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Abstract The objective of the work presented here is to
develop an efficient strategy for the parametric analysis of
bolted joints designed for aerospace applications. These joints
are used in elastic structural assemblies with local nonlinear-
ities (such as unilateral contact with friction) under quasi-
static loading. Our approach is based on a decomposition
of an assembly into substructures (representing the parts)
and interfaces (representing the connections). The problem
within each substructure is solved by the finite element
method, while an iterative scheme based on the LATIN
method (Ladevèze in Nonlinear computational structural
mechanics—new approaches and non-incremental methods
of calculation, 1999) is used for the global resolution. The
proposed strategy consists in calculating response surfaces
(Rajashekhar and Ellingwood in Struct Saf 12:205–220,
1993) such that each point of a surface is associated with a
design configuration. Each design configuration corresponds
to a set of values of all the variable parameters (friction coef-
ficients, prestresses) which are introduced into the mechan-
ical analysis. Here, instead of carrying out a full calculation
for each point of the surface, we propose to use the capa-
bilities of the LATIN method and reutilize the solution of
one problem (for one set of parameters) in order to solve
similar problems (for the other sets of parameters) (Boucard
and Champaney in Int J Numer Methods Eng 57:1259–1281,
2003). The strategy is adaptive in the sense that it takes into
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account the results of the previous calculations. The method
presented can be used for several types of nonlinear problems
requiring multiple analyses: for example, it has already been
used for structural identification (Allix and Vidal in Comput
Methods Appl Mech Eng 191:2727–2758, 2001).
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1 Introduction

The resolution of deterministic problems is often carried out
using finite element analysis (FEA). For structural engineers,
the incorporation of a system’s parametric uncertainties into
such an analysis constitutes a challenge; however, without
this information, the structural response cannot be calculated
accurately. These parametric uncertainties may affect the
material’s mechanical properties (modulus, strength, etc.),
the structure’s geometric properties (cross-sectional prop-
erties and dimensions), the boundary conditions (including
contact with friction), the magnitude and distribution of loads,
etc. In the case of structural assemblies, the knowledge of the
friction coefficients is especially limited. In order to take
these uncertainties into account, it is necessary to calcu-
late the response of the structure for each set of values of
the design parameters [5]. Typically, in our case, the design
parameters are the friction coefficients and the prestresses in
some bolts.

The objective of the work presented here is to develop
a strategy which is suitable for problems involving multiple
resolutions. Therefore, the choice of an accurate and efficient
computational method is of vital importance. Our approach is
based on a decomposition of an assembly into substructures
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and interfaces. The interfaces represent the different types of
connections. They play the vital role of enabling local nonlin-
earities, such as contact and friction, to be modeled easily and
accurately. The problem within each substructure is solved
by the finite element method, while an iterative scheme based
on the LATIN method is used for the global resolution. More
specifically, the objective pursued is to calculate a large num-
ber of design configurations, each corresponding to a set of
values of all the variable parameters (friction coefficients,
prestresses) involved in the mechanical analysis. A full cal-
culation is normally needed for each set of parameters. Here,
as an alternative, we propose to take advantage of the capa-
bilities of the LATIN method and reuse the solution of one
problem (for one set of parameters) to solve similar problems
(for the other sets of parameters).

The numerical examples presented deal with 3D applica-
tions, one of them being an aerospace bolted joint. For some
of these examples, over a thousand different calculations had
to be carried out for the parametric study. The comparison
with classical industrial codes in terms of computation costs
shows that our algorithm is very efficient.

2 The LATIN method

Here, we will review only the main aspects of the LATIN
method. The details of the method itself can be found in [1]
and those of its particular application to computational con-
tact problems in [6,7].

2.1 Decomposition of an assembly

An assembly is composed of a set of substructures (each
substructure is a component of the assembly) which com-
municate with one another through interfaces (each inter-
face represents a connection), see Fig. 1. Each interface is
a mechanical entity with its own variables and its specific
behavior, which depends on the type of connection. Many
different connection types can be modeled by this approach,
but in this paper we consider only classical contact connec-
tions. Two connected substructures are denoted ΩE and ΩE ′
and the associated interface is designated by Γ E E ′

.

E E’

Fig. 1 Decomposition of an assembly

Fig. 2 Interface variables

The interface variables are two force fields f E and f E ′
and

two dual velocity fields ẇE et ẇE ′
(Fig. 2). By convention,

f E and f E ′
are the actions of the interface on the substruc-

tures and ẇE et ẇE ′
are the velocities of the substructures

seen from the interface.

2.2 The problem in the substructures

The displacement field at any point M of ΩE and at any
time t of [0, T ] is uE (M, t); the associated space is U [0,T ].
ε is the strain field and the current state of the structure is
characterized by the stress field σ E .

The mechanical problem to be solved in each substructure
is:

Find the histories of the displacement field uE (M, t)
and stress field σ E (M, t) such that:

– Kinematic admissibility: ∀M ∈ΩE , ∀t ∈ [0, T ],
ε = ε(uE ); uE ∈ U [0,T ]

u̇E (M, t)|∂ΩE = ẇE (M, t)
(1)

– Equilibrium: ∀u̇� ∈ U [0,T ]
0 ∀M ∈ ΩE , ∀t ∈ [0, T ],

∫

ΩE

T r(σ E ε(u̇�))dΩE −
∫

∂ΩE

f E .u̇�dS = 0 (2)

where U [0,T ]
0 is the set of finite-energy velocity fields

on ΩE which vanish on ∂ΩE and u̇� a virtual velocity
field. We assume that there are no body forces in ΩE .

– Elastic behavior: ∀M ∈ ΩE , ∀t ∈ [0, T ],

σ E (M, t) = Dε(uE (M, t)) (3)

where D is Hooke’s operator.

2.3 The problem on the interfaces

The mechanical problem to be solved on each interface is

Find the histories of the force fields (f E (M, t) and
f E ′

(M, t)) and of the velocity fields (ẇE (M, t)
and ẇE ′

(M, t)) such that:
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– Equilibrium: ∀M ∈ Γ E E ′
and ∀t ∈ [0, T ],

f E (M, t) + f E ′
(M, t) = 0 (4)

– Behavior: ∀M ∈ Γ E E ′
and ∀t ∈ [0, T ],

f E (M, t) = R(ẇE E ′
(M, τ ), τ ∈ [0, t]) (5)

where the behavior is expressed as a nonlinear evolution law
R between the forces and the rate ẇE E ′

of jump in velocity
across the interface which is defined by:

ẇE E ′ = ẇE ′ − ẇE (6)

Equation (5) means that the value of the forces f E (M, t) at
time t depends of the history of the jump in velocity between
time 0 and time t . If the behavior law must take into account
the history of the jump in displacement (contact conditions
with friction Coulomb’s law), this value is computed using
the integration scheme presented in Eq. (18).

In the simple case of a perfect connection between two
substructures would be modeled by the following behavior:

ẇE E ′
(M, t) = 0, ∀M ∈ Γ E E ′

,∀t ∈ [0, T ], (7)

The form of the evolution law R in the case of frictional
contact conditions is described in Sect. 2.5.

2.4 The LATIN algorithm

A LATIN (LArge Time INcrement) approach [1] is used to
solve the problem. The solution s of the problem is written
as a set of time-dependent fields on each substructure and
related interfaces:

s =
∑

E

s E

s E =
{

uE (M, t), σ E (M, t), ẇE (M, t), f E (M, t)
}

t ∈ [0, T ]

The LATIN approach is based on the idea of isolating the
difficulties in order not to have to solve a global and non-
linear problem at the same time. The equations are split into
two groups with the following two sets of solutions:

– the set Ad of solutions s E to the linear equations related
to the substructures (Eqs. 1–3)

– the set Γ of solutions s E to the local equations (which
may be nonlinear) related to the interfaces (Eqs. 4– 5)

The search for the overall solution (i.e., the intersection of
the two sets) is conducted iteratively by constructing approx-
imate solutions s which verify the two groups of equations

alternatively on the complete time history. Thus, each itera-
tion in the process is composed of two stages:

Local stage: for sn ∈ Ad known, find ŝ such that:

ŝ ∈ Γ (inter f aces) (8)

ŝ − sn ∈ E+ (search direction) (9)

Global stage: for ŝ ∈ Γ known, find sn+1 such that:

sn+1 ∈ Ad (substructures) (10)

sn+1 − ŝ ∈ E− (search direction) (11)

The search directions E+ and E− are chosen such that the
convergence of the algorithm is ensured [1]. These conjugate
search directions depend on the scalar parameter k0:

ŝ − sn ∈ E+ ≡ (̂f E − f E
n ) = k0(̂̇wE − ẇE

n ) (12)

sn+1 − ŝ ∈ E− ≡ (f E
n+1 − f̂ E ) = −k0(ẇE

n+1 − ̂̇wE ) (13)

The solution of the problem does not depend on the value of
the parameter k0. It only affects the convergence rate of the
algorithm. For quasistatic cases, which are studied here, k0

is given by :

k0 = E

T Lc

where E is the Young’s modulus, [0, T ] is the studied time
interval and Lc the largest dimension of the structure.

An error indicator is used to control the convergence of
the algorithm. This indicator is an energy measure of the
distance between the two solutions successive sn and ŝ.

In our particular case of linear elastic substructures, the
inner solution (in displacement uE (M, t) and in stress
σ E (M, t)) can easily be calculated from the boundary values
(ẇE (M, t) and f E (M, t)). Therefore, from here on, a solu-
tion s will be represented only by the force and velocity fields
on both sides of an interface.

2.5 The frictional contact interface

Contact problems are characterized by constraints such as
nonpenetration conditions, and an active area of contact—
that is, an area where contact effectively occurs—that is
unknown a priori. For these reasons, these problems lead to
stiff nonlinear systems of equations. Several approaches exist
for solving static contact problems [8,9]. In most of them, the
numerical methods that are employed for enforcing the con-
tact constraints can be grouped into Lagrange multiplier and
penalty methods. The penalty methods [10,11] are closely
related to the regularization of the contact constraints. They
are usually formulated in terms of the displacement variables,
and therefore are primal methods. They allow treating contact
as a material behavior, as examplified by the method of joint
finite elements [12]. Penalty methods can experience various
numerical difficulties, especially ill-conditioning, when a too
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large or too small penalty parameter is introduced. Lagrange
multiplier methods are dual methods where the multipliers,
which represent the contact reaction forces, are introduced
in order to enforce exactly the nonpenetration conditions.
Augmented Lagrange multiplier methods [13–16] result in
mixed formulations involving both displacement and force
unknowns. The numerical solution schemes underlying both
the Lagrange multiplier and augmented Lagrange multiplier
methods are often related to the Uzawa algorithm [17–19].

The following sections describe the form of R evolution
law in the case of frictional contact conditions.

2.5.1 The contact problem

The normal, oriented from ΩE to ΩE ′ , at each point of an
interface is designated by i. The projection operator on the
tangential plane P is defined by:

Pw = w − (i.w)i

The nonpenetrating contact conditions are

– Open: if i.ŵE E ′
> 0 then i.̂f E = i.̂f E ′ = 0.

– Contact: if i.ŵE E ′ = 0 then i.̂f E = −i.̂f E ′ ≤ 0.

These conditions can be written simply as

– Open: ci > 0.
– Contact: ci ≤ 0.

where the contact indicator ci is

ci = 1

2T
i.ŵE E ′ − 1

2k0
i.(̂f E ′ − f̂ E ) (14)

2.5.2 The friction problem

Coulomb’s friction conditions can be written as

– Stick: if ‖P f̂ E‖ < µ|i.̂f E | then P̂̇wE E ′ = 0.
– Slip: if ‖P f̂ E‖ = µ|i.̂f E | then ∃λ > 0 such that

P̂̇wE E ′ = −λ̂f E .

These conditions can be written simply as

– Stick: ‖g j‖ ≥ µ|i.̂f E |.
– Slip: ‖g j‖ < µ|i.̂f E |.

where the slip indicator g j is

g j = k0

2
P̂̇wE E ′ − 1

2
P (̂f E ′ − f̂ E ) (15)

2.5.3 Resolution

The resolution is carried out by projecting the solution of the
previous global stage onto the contact and friction conditions
following the search directions:

(̂f E − f E
n ) = k0(̂̇wE − ẇE

n ) (16)

(̂f E ′ − f E ′
n ) = k0(̂̇wE ′ − ẇE ′

n ) (17)

The status (Open, Contact, Stick or Slip) of each point of the
interface is obtained explicitly since the indicators ci and g j

can be derived from the previous solution using the search
direction. An implicit time integration scheme is used to cal-
culate the contact indicator ci expressed in terms of the dis-
placements (see Eq. 14):

ŵE E ′
(t+1) = ŵE E ′

(t) + ∆t̂̇wE E ′
(t+1) (18)

where i.ŵE E ′
(t=0) is the initial gap and P.ŵE E ′

(t=0) = 0. In order to
use this integration scheme, the contact indicator is modified
as

c̃i = 1

2∆t
i.ŵE E ′ − 1

2k0
i.(̂f E ′ − f̂ E ) (19)

in order to obtain using the time integration (Eq. 18) and the
search directions (Eqs. 16 and 17):

c̃i(t+1) = 1

2∆t
i.ŵE E ′

(t+1) − 1

2k0
i.(̂f E ′

(t+1) − f̂ E
(t+1))

= 1

2
i.̂̇wE E ′

(t+1) − 1

2k0
i.(̂f E ′

(t+1) − f̂ E
(t+1)) + 1

2∆t
i.ŵE E ′

(t)

= 1

2
i.ẇE E ′

n(t+1)−
1

2k0
i.(f E ′

n(t+1)−f E
n(t+1))+

1

2∆t
i.ŵE E ′

(t)

Thus, the contact indicator is calculated incrementally from
the known solution to the previous global stage.

The slip indicator g j (Eq. 15) is calculated explicitly using
the search directions (Eqs. 16 and 17):

g j = k0

2
PẇE E ′

n − 1

2
P(f E ′

n − f E
n ) (20)

2.6 Discretization

Standard finite element discretization is used for the
displacement field in the substructures:

u = [N ]{u} and ε(u) = [B]{u} (21)

On the interfaces, a compatible discretization is applied to
the velocity fields:

̂̇wE = [N ] {̂̇wE } and ẇE
n = [N ] {ẇE

n } (22)

The search directions considered (Eqs. 13 and 13) lead one
to choose the same discretization for the forces and for the
velocity:

f̂ E = [N ] { f̂ E } and f E
n = [N ] { f E

n } (23)
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At the local stage, the contact equations are solved directly
in terms of the nodal forces and velocities. Moreover, this rep-
resentation of the forces (Eq. 23) plays a regularizing role for
Coulomb’s frictional problem: the friction law becomes thus
non local [20,21].

2.7 Resolution for the global stage

At the global stage, the equilibrium equation (Eq. 2), which
also takes into account kinematic admissibility (Eq. 1), the
behavior (Eq. 3) and the search direction (Eq. 13), becomes:

∫

ΩE

T r(ε(uE
n )Dε(u̇�))dΩE

=
∫

∂ΩE

(̂f E − k0(u̇E
n − ̂̇wE )).u̇�d S

(24)

∫

ΩE

T r(ε(uE
n )Dε(u̇�))dΩE +

∫

∂ΩE

k0u̇E
n .u̇�d S

=
∫

∂ΩE

(̂f E + k0̂̇wE ).u̇�d S
(25)

After discretization, Eq. 25 becomes:

k0

[
hE

]
{u̇(t)} + [KE ]{u(t)}

= [hE ]
(
{{ f̂ E }(t)} + k0{̂̇wE }(t)

) (26)

where

[hE ] =
∫

∂ΩE

[N ]t [N ]ds and [KE ] =
∫

ΩE

[B]t D [B]dΩ

[KE ] is the classical finite element stiffness matrix of sub-
structure ΩE and [hE ] is the boundary term related to the
interfaces.

For the resolution of the differential equation (Eq. 26),
an Euler implicit time integration scheme is used. Then, the
boundary terms are calculated at each time step:

{ẇE
n } = [R]{u̇E

n } (27)

where [R] is the restriction operator on ∂ΩE . The forces are
obtained using the search direction:

{ f E
n } = { f̂ E } − k0({ẇE

n } − {̂̇wE }) (28)

Finally, the algorithm can be summarized as shown in
Table 1.

Table 1 Algorithm

Initialize

Loop on the substructures (E)

Compute [K E ] and [hE ].
Factorization.

Loop on the interfaces

{ẇE
0 } = {ẇE ′

0 } = {̂̇wE } = {̂̇wE ′ } = {0}
{ f E

0 } = { f E ′
0 } = { f̂ E } = { f̂ E ′ } = {0}

Iterate n = 1, 2, . . . until convergence

Global stage : loop on the substructures (E)

Assemble the right hand side in Eq. 26

Integrate {u̇(t)} (Eq. 26)

Compute {ẇE
n } (Eq. 27)

Compute { f E
n } (Eq. 28)

Local stage : loop on the interfaces (E E ′)
Compute ci (Eq. 19)

Compute the normal part of {̂̇wE }, {̂̇wE ′ },
{ f̂ E } and { f̂ E ′ }

with respect to the sign of ci .

Compute g j (Eq. 20)

Compute the tangential part of {̂̇wE }, {̂̇wE ′ },
{ f̂ E } and { f̂ E ′ }

with respect to the value of ‖g j ‖.

Convergence test

2.8 Remarks

When only static cases and perfect connections are consid-
ered, this algorithm can be obtained by other approaches
such as in Lions [22] or Glowinski and Le Tallec [23]. In the
case of frictional contact static cases it is not very far from
augmented lagrangian algorithms as presented by Simo and
Laursen [18] or Zavarise and Wriggers [24].

As for augmented lagrangian algorithms, the number of
iterations can be elevated. But here, as only elastic
behavior of the substructures is considered, the operators
K and h remain constant and independent of the iteration
and of the contact status. Thus the cost of each iteration is
low.

Moreover, it is very important to observe that the velocity
and force fields on the interfaces constitute the only infor-
mation needed for the subsequent iterations.

3 Strategy for multiple analysis

The strategy proposed consists in calculating response sur-
faces such that each point of a surface is associated with a
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design configuration. Each design configuration corresponds
to a set of values of all the variable parameters (friction coeffi-
cients, prestresses) which are introduced into the mechanical
analysis.

At each iteration, the LATIN method leads to an approx-
imate solution to the problem over the whole time interval.
Therefore, the trick is to reuse this approximation (associ-
ated to one set of values of all the design parameters) to find
the solution to another design configuration (another set of
the design parameters) similar to the one for which it was
calculated in the first place. Our strategy for multiple analy-
sis uses the fact that the LATIN algorithm can be initialized
with any solution (usually an elastic solution) provided that
it verifies the admissibility conditions. Therefore, the key to
our technique is to initialize the process associated with a
new design configuration using the results of the calculation
carried out on the first set of values of the design parameter.
In this manner, a first approximation of the solution to the
new design with a strong mechanical content is immediately
available from the start.

In this particular case of elastic structures in contact, the
interfaces play a vital role: they enable one to initiate the
calculation on the new design configuration without having
to save all data on the substructures as well as to search for
the solution of the new design configuration with an initial
solution well-suited to the target problem. In the best-case
scenario, only a few iterations are necessary: the solution to
the problem is obtained at low cost. If the solutions to the
design configurations are close enough, the latter can still
be derived at a significantly lower cost than by using a full
calculation. For the parametric study presented herein, we
just change the parameters between iterations. Thus, the new
computation is initialized by the solution to the previous one.
If the parameters change slowly, the two solutions are close
and only a few iterations are needed to reach convergence in
the new calculation.

4 First example: academic problem

Let us consider the simple example of a 40×40×40mm cube
subjected to frictional contact against a rigid body at Plane
z = 0 (see Fig. 3). The material is elastic (Young’s modulus
E = 130 GPa, Poisson’s ratio ν = 0.2). Symmetry condi-
tions are prescribed at Planes x = 0 and y = 0. The cube
is pushed against the rigid body through the application of a
pressure P1 = 5 MPa over its upper side. The remaining two
sides are successively loaded and unloaded (P2 = 10 MPa
and P3 = 10 MPa) in order to generate friction at the contact
surface. The geometry and loading conditions are shown in
Fig. 3.

The problem’s only parameter is the friction coefficient,
which was allowed to take 21 values (from 0 to 2 in increments

Fig. 3 Cube example: model and loading conditions

Fig. 4 Deformed shape

of 0.1). We studied the quasi-static, small-perturbation prob-
lem.

The mesh was composed of 100 eight-node brick elements
(460 degrees of freedom). Figure 4 shows the deformed shape
(magnified 400 times) of the cube with a friction coefficient
equal to 0.4 after completion of five loading stages (applica-
tion of P1, application of P2, application of P3, removal of
P2 and, finally, removal of P3). Each stage was completed
in 10 time steps. We studied the displacements of Point A
(Fig. 4) in the contact plane (z = 0). Figure 5 shows the paths
followed by Point A for the 21 values of the friction coef-
ficient. Figure 6 shows the evolution of the error indicator,
which increases at each change of the friction coefficient.

The computation cost was compared with that of a direct
analysis using ABAQUS. Figure 7 shows the cost of each
of the 21 calculations. One can observe that in the case of
ABAQUS the computation cost increased with the friction
coefficient. In the parametric study using the LATIN method,
the computation cost decreased because the results of the suc-
cessive computations, as shown by Fig. 6, were very close to
one another. Thus, even though the first calculation cost three
times as much as with the direct method, the total cost of the
parametric study using the LATIN method was reduced by a
factor of 1.5.
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2

2

Fig. 5 Movement of point A

10-1

10-2

10-3

10-4

Fig. 6 Error indicator

Fig. 7 Cost of each calculation

5 Application to a 3D assembly

Now, let us consider the example of an all-steel, zero-
backlash disc coupling whose purpose is to compensate axial,
radial and angular misalignments. This coupling transmits
the torque, up to the maximum permissible impact torque,

Fig. 8 FE mesh of the disc coupling

with a very high torsional stiffness. The materials are elas-
tic (Young’s modulus E = 200 GPa for all the materials
except for the two thinner intermediate plates: Young’s mod-
ulus E = 70 GPa; Poisson’s ratio ν = 0.3). Figure 8 shows
the finite element mesh of the assembly. The decomposition
into substructures of one-half of the assembly is shown in
Fig. 9 (the same decomposition was used for the other half.)

The assembly was fixed at one end. The load consisted
of a prestrain of the bolts followed by a 1◦ prescribed rota-
tion at the other end. We considered the quasi-static, small-
perturbation problem. The mesh was composed of 48,370
elements (130,250 degrees of freedom).

In the parametric study reported below, 11 values of the
friction coefficient µ (from 0.05 to 0.55 in increments of
0.05) and 9 values of the prestrain p of the bolts (from 0.02
to 0.18 mm in increments of 0.02 mm) were considered. The
quantity of interest was the evolution of the torsional moment
as a function of the prescribed rotation (1◦).

Fig. 9 Substructures used for the LATIN method
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Table 2 Algorithm for the parametric study with the LATIN Method

Initialize

Loop on the substructures (E)

Compute [K E ] and [hE ] and factorize.

Loop on the interfaces

{ẇE
0 } = {ẇE ′

0 } = {̂̇wE } = {̂̇wE ′ } = {0}
{ f E

0 } = { f E ′
0 } = { f̂ E } = { f̂ E ′ } = {0}

Define limits of parameter sets

Loop k = 1, 2, . . . number of parameter sets

Restore quantities on the interfaces

Iterate until convergence

Global stage : see Table 1

Local stage : see Table 1

Convergence test

Save interface solution for kth parameter set

Following the same strategy as above, we carried out 99
different calculations (Table 2) in 9 groups of calculations at
fixed value of p in which the value of µ was modified during
the iterations.

Figure 10 shows the evolution of the torsional moment as
a function of the prescribed rotation for p = 0.16 mm and

0

1

2

3

4

5

x 106

0
0.2

0.4
0.6

0.8
1.0

0.05
0.15

0.25
0.35

0.45
0.55

C (m.N)

(°)

Fig. 10 Torsional moment versus prescribed rotation for p = 0.16 mm
and for several values of µ

Table 3 Comparison of the costs of different calculation strategies

Calculation Cost (s) Cost (h)

Direct LATIN 451,440 125,7

Parametric LATIN (sequential) 130,500 36

Parametric LATIN (parallel) 14,500 4

Fig. 11 Real tests carried out at EADS-IW

for different values of µ. Table 3 shows the comparison of
the computation costs of the different strategies:

– all 99 calculations carried out on a single processor (direct
LATIN).

– the 9 parametric calculations (one for each value of p)
carried out sequentially on a single processor.

– the same 9 parametric calculations carried out concur-
rently on 9 processors.

6 Application to a bolted joint used in the aerospace
industry

Let us now consider the example of a bolted joint. This exam-
ple was derived from tests conducted at EADS-IW on four-
bolt joints (see Fig. 11). These tests indicated that the life
expectancy of such joints is sensitive to friction, pretension
in the bolts, clearances, . . . These parameters are naturally
scattered, and a full test campaign to evaluate their actual
influence would involve a very large number of specimens.
This inspired EADS-IW to investigate a more cost-effective
numerical approach in association with LMT Cachan.

The dimensions of the part of the connection being
studied are shown in Fig. 12. The connection of the three
plates is achieved through prestressed bolts. The upper and
lower plates are made of aluminum (Young’s modulus
Ea = 70 GPa, Poisson’s ratio νa = 0.3). The intermedi-
ate plate is made of a carbon composite [90, 45, 0, 135, 0,
45, 90, 135, 0, 0, 45, 0, 135, 0]s . The homogenized ortho-
tropic mechanical characteristics of this material are E1 =
130 GPa, E2 = E3 = 4.65 GPa, ν12 = ν13 = ν23 = 0.35,
G12 = 10 Gpa, G13 = G23 = 4.65 GPa (with directions
1,2,3 as defined in Fig. 12). The bolts are made of titanium
(Young’s modulus Et = 110 GPa, Poisson’s ratio νt = 0.3).

The prestresses in the bolts are represented by relative dis-
placements, denoted Pre1, Pre2, Pre3 and Pre4, between
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Fig. 12 Assembly
configuration and dimensions
(all in mm), thickness: 25.4 mm

Fig. 13 Mesh of the bolted
joint

the body and head of each bolt (Fig. 12). The friction coef-
ficients are denoted f 1 for aluminium/composite, f 2 for
titanium/composite and f 3 for titanium/aluminium. In the
parametric study, we analyzed the influence of the prestress-
es in the bolts and the friction coefficient on the forces trans-
mitted by friction. In the first calculation, we evaluated the
influence of the friction coefficient alone. Five values of each
friction coefficient f 1, f 2 and f 3 (from 0.05 to 0.45 in incre-
ments of 0.1) were considered. Thus, 125 computations had
to be carried out. Then, we introduced the variations of the
prestrains parameters. Five values of each prestrain Pre1,
Pre2, Pre3 and Pre4 (from 0.1 to 0.18 in increments of
0.02) were considered, leading to 625 calculations.

The same mesh of the four bolts (31,792 linear tetrahedron
or brick elements, 75,736 degrees of freedom) was used for
all the calculations (Fig. 13). These were carried out in two
steps:

– Step 1: prestress in the bolts,
– Step 2: traction on the specimen.

We studied the effects of the variability of the friction
coefficients and the prestrains on the forces F1, F2, F3 and
F4 which are the resultants of the friction forces around each
bolts (see Fig. 14).

For example, Fig. 15 shows the evolution of the transmit-
ted force F1, for given values of the prestrains and two values
of the friction coefficient f1, as a function of the two other
friction coefficients f2 and f3.

Figure. 16 summarizes all the results obtained for the var-
iation of the four prestrains Pre1, Pre2, Pre3 and Pre4.

F3 F1F2F4

4 2 13

Fig. 14 Friction forces in the assembly

One can observe that the transmitted forces are highly
sensitive to the friction coefficients and the prestrains.

Tables 4 and 5 show how the computation costs of the
different strategies for each parametric analysis (125 calcu-
lations for the variation of the friction coefficients and 625
calculations for the variation of the prestrains) compare in
terms of:

– the computation time for one computation;
– the different calculations carried out on a single processor

(direct LATIN);
– the parametric strategy carried out on a single processor

(Parametric LATIN).

This comparison shows that the global cost of the para-
metric study using the LATIN method was less by a factor
ranging between 18 and 22.

7 Conclusion

We proposed a multi-analysis computational strategy based
on the LATIN method, which takes advantage of its capabil-
ity to reuse the solution of a problem in order to solve similar
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Fig. 15 Evolution of the transmitted forces F1 (N) vs. the friction coefficients

Fig. 16 Evolution of the
transmitted forces F1, F2, F3
and F4 (N) versus the prestrains
(mm)
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Table 4 Cost comparison–variation of the friction coefficients

Calculation Cost (CPU Time)

1 computation 32 mn

125 computations—direct LATIN 66 h

125 computations—parametric LATIN 3.5 h

problems. The solution of the initial problem is a very good
starting point to perform calculations on other problems,
provided the new conditions do not perturb the response
excessively.

In this paper, we present the application of this strategy
to the analysis of assemblies of elastic structures taking into
account contact and friction. For these assemblies, paramet-
ric studies has been carried out on the values of the connec-
tion parameters (friction coefficient, gaps, . . .). We showed

Table 5 Cost comparison—variation of the prestrains

Calculation Cost (CPU Time)

1 calculation 32 mn

625 calculations—Direct LATIN 334 h

625 calculations—Parametric LATIN 15 h

the important role played by the interfaces—which models
the connections in the description of the assembly—in the
drastic reduction of the computation costs.

The presented examples showed that the algorithm
can be very efficient numerically. The last one concerned
a real 3D junction developped by EADS-IW. The paramet-
ric analysis is performed 20 times faster than with a direct
approach.
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This approach is quite general in nature and should be
applicable to a number of other nonlinear problems.

The continuation of this study, which is now in progress,
consists in the comparison of our numerical results with those
of experimental tests conducted at EADS-IW.
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