports its own set of reordering
strategies; all of them have been tested to select the best one
in each simulation. In addition, all the optimizations descri-
bed in the previous Section were applied to our new sparse
implementation.

The proposed test problem, with a number of loops ran-
ging from 10 to 500 (i.e. number of variables ranging from 22
to 1,002), was solved using different sparse solvers. Perfor-
mance results are shown in Fig. 4 for a number of variables
up to 160, since the trends are preserved for higher number

0

1

2

3

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100 120 140 160

Number of variables

C
P

U
 ti

m
e

(s
)

UMFPACK

SuperLU

WSMP

Starting implementation

CHOLMOD

KLU

Fig. 4 Performance of different sparse linear equation solvers as a
function of problem size

123

Comput Mech (2008) 41:607–615 613

of variables. The legend text shows the name of the sparse
solvers, ordered by increasing efficiency.

Surprisingly, KLU is the fastest solver, despite being a
general solver that does not exploit the symmetric positive
definite condition of the coefficient matrix; in addition, it has
been designed for circuit simulation problems, which lead
to very sparse matrices, the opposite case of MBS dyna-
mics. However, these results have been obtained by using
the KLU refactor routine for numerical factorizations, which
reuses the pivoting strategy generated in the preprocessing
stage. In multibody problems where the elements of the tan-
gent matrix of Eq. (5) may significantly change their relative
values during the simulation (e.g. due to violent impacts), the
initial pivoting strategy may become invalid and the refactor
routine would probably accumulate high numerical errors.
To avoid this, the KLU solver can recalculate the pivoting
strategy in each numerical factorization, but this method
increases the CPU times in a 50%. On the other hand, Chol-
mod, a symmetric positive definite solver, performs at 85%
of KLU, despite recalculating the pivoting strategy in each
numerical factorization. Our best new sparse implementa-
tions (using KLU or Cholmod) perform faster that our star-
ting implementation, in a factor from 2 (small problems) to
3 (big problems of 1,000 variables).

4.3 Effect of dense BLAS implementation

Some sparse solvers, like Cholmod, rely on dense BLAS to
increase their performance. In addition, some sparse matrix
operations (e.g. the optimized matrix addition described in
Sect. 4.1) are actually computed as dense vector operations
using BLAS routines. Results shown in Fig. 4 have been
generated using the reference BLAS implementation. The
same numerical experiment has been executed using the fas-
ter, optimized GotoBLAS and ACML implementations, and
CPU times have decreased only in a 2–3%. Hence, the refe-
rence BLAS implementation is recommended for MBS dyna-
mics in sparse implementations, since it provides the best
compromise between performance and usability.

5 Sparse versus dense implementations

As stated previously, dense linear algebra is frequently used
in MBS dynamics for small problems (dimension of the coef-
ficient matrix lower than 50), since it is supposed to provide
higher performance than sparse implementations [27]. Our
starting sparse implementation, which already employs some
of the optimizations described in Sect. 4.1, disagrees with
this assumption, and this fact is reinforced with the perfor-
mance of our new optimized implementations: sparse ver-
sions perform always faster than dense versions even for

small problems, in a factor which ranges from 1.5 (problems
of 10 variables) to 5 (problems of 50 variables).

However, this conclusion has been obtained for the pro-
posed test problem and dynamic formulation, and it could
be argued that it cannot be generalized to other situations
that lead to a coefficient matrix with a higher percentage of
non-zeros, as in the case of highly constrained mechanism
or topological formulations. The objection could be made to
the efficiency ranking shown in Fig. 4. In order to get insight
about this subject, the numerical experiments used to gene-
rate Fig. 4 were repeated, but in this case artificial non-zeros
were introduced in the mass matrix M, in order to generate
a tangent matrix with a variable percentage of non-zeros.
Figure 5 shows the CPU times for a mechanism of 48 loops
(100 variables), as a function of matrix filling. Results show
that two sparse implementations, based on the Cholmod and
WSMP sparse solvers, are always faster than the best dense
implementation, even with 100% of non-zeros in the tangent
matrix. This surprising fact can be explained by two factors:
(a) Cholmod and WSMP rely on dense BLAS routines to per-
form the factorization, and therefore they start to operate as
dense solvers as the matrix filling increases; (b) the percen-
tage of non-zeros is always lower in the Jacobian matrix than
in the tangent matrix, hence optimized sparse implementa-
tions achieve significant time savings in Jacobian operations,
in comparison with dense implementations.

Results for other problem sizes are synthesized in Fig. 6:
the different regions represent the points (problem size, matrix
filling) where each implementation delivers the best perfor-
mance. For most MBS problems and dynamic formulations,
a sparse implementation based on the KLU solver will be
the frontrunner. However, topological formulations with a
symmetric tangent matrix will benefit from a sparse imple-
mentation based on the WSMP solver, specially when they
are applied to rigid models, which result in a higher matrix
filling.

KLU

CHOLMOD

WSMP

SuperLU

Fastest dense
implementation

0

5

10

15

20

25

30

1000 10 20 30 40 50 60 70 80 90

% of non-zeros in the tangent matrix

C
P

U
 t

im
e

 (
s)

Fig. 5 Performance of different sparse linear equation solvers as a
function of tangent matrix filling, for a problem size of 100 variables

123

614 Comput Mech (2008) 41:607–615

0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Number of variables

%
 o

f n
on

-z
er

os

WSMP

KLU

Non reached
region

Fig. 6 Best implementation, as a function of problem size and percen-
tage of non-zeros in the tangent matrix

0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Number or variables

%
 o

f n
on

-z
er

os

Non reached
region

CHOLMOD

WSMP

LAP ACK

Fig. 7 Best implementation, as a function of problem size and percen-
tage of non-zeros in the tangent matrix (refactor routine of KLU is not
used)

Figure 6 has been obtained by using the KLU refactor rou-
tine for numerical factorizations. As explained in Sect. 4.2,
this may cause trouble in problems where the entries of
the tangent matrix change their relative values significantly
during the simulation. If the refactor routine is not used,
Fig. 7 is obtained. In this case KLU is replaced by Cholmod,
WSMP increases its influence area, and the dense implemen-
tation based on LAPACK emerges for very small problems
(less than 10 variables), but with a very small advantage.
Conversely, two exceptions can be mentioned: (a) for dyna-
mic formulations with symmetric indefinite tangent matrices,
WSMP would be the frontrunner for almost all the situations,
since Cholmod does not support them; (b) for dynamic for-
mulations with unsymmetric tangent matrices, KLU would
be the again frontrunner for almost all the situations (even
if the refactor routine is avoided), since WSMP does not
support them.

6 Conclusions

Regarding the implementation aspects of MBS dynamic
simulations, the following conclusions can be established:

• Efficient linear algebra implementations can speed up the
efficiency in a factor of 2–3, compared with traditional
implementations. In other words, problems of double or
triple size can be solved with the same resources.

• The proposed optimizations based on symbolic prepro-
cessing of the sparse matrix computations can deliver
huge speedups, since off-the-shelf sparse matrix libra-
ries do not take advantage of the constant sparse pattern
of operations during the dynamic simulation.

• Optimized sparse implementations are recommended
since they perform better than optimized dense imple-
mentations, even for small-sized problems or relatively
dense matrices. This disagrees with the widespread belief
in MBS dynamics.

• Concerning sparse linear equation solvers, it has been
found that KLU, an unfamiliar solver designed for circuit
simulation, performs very well with many of the linear
equation systems resulting from MBS dynamics. In addi-
tion, it was found that the reference BLAS implementa-
tion provides the best compromise between performance
and usability for sparse implementations.

The results from numerical experiments are summarized
in Table 3, which provides a simple decision rule to select
the best linear equation solver for MBS dynamics, based
on matrix type, size and percentage of non-zeros. Efficient
implementations of global MBS dynamic formulations can
be easily achieved, provided the above recommendations are
followed. All the recommended software libraries are freely
available, and the proposed optimization techniques are not
bounded to any programming language.

As a consequence of the abovementioned conclusions, the
limit for problem size where global formulations perform bet-
ter than topological formulations, established in the order of
40 variables [14], should be revised. This limit was obtained
using dense implementations, and it might get higher if the
proposed optimized sparse implementations were used, since
their effects on the efficiency are higher in global formula-
tions than in topological formulations. In addition, further
work must be carried out in order to determine if the propo-
sed recommendations are still valid for other formulations,

Table 3 Decision rules for selecting the best sparse solver for MBS
dynamics, based on matrix type, size and percentage of non-zeros

Type of tangent matrix (No. of variables) × (% of non-zeros − 10)

<900 >900

Symmetric positive
definite

KLU (smooth problems) WSMP

Cholmod (rough problems)

Symmetric KLU WSMP

Unsymmetric KLU KLU

123

Comput Mech (2008) 41:607–615 615

since all the numerical experiments have been performed
using a particular global formulation.

Acknowledgments This research has been sponsored by the Spanish
MEC (Grant No. DPI2003-05547-C02-01 and the F.P.U. Ph.D. fellow-
ship No. AP2005-4448) and the Galician DGID (Grant No.
PGIDT04PXIC16601PN).

References

1. Cuadrado J, Cardenal J, Morer P (1997) Modeling and solution
methods for efficient real-time simulation of multibody dynamics.
Multibody Syst Dyn 1:259–280

2. Bae DS, Lee JK, Cho HJ, Yae H (2000) An explicit integration
method for realtime simulation of multibody vehicle models. Com-
put Meth Appl Mech Eng 187:337–350

3. Anderson KS, Critchley JH (2003) Improved ‘Order-N’ perfor-
mance algorithm for the simulation of constrained multi-rigid-body
dynamic systems. Multibody Syst Dyn 9:185–212

4. Anderson KS, Mukherjee R, Critchley JH, Ziegler J, Lipton S
(2007) POEMS: parallelizable open-source efficient multibody
software. Eng Comput 23:11–23

5. Gupta A (2002) Recent advances in direct methods for solving
unsymmetric sparse systems of linear equations. ACM Trans Math
Softw 28:301–324

6. Scott JA, Hu YF, Gould NIM (2006) An evaluation of sparse direct
symmetric solvers: an introduction and preliminary findings. Appl
Parallel Comput State Art Sci Comput 3732:818–827

7. Whaley RC, Petitet A, Dongarra JJ (2001) Automated empirical
optimizations of software and the ATLAS project. Parallel Comput
27:3–35

8. Turek S, Becker C, Runge A (2001) The FEAST indices. Realistic
evaluation of modern software components and processor techno-
logies. Comput Math Appl 41(10–11):1431–1464

9. Yu JSK, Yu CH (2002) Recent advances in PC-Linux systems
for electronic structure computations by optimized compilers and
numerical libraries. J Chem Inform Comput Sci 42:673–681

10. Gonzalez M, Dopico D, Lugrís U, Cuadrado J (2006) A benchmar-
king system for MBS simulation software: problem standardization
and performance measurement. Multibody Syst Dyn 16:179–190

11. García de Jalón J, Bayo E (1994) Kinematic and dynamic simula-
tion of multibody systems—the real-time challenge. Springer, New
York

12. Bayo E, Ledesma R (1996) Augmented Lagrangian and
mass-orthogonal projection methods for constrained multibody
dynamics. Nonlinear Dyn 9:113–130

13. Cuadrado J, Gutierrez R, Naya MA, Morer P (2001) A compari-
son in terms of accuracy and efficiency between a MBS dynamic
formulation with stress analysis and a non-linear FEA Code. Int J
Numer Meth Eng 51:1033–1052

14. Cuadrado J, Dopico D, González M, Naya M (2004) A combined
penalty and recursive real-time formulation for multibody dyna-
mics. J Mech Des 126:602–608

15. NIST (2006) Basic linear algebra subprograms. http://www.netlib.
org/blas/

16. Goto K (2006) GotoBLAS. http://www.tacc.utexas.edu/resources/
software/

17. AMD (2007) AMD Core Math Library. http://developer.amd.com/
acml.jsp

18. NETLIB (2007) LAPACK. http://www.netlib.org/lapack/
19. Dopico D, Lugrís U, González M, Cuadrado J (2006) Two imple-

mentations of IRK integrators for real-time multibody dynamics.
Int J Num Meth Eng 65:2091–2111

20. Walter J, Kock M (2006) UBLAS. http://www.boost.org/libs/
numeric/

21. Dongarra JJ (2004) Freely available software for linear algebra
on the web. http://www.netlib.org/utk/people/JackDongarra/la-sw.
html

22. Chen Y, Davis TA, Hager WW, Rajamanickam S (2006) Algo-
rithm 8xx: CHOLMOD, supernodal sparse cholesky factorization
and update/downdate. http://www.cise.ufl.edu/~davis/techreports/
cholmod/tr06-005.pdf

23. Davis TA, Stanley K (2004) KLU: a Clark Kent Sparse LU Facto-
rization Algorithm for Circuit Matrices. http://www.cise.ufl.edu/
~davis/techreports/KLU/pp04.pdf

24. Demmel JW, Eisenstat SC, Gilbert JR, Li XYS, Liu JWH (1999)
A supernodal approach to sparse partial pivoting. Siam J Matrix
Anal Appl 20:720–755

25. Davis TA (2004) Algorithm 832: UMFPACK V4.3—an
unsymmetric-pattern multifrontal method. ACM Trans Math
Softw 30:196–199

26. Gupta A, Joshi M, Kumar V (1998) WSSMP: a high-performance
serial and parallel symmetric sparse linear solver. Appl Parallel
Comput 1541:182–194

27. Cuadrado J, Dopico D (2004) A combined penalty and semi-
recursive formulation for closed-loops in MBS. In: Proceedings of
the eleventh world congress in mechanism and machine science,
vols 1–5, pp 637–641

123

http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.tacc.utexas.edu/resources/software/
http://www.tacc.utexas.edu/resources/software/
http://developer.amd.com/acml.jsp
http://developer.amd.com/acml.jsp
http://www.netlib.org/lapack/
http://www.boost.org/libs/numeric/
http://www.boost.org/libs/numeric/
http://www.netlib.org/utk/people/JackDongarra/la-sw.html
http://www.netlib.org/utk/people/JackDongarra/la-sw.html
http://www.cise.ufl.edu/~davis/techreports/cholmod/tr06-005.pdf
http://www.cise.ufl.edu/~davis/techreports/cholmod/tr06-005.pdf
http://www.cise.ufl.edu/~davis/techreports/KLU/pp04.pdf
http://www.cise.ufl.edu/~davis/techreports/KLU/pp04.pdf

	On the effect of linear algebra implementations in real-timemultibody system dynamics
	Abstract
	Introduction
	Benchmark setup
	Test problem
	Dynamic formulation
	Starting implementation
	Efficient dense matrix implementations
	Efficient sparse matrix implementations
	Optimized sparse matrix computations
	Evaluation of sparse linear equation solvers
	Effect of dense BLAS implementation
	Sparse versus dense implementations
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

