
Comput Mech (2007) 40:911–931
DOI 10.1007/s00466-006-0151-9

ORIGINAL PAPER

Heterogeneous upper-bound finite element limit analysis
of masonry walls out-of-plane loaded

G. Milani · F. A. Zuccarello · R. S. Olivito ·
A. Tralli

Received: 29 September 2006 / Accepted: 18 November 2006 / Published online: 10 January 2007
© Springer-Verlag 2006

Abstract A heterogeneous approach for FE upper
bound limit analyses of out-of-plane loaded masonry
panels is presented. Under the assumption of associated
plasticity for the constituent materials, mortar joints
are reduced to interfaces with a Mohr–Coulomb failure
criterion with tension cut-off and cap in compression,
whereas for bricks both limited and unlimited strength
are taken into account. At each interface, plastic dissi-
pation can occur as a combination of out-of-plane shear,
bending and torsion. In order to test the reliability of the
model proposed, several examples of dry-joint panels
out-of-plane loaded tested at the University of Calabria
(Italy) are discussed. Numerical results are compared
with experimental data for three different series of walls
at different values of the in-plane compressive vertical
loads applied. The comparisons show that reliable pre-
dictions of both collapse loads and failure mechanisms
can be obtained by means of the numerical procedure
employed.
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1 Introduction

The evaluation of the ultimate load bearing capacity of
masonry elements (columns, arches and walls) is a key
aspect both for the design of new structures and the
assessment of existing buildings.

Furthermore, load bearing masonry walls are
simultaneously subjected to both in-plane loads (self
weight) and out-of-plane actions (earthquakes, wind,
explosions).

While masonry behavior subjected to in-plane actions
has been widely investigated, relatively few papers
devoted to the analysis of out-of-plane actions have
been presented in the recent past in the technical liter-
ature (see for instance Lourenço [13], Milani et al. [17],
Cecchi et al. [4]), even if the importance of the prob-
lem was stressed for the first time two centuries ago by
Rondelet [23], who was probably the first researcher
able to catalogue out-of-plane collapses.

Several surveys conducted in Italy after the Friuli
(1976), Umbria-Marche (1997–1998) and Molise (2002)
earthquakes confirmed both that the lack of out-of-plane
strength is a primary cause of failure in different forms of
masonry (Spence and Coburn [26], Borri et al. [1]) and
that collapses can be caused by an inadequate toothing
between perpendicular walls.

On the other hand, laboratory tests conducted on
brick masonry structures out-of-plane loaded (see for
instance Chee Liang [7], Gazzola and Drysdale [8],
Gazzola et al. [9], Guggisberg and Thurlimann [10] and
[11], van der Pluijm [28] and West et al. [29]) have
shown that failure takes place along a well-defined pat-
tern of lines, which usually follows the joints’ disposition.
Therefore, it is commonly accepted that mortar joints, or
more precisely the interfaces between bricks and mortar,
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have a much lower strength than that of the bricks, thus
representing preferential planes of weakness along
which cracks propagate. This evidence inspired approx-
imate analytical solutions based both on the yield line
theory and on the fracture line theory (Sinha [24], BS
5628 [2], Eurocode 6 [5]).

Furthermore, another important aspect that should
be better investigated is the combined interaction of
membrane and flexural loads. As a matter of fact,
in-plane loads increase both the ultimate out-of-plane
strength and the ductility of masonry, and bring addi-
tional complexity to the structural analysis.

Numerical models based on the classic Kirchhoff-
Love theory, able to take into account the influence of
membrane loads and devoted to the analysis of masonry
in the inelastic range, have already been presented by
Lourenço [13], Casolo [3] and Milani et al. [16].

On the other hand, it has been shown (Milani et al.
[15–17]) that classic limit analysis theorems can be profit-
ably used for the prediction both of collapse loads and
failure mechanisms of masonry structures in- and out-
of-plane loaded. In this framework, different numerical
models for the in-plane analysis of masonry have been
proposed in past literature, based either on homogeni-
zation theory (see Milani et al. [15,16]) or on a sepa-
rate modeling of bricks and mortar joints (see Sutcliffe
et al. [27]).

However, it is worth noting that load bearing walls
are relatively thick and, as a matter of fact, many con-
struction codes impose for them a minimum slender-
ness, as for instance the recent Italian O.P.C.M. 3431
2005 [21], in which the upper bound slenderness is fixed,
respectively, equal to 12 for artificial bricks and 10 for
natural blocks masonry. In spite of this consideration,
only very few papers devoted to the analysis of thick
masonry walls out-of-plane loaded have been presented,
see for instance Cecchi et al. [4] and Orduna and
Lourenço [22].

In light of these considerations, in this paper, a het-
erogeneous approach is used in combination with limit
analysis concepts for the study of both thin and thick
masonry plates. A FE upper bound heterogeneous limit
analysis model is presented based on a triangular dis-
cretization of the domain, where joints are reduced to
interfaces with frictional behavior and limited tensile
and compressive strength. Out-of-plane velocities inter-
polation is assumed to vary linearly inside each element
and possible jumps of velocities can occur at the inter-
face between adjacent triangles. In this way, no dissipa-
tion is possible in continuum, whereas at each interface
(mortar or brick interfaces), plastic dissipation can occur
as a combination of out-of-plane shear, bending and
torsion.

In order to assess the reliability of the numerical
model proposed, a set of experimental analyses on
100 × 100 cm2 in scale models has been conducted at
the University of Calabria (Italy) on three series of
dry-joints masonry walls out-of-plane loaded. To this
aim, the experimental equipment proposed in [20] has
been used. All the series have been loaded up to failure
by means of a concentrated horizontal force, after the
application of three different sets of vertical compres-
sive loads, respectively, equal to 13, 10 and 7 kN. The first
series (A) was fixed to a steel frame on two perpendicu-
lar edges, whereas the second (B) and the third (C) were
clamped on three edges. Series C differs from series B
only for the point of application of the horizontal load,
which is eccentric in Series B and centric in Series C.

The reliability of the numerical procedure adopted is
demonstrated by the good correspondence between the
experimental data and the numerical predictions.

2 Heterogeneous upper bound FE limit analysis
of masonry walls out-of-plane loaded

In this section, a FE kinematic limit analysis model for
the analysis of both thick and thin masonry walls is pre-
sented. Reissner–Mindlin plate hypotheses are adopted,
allowing plastic dissipation for bending moment and tor-
sion as well as out-of-plane shear.

The FE formulation is based on a triangular discret-
ization of the wall, constituted by a regular assemblage
of bricks disposed in running bond texture. Hence, each
brick is meshed at least using four triangular elements, as
shown in Fig. 1, in order to follow the actual disposition
of the interfaces between adjacent bricks, i.e., dry-joints.

Triangular mesh

Interfaces

Vertical joint reduced to interface

Horizontal joint reduced to interface

Fig. 1 Heterogeneous triangular discretization
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Fig. 2 Reissner-Mindlin FE
kinematic limit analysis
element. a Field of velocities
and discontinuity at each
interface between adjacent
triangles. b Possible plastic
dissipation at the interface
due to bending moment,
torsion and shear
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For each element E, one out-of-plane velocity
unknown wE

zi per node i is introduced, so that the veloc-
ity field is linear inside each element. Differently from a
well known elastic FE discretization, several nodes may
share the same coordinate, being each node associated
with only one element. In this way, at each interface
between adjacent triangles, possible jumps of velocities
can occur.

Being the velocities interpolation inside each element
linear, plastic dissipation can occur only at the interface
between adjacent elements M and N.

At each interface M and N, both constant bending
rotation rates ϑ̇nn

N−M and a torsional rotation rates ϑ̇nt
N−M

can occur. Furthermore, an out-of-plane jump of veloc-
ities δ̇t which varies linearly along the interface is also
considered. ϑ̇nn

N−M, ϑ̇nt
N−M and δ̇t can be easily evaluated

making use of the following linear relation between
nodal velocities of adjacent elements M and N (see
Fig. 2):
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with bi = yj − yk, ci = xk − xj

and AN is the element area; θ̇N =
[
ϑ̇N

i ϑ̇N
j ϑ̇N

k

]T
are the

side normal rotation rates, linked with ϑ̇nn
N−M by means

of the linear equation ϑ̇nn
N−M = ϑ̇N

i −ϑM
i ; �I is the inter-

face length.
Power dissipated at each interface between adjacent

triangles can be evaluated following a general approach
recently presented in the technical literature for the limit
analysis of 3D and plane-strain problems (Krabbenhoft
et al. [12]) and taking into account that three differ-
ent elementary interface plastic dissipations can occur,
related, respectively, to shear Tnt, bending moment Mnn

and torsion Mnt, as illustrated in Fig. 2. Consequently, a
linearization of the interface failure surface �(Ttn, Mnt,
Mnn) is required. To this aim, the interfaces between
adjacent triangles are discretized making use of pris-
matic equilibrated elements, as illustrated in the fol-
lowing section. Finally, it is worth noting that the FE
approach here adopted strongly differs from the classic
Munro and Da Fonseca [18] upper bound finite
element. In [18], in fact, jumps of velocities at the inter-
faces between adjacent triangles are not allowed, there-
fore plastic dissipation is due only to bending rotation
rates ϑ̇nn

N−M.

2.1 A static approach for the determination
of the �(Ttn, Mnt, Mnn) interface failure surface

In this section, a micro-mechanical approach for the
evaluation of the �(Ttn, Mnt, Mnn) interfaces failure sur-
face is presented. The model is based on a FE limit anal-
ysis procedure in which equilibrium inside each element,
equilibrium at the interfaces between adjacent elements
and stress admissibility at each node are imposed. In this
way, a lower bound approximation of the �(Ttn, Mnt,
Mnn) actual interface failure surface is obtained by
means of a simple linear programming problem. For
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Fig. 3 Stresses acting on
head and bed joint interfaces
and failure surface adopted
for each point of the joints (a)
macroscopic strength domain
of joints and meaning of nλ in
the space Ttn − Mnn − Mnt (b)
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each interface I, we assume that only normal stress σnn

and two tangential stresses τnt and τnr along two assigned
perpendicular directions act, as shown in Fig. 3. Follow-
ing a classic formulation proposed by Sloan [25], the
interface is discretized along its length, width and thick-
ness making use of triangular prismatic elements. A typ-
ical mesh for a L × t = 8.1 × 4 cm2 interface is shown
in Fig. 4a, where a suitable local t − r − n frame of ref-
erence with origin corresponding to the centroid of the
interface is also shown. Finally, a double row of ele-
ments along the infinitesimal thickness of the interface
is adopted.

In order to secure internal equilibrium for each ele-
ment, we assume a variation of τnt and τnr fields lin-
ear in r and t and constant in n. On the other hand
σnn is assumed constant in r and t and linearly vari-
able in n. In this way, equilibrium with zero body forces
is automatically guaranteed along r and t directions

(∂τnt/∂n = 0, i.e., τnt constant in n; ∂τnr/∂n = 0, i.e., τnr

constant in n).
Differently from the elements used in a displacement

finite element analysis, several nodes may share the same
coordinate, being each node associated with only one
element. In this way, statically admissible stress discon-
tinuities can occur at shared edges between adjacent
elements.

Denoting by NE the number of elements in the mesh,
the number of nodes is 6NE and, with the assumptions
adopted for the stress fields, 8NE are the total unknown
stresses (three τnt and three τnr stresses, one for each
node k of the triangular base of the element and two σE

nn
per element, one for each base of the prism, as shown in
Fig. 4b).

The eight unknown stress parameters of the element
have to fulfil the third internal equilibrium equation
∂τnt/∂t+∂τnr/∂r+∂σnn/∂n = 0 for each element, which
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Fig. 4 Typical mesh assumed
for the mortar interface (a)
and stress assumed linear
element used in the lower
bound limit analysis (b)
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is not a-priori satisfied. With the stress interpolation
adopted throughout each element, the following equi-
librium equation has to be imposed:

AEσE = 0 (2)

where AE = [η1/2A ζ1/2A η2/2A ζ2/2A η3/2A
ζ3/2A 1/hE σ 2

nn/hE] with ζi = tj − tk, ηi = rk − rj
(Fig. 4), A is the upper (lower) triangle face area, i, j,
k = 1, 2, 3, hE is the prism height; σE = [τ 1

nt τ 1
nr τ 2

nt
τ 2

nr τ 3
nt τ 3

nr σ 1
nn σ 2

nn]T.
Since the stress variation inside each element is lin-

ear, one equality constraint per element is written on
the nodal stresses.

Furthermore, additional constraints on the nodal
stresses at the edges of adjacent elements are imposed in
order to secure interfacial equilibrium. To this aim, the
continuity of the tangential τq and normal σnn stresses
between adjacent elements is imposed, where τq repre-
sents the tangential stress at the interface IM−N between
elements M − N, Fig. 5. Since only vertical and horizon-
tal interfaces are present in the mesh adopted (Fig. 4),
for the vertical interfaces equilibrium involves only τq

(Fig. 5a), whereas for the horizontal interfaces only σnn

contribution is present (Fig. 5b). Consequently, for a ver-
tical interface, it is necessary to enforce the continuity
of τq in the initial and final points of the interface IM−N

(Fig. 5a), i.e.,
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It is worth noting that τq results as a linear combination
between τk

nt and τk
nr (i.e. τq = τk

nt sin
(
ϑ I

) − τk
nr cos

(
ϑ I

)
,

where ϑ I is the angle between t axis and IM−N interface).
By means of trivial algebra, Eq. (3) can be re-written in
matrix form as follows:

AIσ I = bI (4)
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Fig. 5 Continuity of the stress vector on interfaces between
adjacent elements. a Vertical interface, b horizontal interface

where

AI =
[

TI −TI 0 0
0 0 TI −TI

]
,

TI = [
sin

(
ϑ I

) − cos
(
ϑ I

) ]
;

σ I = [
τ 1

nt τ 1
nr τ 2

nt τ 2
nr τ 3

nt τ 3
nr τ 4

nt τ 4
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]T
;

0 and bI are 1 × 2 vectors of all zeros.
In this way, two equality constraints are generated for

each vertical interface.
Similarly, for a horizontal interface, an equation is

required to secure σnn continuity in each point of the
interface (Fig. 5b), i.e.:

σM2
nn = σN1

nn (5)

Boundary conditions constraints are further imposed
both on τnt, equal to zero at the edges of the interface I
parallel to r axis, and on τnr, equal to zero at the edges
of the interface I parallel to t.



916 Comput Mech (2007) 40:911–931

Static admissibility is imposed in correspondence to
each node of each element and involves only σ (k) vec-
tor of nodal stresses (σ (k) = [σ k

nn; τk
nt; τ

k
nr]), once that a

linearization of the failure surface φ = φ
(
σ (k)

)
for each

node of the interface is provided.
In general, it is stressed that any non-linear failure

criterion φ = φ
(
σ (k)

)
for joints can be used for the model

at hand. As experimental evidence shows, basic failure
modes for masonry walls with weak mortar are a mix
of sliding along the joints (a), direct tensile splitting of
the joints (b) and compressive crushing at the interface
between mortar and bricks (c). These modes can be
reproduced well when a Mohr-Coulomb failure criterion
combined with tension cut-off and cap in compression
is adopted, as suggested by Lourenço and Rots [14].

In order to treat the problem in the framework of lin-
ear programming, within each node (k) of each element,
a piecewise linear approximation of the failure surface
φ = φ

(
σ (k)

)
is adopted, constituted by nlin planes of

equation AIT

i σ (k) = cI
i 1 ≤ i ≤ nlin, where AIT

k is a
1 × 3 vector of coefficients and cI

k is the right hand side
of the kth linearization plane, see Fig. 3a.

It is stressed that, in order to obtain a lower bound
estimation of the interface failure surface, three addi-
tional equilibrium equations involving macroscopic
actions Ttn, Mnn and Mnt and (integrated) internal
stresses are further imposed, once that an optimization
direction nλ is a priori fixed in the Ttn −Mnn −Mnt space
(Fig. 3b).

In this way, the following linear optimization problem
is obtained:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max (λ)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N22 = ∫
�

σnndt dr

Mnn = λnλ(1) = ∫
�

σnnrdt dr

Mnt = λnλ(2) = ∫
�

τntrdt dr

Ttn = λnλ(3) = ∫
�

τnrdt dr

AIT
σ (k) ≤ c(k) ∀(k)

AeqT
σ̃ = beq

(6)

Where λ is the limit load in the space Ttn−Mnn−Mnt, see
Fig. 3b; nλ is the optimization direction. It is worth noting
that, for an accurate lower bound estimation of the fail-
ure surface, several nλ directions should be investigated.
N22 is the membrane load perpendicular to the inter-
face direction. It is worth underlining that, for the sake
of simplicity, N22 is kept constant. This implies that for
bed joints we assume N22 equal to the applied in-plane
vertical compressive load, whereas for head joints we
assume N22 equal to zero. Aeq is the overall constraints
matrix and collects equilibrium equations in continuum,

on interfaces between adjacent elements, and boundary
conditions, whereas beq is a vector collecting equalities
right hand sides; σ̃ is the vector of assembled nodal stress
parameters.

It is stressed that torsional moment is evaluated, in
the framework of the Reissner-Mindlin plate hypothesis,
considering only the contribution of τnt. Nevertheless,
no conceptual difficulties occur when τnr stresses are
taken into account, i.e., when Mnt = λnλ (2) = ∫

�
τntrdt,

dr − ∫
�

τnrtdt dr. In the latter case, a 3D behavior for
the interface is obtained and classical analytical limit
analysis solutions (as for instance the fully plastic tor-
sion of a rectangular section, Nadai [19]) can be well
approximated.

Finally, it is worth noting that the optimization prob-
lem (6), solved for several values of nλ optimization
directions, allows to obtain the �(Ttn, Mnt, Mnn) joints
failure surface, as well as Mnn − Mnt, Ttn − Mnn and
Ttn − Mnn failure sections.

In order to test the reliability of the static approach
proposed, in Table 1, a comparison between the results
here obtained and a simplified and heuristic kinematic
approach adopted in [22] is reported for pure bending
moment, pure torsion and pure shear at failure. Inter-
face dimensions are fixed as L×t = 30×20 cm2, whereas
a linearized Mohr-Coulomb failure criterion with cohe-
sion c = 0.001 N/mm2 and friction angle � = 35◦ are
assumed for the interface. Finally a vertical compressive
load equal to 0.004 N/mm2 is imposed. As can be noted,
the comparison shows perfect agreement with the kine-
matic approach, suggesting that the FE model proposed
can be used for practical purposes.

In Fig. 6, a Ttn−Mnn−Mnt typical joint failure surface
for different values of the in-plane compressive load is
shown assuming for mortar both a Mohr-Coulomb fail-
ure criterion (Fig. 6a: cohesion c = 0.01 daN/cm2, fric-
tion angle � = 30◦, membrane compressive load N22 =
56.7 daN) and a linearized Lourenço and Rots [14] fail-
ure criterion (Fig. 6b: c = 0.01 daN/cm2, � = 30◦, fc =
5 daN/cm2, ft = c/ tan (�), �2 = 45◦, N22 = 56.7 daN;
Fig. 6c: c = 0.01 daN/cm2, � = 30◦, fc = 25 daN/cm2,

Table 1 Comparison between the present model and a kinematic
approach [22] for the evaluation of ultimate bending moment,
torsion and shear for a typical mortar interface (interface dimen-
sions L × t = 30 × 20 cm2, interface cohesion c = 0.001 N/mm2

and friction angle � = 35◦, vertical membrane compressive load
0.004 N/mm2)

Model Present Kinematic approach

Pure Mnn (daN cm) 231.7 240
Pure Mnt (daN cm) 154 160
Pure Tnt (daN) 16.1 16.8
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Fig. 6 Ttz − Mnn − Mnt
interface failure surface for
mortar in presence of a
compressive load.
a Mohr–Coulomb failure
criterion, N22 = 56.7 daN.
b Lourenço and Rots [14]
failure criterion
(c = 0.01 daN/cm2, � = 30◦,
fc = 5 daN/cm2,
ft = c/ tan (�), �2 = 45◦)
N22 = 56.7 daN.
c Lourenço and Rots [14]
failure criterion
(c = 0.01 daN/cm2, � = 30◦,
fc = 25 daN/cm2,
ft = c/ tan (�), �2 = 45◦)
N22 = 631.8 daN



918 Comput Mech (2007) 40:911–931

ft = c/ tan (�), �2 = 45◦, N22 = 631.8 daN). The differ-
ence among the failure surfaces, due both to the strength
domain adopted and to the vertical membrane compres-
sive load, is worth noting.

Similarly, in Fig. 7a–c Mnn −Mnt, Mnn −Tnt and Mnt −
Tnt interface failure surface sections are reported
progressively increasing the in-plane compressive load
acting on the interface. In this case, a Mohr–Coulomb
failure criterion with cohesion c = 0.01 daN/cm2 and
friction angle � = 30◦ is adopted, so reproducing a typ-
ical dry-joint interface. As can be noted, an increase
of the membrane compressive load always results in an
increase of the Ttn − Mnn − Mnt ultimate strength of the
interface, as a consequence of the unlimited compres-
sive strength of the interface. Obviously, this is not in
agreement with experimental evidence, which shows (a)
the existence of an optimal compressive load for which
failure moments reach a maximum and (b) limited
compressive strength of the joints. Thus, a model with
compressive cap is able to better reproduce these phe-
nomena, as shown in Fig. 8, where the same results
shown in Fig. 7 are reported adopting a Lourenço and
Rots [14] failure criterion [cohesion c = 0.01 daN/cm2,
friction angle � = 30◦, compressive cap fc = 5 daN/cm2

�2 = 45◦, tension cutoff ft = c/ tan (�)].

2.2 The heterogeneous upper bound limit analysis
approach

In this section, a heterogeneous upper bound limit anal-
ysis approach suitable for the evaluation of collapse
loads of masonry walls out-of-plane loaded is presented.

Figure 9a shows the heterogeneous mesh used in this
paper for the analysis of experimentally tested dry-joint
walls. The mesh used is constituted by 1,375 triangular
elements and 2,592 nodes. In Fig. 9b, a zoomed detail
of the heterogeneous mesh in correspondence to two
corners of the walls and bricks disposition is reported.
Furthermore, in Fig. 9c and d, it is stressed how plas-
tic dissipation can occur both at the interfaces between
adjacent bricks (i.e., inside each mortar/dry joint) and
at the internal brick interfaces, meaning that a general
approach in which bricks failure is taken into account
can be adopted.

Solving the optimization problem (6) for several
directions nλ, it is possible to obtain, by means of well
known numerical procedures based on Delaunay tes-
sellation, a linearization with m planes of the interface
failure surface �(Tzt, Mnt, Mnn) as follows:

Ain
I M̂ ≤ Cin

I (7)

where M̂ = [
Tzt Mnt Mnn

]
, Ain

I is a m × 3 vector of
coefficients and Cin

I is a vector of length m represent-
ing the right hand sides of the linearization planes.

Making use of Eqs. (1) and (6), internal power dissi-
pated at each interface between adjacent triangles can
be evaluated by means of the following expression:

PI = �I
(
Mnnϑ̇nn + Mntϑ̇nt

) + �I

2

(
TIi

zt δ̇
Ii
zt + TIf

zt δ̇
If
zt

)

= �I

2

m∑
q=1

Cin
I,q

(
λ̇

(q)

Ii + λ̇
(q)

If

)
(8)

where λ̇
(q)

Ii and λ̇
(q)

If represent respectively the qth plastic
multiplier rate of the initial (i) and final (f ) point of the
interface I, being the variation of plastic multiplier rates
on interfaces linear; δ̇Ii

zt and δ̇
If
zt are the jumps of velocities

between elements N and M in correspondence to the ini-
tial (i) and final (f ) point of the interface I, respectively.

As can be noted, in Eq. (8) the well known normality
rule ϑ̇nn = λ̇I∂�/∂Mnn = ∑m

q=1 λ̇
(q)

I Ain
I (q, 1) has been

used. Hence, additional equality constraints for the opti-
mization problem are added.

On the other hand, external power dissipated can be
written as:

Pex =
(

PT
0 + λPT

1

)
w (9)

where P0 is the vector of equivalent lumped permanent
loads; λ is the load multiplier, P1 is the vector of lumped
variable loads and w is the vector of assembled nodal
velocities.

As the amplitude of the failure mechanism is arbi-
trary, a further normalization condition in the form
PT

1 w = 1 is usually introduced.
Hence, the external power becomes linear in w and λ:

Pex = PT
0 w + λ. (10)

After elementary assemblage operations and consider-
ing Eqs. (1), (8) and (10), the following optimization
problem is obtained at a structural level:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

⎧⎨
⎩

nI∑
i=1

PI − PT
0 w

⎫⎬
⎭

such that

{
AeqU = Aeq

[
w ˜̇θnn

˜̇θnt
˜̇δzt λ̇I,ass

]
= beq

λ̇
I,ass ≥ 0

(11)

where CT
E and CT

I are the (assembled) right-hand sides
of the inequalities which determine the linearized fail-
ure surface of the homogenised material, respectively,
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Fig. 7 Interface failure
surface sections in presence of
different in-plane
compressive loads.
a Mnn − Mnt sections.
b Mnn − Tnt sections,
c Mnt − Tnt sections. For the
interface, a Mohr–Coulomb
failure criterion with cohesion
c = 0.01 daN/cm2 and friction
angle � = 30◦ is assumed
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Fig. 8 Interface failure
surface sections in presence of
different in-plane
compressive loads.
a Mnn − Mnt sections,
b Mnn − Tnt sections
c Mnt − Tnt sections. For the
interface, a Lourenço and
Rots [14] failure criterion
(c = 0.01 daN/cm2, � =
30◦, fc = 5 daN/cm2, �2 =
45◦, ft = c/ tan (�)) is adopted
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Fig. 9 a Mesh used for the heterogeneous analyses reported in the paper (1,375 triangular elements and 2,592 nodes). b detail of the
mesh, c plastic dissipation on joints d plastic dissipation on bricks interfaces

in continuum and in the interfaces. U =
[
w ˜̇θnn

˜̇θnt

˜̇δzt λ̇
I,ass

]
is the vector of global unknowns, which

collects the vector of assembled nodal velocities (w),
the vector of assembled bending interface rotation rates
( ˜̇θnn), the vector of assembled torsion interface rotation

rates ( ˜̇θnt), the vector of assembled jumps of velocities

on interfaces ( ˜̇δzt) and the vector of assembled interface
plastic multiplier rates (λ̇I,ass). Aeq is the overall con-
straints matrix and collects velocity and rotation bound-
ary conditions, Eq. (1) and constraints for plastic flow in
velocity discontinuities.

3 Materials and experimental procedures

In this section, the experimental investigation conducted
at the University of Calabria (Italy) on three different
series of panel out-of-plane loaded is presented. Each
wall, of dimension 100 × 100 cm2 (length × height) was
arranged in running bond texture using 1:3 scale bricks
and without mortar joints. In-scale models were used
in order to reproduce in a simple way a 300 × 300 cm2

masonry wall and trying to represent the real behavior
of a wall inside a real building. Figure 10 shows the in-
scale bricks used, compared to a common Italian brick of

12

5.5

25

4

1.8 8.1

Fig. 10 Prototype and in-scale model comparison

dimensions 25 × 5.5 × 12 cm3. About 54 rows of bricks
were utilized, with each row constituted by 12 bricks.
The absence of mortar allowed to save time and was
economically convenient, since it was possible to use
the same bricks for different tests.

Three different series, labeled as Series A, Series B
and Series C, were tested, which differ both for the point
of application of the out-of-plane load and constraint
conditions (Fig. 11). For each series, three different tests
were performed, varying the uniformly distributed ver-
tical loads Nv applied at the top edge by means of a stiff
steel beam. In the first sub-series, labeled as SS 7, Nv was
kept equal to 7 kN, in the second (SS 10) Nv was equal
to 10 kN, whereas in the third (SS 13) Nv was equal
to 13 kN. After the application of the vertical load, a
horizontal out-of-plane concentrated force was applied



922 Comput Mech (2007) 40:911–931

C steel beam 

Brick

A

Steel
beam

Vertical 
Load

Steel
beam

Vertical 
Load

Vertical 
Load

Steel 
beam

Out-of-plane 
Load Cell

Out-of-plane 
Load Cell

Out-of-plane 
Load Cell

L
c
=1.5 cm

A

Hb

Constrained 
Sides

Constrained 
Sides

Constrained 
Sides

a b c d

Fig. 11 Loading and constraint conditions. a Series A, b series B, c series C, d practical realization of a constrained edge

at a constant rate of 1.3 mm/min perpendicularly to the
frontal surface of the panel.

In the first series (Series A), the lower edge and one
of the lateral sides of the panels were clamped to a stiff
steel frame, whereas the remaining two sides were free
both to rotate and move (Fig. 11a). The out-of-plane
force was applied in correspondence to the right top
edge of the model.

In the second series (Series B), three sides were
clamped, whereas the top surface was free to move. Also
in this case, the horizontal force was applied eccentri-
cally at the top of the specimens (Fig. 11b).

The third series (Series C) differs from Series B only
for the point of application of the out-of-plane load,
placed in this case at the top-center of the specimens
(Fig. 11c).

Furthermore, it is worth noting that, despite the prac-
tical impossibility to realize a perfect clamped edge, a
satisfactory technical solution has been adopted using
for supports steel profiles with C section of suitable
dimensions. As shown in Fig. 11d, the C section of such
beams interconnects with bricks, precluding in this way
a free rotation, due to the torsional stiffness of the
beam. In the numerical model, different boundary con-
ditions were imposed (e.g., clamped and simply sup-
ported edges) in order to have an estimation of the
influence of the constraints on the collapse load. It was
found that limit multiplier does not change considerably.
Nevertheless, for vertical edges, a good approximation
was found by the authors imposing a limited strength
in cylindrical flexion of the edges equal to Mnn,e =
(LcMnt,bj + HbMnn,hj)/Hb, where Mnt,bj is the torsional
strength of the bed joint, Mnn,hj is the bending strength
of the head joint and Hb and Lc are defined in Fig. 11d.

Preliminary mechanical characterization tests were
carried out to examine both cohesion and friction angle
of dry joints.

Shear tests were carried out on triplet in-scale spec-
imens in order to determine the frictional behavior of

dry-joints. Following the European Standard Code
(CEN) [6] and using an ad hoc test equipment, specifi-
cally designed for this work, cohesion and friction angle
of the dry interfaces between two bricks were calculated.
Three triplet specimens were subjected to a combined
action of pre-compression and shear for three differ-
ent pre-compression load levels, respectively equal to
0.2, 0.6 and 1.0 N/mm2. A 100 kN load cell was applied
vertically, while a 10 kN load cell allowed the application
of the horizontal pressure. The σ -τ diagram obtained is
reported in Fig. 12. The straight line has been obtained
from a linear regression of the registered τ values for
different pre-compression levels.

Experimental tests on the entire panels were con-
ducted in the laboratory by means of a steel frame con-
stituted by four stands made of two U120 steel beams,
welded and anchored to ground and connected by means
of four U120 beams placed at the top.

The vertical load was applied by means of a hydrau-
lic jack anchored to the frame and equipped with a
20 kN load cell. A stiff steel beam of length 100 cm
allowed a uniform distribution of the load above the
panel (Fig. 13). The horizontal out-of-plane force was
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Fig. 13 Steel frame scheme.
a Front view, b lateral view
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Fig. 15 Load-displacement
curves, series A. a Series
A-SS 13, b series A-SS 10,
c series A-SS 7
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applied to the model by means of an ad hoc mechanical
device connected to the steel frame, on which a 10 kN
load cell was applied. Both load cells were connected
to a data-acquiring device in order to register the load
values during the test.

The displacement values were registered by means of
centesimal mechanically operated dial gauges and linear
inductive displacement transducers, placed in different
points of the model, see Fig. 14.

4 Comparison between numerical and experimental
results

In this section, a comparison between numerical and
experimental failure loads is reported for all the series
analyzed. Furthermore, a 3D representation of the
experimental deformed shape at collapse is shown and
a comparison between numerical and experimental fail-
ure mechanisms is given. It is worth noting that, for
each sub-series, at least three panels have been tested.
Nevertheless, for the sake of conciseness, load-displace-
ment curves relative to the investigated points are
reported only for one panel of each sub–series.

As concerning the numerical analysis, a lineariza-
tion with 44 planes for each interface between adjacent
triangles is implemented in the FE upper bound limit
analysis code, using a Mohr–Coulomb failure criterion
with friction angle equal to 30 ◦ and cohesion equal to
0.01 N/mm2 for mortar joints interfaces. Such data are
derived from experimental data collected on dry-joints
(see Fig. 12), nevertheless a non-null value for cohesion
is chosen with the aim of avoiding possible numerical
instabilities for head joints in solving the optimization
problem (11).

It is worth noting that a full parametric study in terms
of mortar friction angle, cohesion, compressive strength
and tensile strength of dry-joints could be useful for
a full characterization of experimental evidences. This
analysis is a work in progress by the authors and is not
reported here for all the Series analyzed for the sake of
conciseness.

Finally, it is stressed that both deformed shapes at
collapse and failure loads obtained with the present
model are in excellent agreement with experimental
data. Furthermore, the model proposed has the follow-
ing advantages if compared with other models presented
in the technical literature (as for instance those based
on homogenization, see Milani et al. [17]): (a) is able
to give a point by point description of the failure mech-
anism, which usually zigzags between adjacent bricks,
(b) is able to reproduce the important role at failure
of sliding and (c) can be used for both thick and thick
plates even when the size of the bricks is not small if
compared with the size of the panel. In particular, it
is worth underlining that the reproduction of failure
modes involving bricks sliding is not possible when clas-
sic plate approaches based on Munro and Da Fonseca
[18] model are used (see for instance Casolo [3]).

4.1 Series A

For Series A SS 13 the experimental collapse load
reached was approximately equal to 1,000 N, for Series
A SS 10 approximately 800 N, for Series A SS 7 approx-
imately 550 N. A comparison between numerical upper
bound failure loads and experimental load-displace-
ments curves is reported for all the sub-series in Fig. 15.
In all the cases analyzed, the difference between the
experimental and numerical ultimate loads is less than
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Fig. 16 Comparison between numerical (a) and experimental (b) collapse mechanisms, series A
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20%, demonstrating that technically meaningful results
can be obtained with the model proposed.

Experimental evidence shows that the collapse mech-
anism of this series involves the diagonal upper part of
the specimens. In particular, during tests, a triangular
upper portion of the wall (the free sides) moved, rotat-
ing around an inclined cylindrical hinge, whereas the
lower part of the panel was not involved in the failure
mechanism, due to the constraint condition (Fig. 16).
This is reproduced by the numerical model, as shown in
Fig. 16a and b, where a comparison between numerical

and experimental deformed shapes at collapse is
reported. As one can note, both collapse loads and
failure mechanisms demonstrate the reliability of the
numerical model proposed.

A parametric study for one of the panels constrained
on two sides (Series A Subseries SS 13) is finally reported
in Fig. 17 varying friction angle of dry-joints and
maintaining cohesion equal to 0.01 N/mm2. In Fig. 17
from a to d deformed shapes at collapse of Series A SS 13
for friction angles �, respectively, equal to 10◦, 20◦, 30◦
and 40◦ are reported. Black lines underlining the failure
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Fig. 17 Deformed shapes at collapse (from a to d) and collapse
loads (e) of Series A Subseries SS 13 at different values of dry-
joints friction angle. The parametric study is conducted varying

mortar friction angle (a � = 10◦, b � = 20◦, c � = 30◦, d � = 40◦)
and maintaining cohesion equal to 0.01N/mm2. Black lines approx-
imately delimitate failure mechanism
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Fig. 18 Load-displacement
curves, series B. a Series
B-SS 13, b series B-SS 10,
c series B-SS 7
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mechanism are also represented. It is worth noting that
the portion of the wall involved in the failure mecha-
nisms reduces and changes considerably its shape when
� is increased from 10◦ to 40◦. Finally, in Fig. 17e the
failure load of the structure obtained numerically is
reported for each friction angle analyzed. As one can
note, the failure load remains in practice constant for
sufficiently high values of �.

4.2 Series B

In the second series, three sides of the panels were fixed
to the frame, so that only their upper edge was free to
rotate and move. Also in this case, the horizontal load
was applied eccentrically, in correspondence to a corner
of the specimens (Fig. 11b).

For Series B SS 13 the horizontal collapse load
reached was approximately equal to 1,200 N, for Series
B SS 10 approximately 1,100 N, for Series B SS 7 approx-
imately 700 N.

A comparison between collapse loads experimentally
and numerically evaluated is reported in Fig. 18. In all
the cases analyzed, excellent agreement is found. Finally,
a comparison between experimental and numerical fail-
ure mechanisms is reported in Fig. 19. In this case, the
area involved by the cracks is restricted to the zone near

the point of application of the horizontal device, because
of the different constraint conditions with respect to the
previous case. The reliability of the numerical results
should be noted. In particular, the numerical deformed
shape at collapse reproduces very well the out-of-plane
sliding of the bricks in correspondence to the point of
application of the load, see Fig. 20.

4.3 Series C

Panels belonging to series C were arranged with the
same boundary conditions described for the previous
series. Differently from the previous case, the point of
application of the horizontal force was placed at the top
center of the panels (Fig. 11c).

In this case, four different specimens were tested.
For Series C SS 13 the horizontal collapse load reached
was approximately equal to 1,300 N, for Series C SS 13
approximately 850 N, for Series C SS 7 approximately
800 N.

A comparison between experimental and numerical
collapse loads is reported in Fig. 21. In all the cases ana-
lyzed, excellent agreement is found. Finally the
deformed shape at collapse of the panels is shown in
Fig. 22. The failure mechanism is similar to that obtained

Fig. 19 Comparison between
numerical (a) and
experimental (b) collapse
mechanisms, series B
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Fig. 20 Series B, detail of
failure mechanism in
correspondence to the point
of application of the load.
a Numerical, b experimental
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Fig. 21 Load-displacement
curves, series C. a Series C-SS
13, b series C-SS 10, c series
C-SS 7
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Fig. 22 Comparison between
numerical (a) and
experimental (b) collapse
mechanisms, series C
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for series B, except for the different position of the
plastic hinges.

5 Conclusions

A heterogeneous upper bound FE model for the limit
analysis of out-of-plane loaded masonry walls has been
presented. Numerical results for three different series
of masonry panels out-of-plane loaded have been com-
pared with experimental data collected at the University
of Calabria. Experimentation has been carried out with
the aim of studying the collapse mechanisms of dry-joint
masonry subjected to out-of-plane actions (e.g., wind,
earthquake, explosions).

For all the series analyzed, FE limit analysis results
fit the experimental data well, both for that which con-
cerns failure mechanisms and for that which concerns
ultimate loads.
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