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Abstract A boundary element method (BEM)
formulation to predict the behavior of solids exhibiting
displacement (strong) discontinuity is presented. In this
formulation, the effects of the displacement jump of a
discontinuity interface embedded in an internal cell are
reproduced by an equivalent strain field over the cell.
To compute the stresses, this equivalent strain field is as-
sumed as the inelastic part of the total strain. As a con-
sequence, the non-linear BEM integral equations that
result from the proposed approach are similar to those
of the implicit BEM based on initial strains. Since discon-
tinuity interfaces can be introduced inside the cell inde-
pendently on the cell boundaries, the proposed BEM
formulation, combined with a tracking scheme to trace
the discontinuity path during the analysis, allows for
arbitrary discontinuity propagation using a fixed mesh.
A simple technique to track the crack path is outlined.
This technique is based on the construction of a polygo-
nal line formed by segments inside the cells, in which the
assumed failure criterion is reached. Two experimental
concrete fracture tests were analyzed to assess the per-
formance of the proposed formulation.
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1 Introduction

In the last two decades, a considerable efforts have been
made to predict structural failure in computational solid
mechanics. Initiation and growth of displacement dis-
continuities (strong discontinuities), such as cracks in
quasi-brittle materials or slip lines in metals or gran-
ular materials, must be properly modeled to achieve
the critical load as well as to describe the post-critical
behavior.

The main difficulties arise from the multiscale char-
acter of problems involving occurrence of discontinu-
ities. Standard continuum theory is not able to properly
describe the very localized material degradation that
precedes the formation of strong discontinuities. The
use of strain-softening constitutive relations to model
the degradation of the mechanical properties induces
material instability with strain localization in thin bands.
In the absence of some physical limitation, the most sta-
ble state is achieved when the width of the localization
band vanishes.

In the context of the finite element method (FEM)
the width of the band is limited to the domain of a single
continuous element, which causes the known spurious
mesh-size and mesh-bias dependence. Many enhanced
continuum theory such as non-local, gradient-enhanced,
micropolar and viscous-regularized continuum have
been proposed to overcome this pathological mesh
dependence by introducing an intrinsic length as the
minimum localization bandwidth. By doing this, the fi-
nite element discretization no longer defines the size of
the expected localization region. It should be just fine
enough to properly describe the high strain gradient in
the localization region. This ensures convergence of the
results with mesh refinement.
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On the other hand, in the context of concrete frac-
ture mechanics, displacement discontinuity is assumed
since the first stage of material failure when the fictitious
crack model proposed by Hillerborg [9] is adopted. The
material degradation process (fracture process), that
precedes the crack definition, is described by a discrete
(cohesive) constitutive relationship between traction and
displacement discontinuity along the crack surface. Stan-
dard continuum theory is kept to describe the continuum
portion of the solid.

In the continuum strong discontinuity approach first
introduced by Simo et al. [27] (see also references [23,20,
19,17]), it has been demonstrated that the standard con-
tinuum (stress-strain) constitutive model can be applied
even for unbounded strains that are compatible with dis-
continuous displacement fields. It also has been proved
that the continuum constitutive model projects onto the
discontinuity interface in the form of a discrete (trac-
tion-displacement) constitutive model. In this context,
Oliver [18] and Oliver et al. [20] have proposed an effi-
cient approach based on the regularized version of the
strong discontinuity formulation, in which stresses along
the interface are obtained by using the strains computed
from a regularized discontinuity displacement field over
a very small (finite) width.

From the numerical point of view, the distinction
between modeling the continuum and the crack interface
is source of difficulties. The introduction of new bound-
aries or interface elements to model the crack propaga-
tion, whose location is unknown prior to the analysis,
requires a sophisticate mesh regeneration technique [3].

To avoid using mesh regeneration to find the crack
path, solid finite elements with embedded displacement
discontinuities (also referred to as embedded crack ele-
ments), have been proposed by many authors [11]. Since
discrete cracks can be introduced into these finite ele-
ments during the analysis without regard to the mesh
topology, arbitrary crack path propagation can be effi-
ciently modeled using a fixed mesh, provided that a suit-
able technique for tracking the crack is used.

In the context of the boundary element methods, the
dual version first developed by Portela et al. [24] for elas-
tic fracture mechanics and later extended to deal with
fictitious crack models with an arbitrary crack path by
Saleh and Aliabadi [2,25] has proved to be a very effi-
cient technique. It is important to mention that the cohe-
sive crack model has also been used together with BEM
formulations, as can be seen in Liang and Li [12] and
Cen and Maier [7], who have used this model together
with the classical sub-region technique, in Lopes Jr. and
Venturini [13] and Jiang and Venturini [10], in which
dipole corrections were used to model 2D and 3D cohe-
sive crack problems, and in Chen et al. [8] where the

well known symmetric Galerkin BEM approach was
adopted. A comprehensive review of the use of the
boundary element methods in fracture mechanics can
be found in [1].

In this paper, the same principle behind the finite ele-
ment with embedded discontinuity, proposed by Oliver
[18] and Oliver et al. [20], is applied to simulate disconti-
nuity propagation using boundary element method. Fol-
lowing the concepts shown by Manzoli and Shing [14],
instead of trying to represent the discontinuity itself, the
proposed approach introduces the effect of the discon-
tinuity in a small region adjacent to the discontinuity
line. This neighbor region consists of internal cells con-
taining the discontinuity line that propagates during the
analysis. The effect of the embedded discontinuity is
taken into account by properly approaching the strain
field over the cell domain, reproducing the equivalent
strain relaxation of the continuum portion of the cell due
to the discontinuity. Thus, the discontinuity effects are
smeared out across the internal cell in a consistent way.
By taking this aspect into account, one can solve prob-
lems involving discontinuities in the implicit boundary
element method framework [5,4].

2 Internal cell with embedded discontinuity

Let us consider an internal triangular cell whose domain
Ωc with an inside discontinuity interface Sc splitting the
cell into two sub-domains, leaving one corner (the sol-
itary corner) separate from the other two, as shown in
Fig. 1. Let us denote nc and mc the unit vectors nor-
mal to Sc and to the cell boundary opposite the solitary
corner, respectively. The vector [[u]] standing for the dis-
placement jump on Sc, contains the components of the
relative displacement between the opposite sides of Sc.
If the displacement jump is uniform along Sc, the rela-
tive rigid-body motion between the two parts of the cell
corresponds to a relative translation.

Fig. 1 Internal cell with embedded discontinuity
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The relative displacements between the cell corners
produced by the rigid-body translation (see Fig. 1) can
also be related to a uniform strain field over the entire
cell, whose expression is given by:

ε̄ = 1
lc

(mc ⊗ [[u]])S (1)

where (•)S is the symmetric part of (•), ⊗ denotes the
tensorial product and lc is the characteristic length of the
cell, defined as the distance between the solitary corner
and its opposite cell boundary (see Fig. 1). Then, ε can be
regarded as the equivalent strain field that results from
smearing the displacement jump, [[u]], over the entire
cell domain in a consistent way, according to Eq. (1).

The strain field over the cell, ε, can be decomposed
into two parts: the first one related to the deformation
of the continuum portion of the cell and denoted by ε̃,
and the second part related to the displacement jump of
the discontinuity interface, ε̄:

ε = ε̃ + ε̄ (2)

For the sake of simplicity, the material of the solid
portion is assumed linearly elastic. In this case, the stress
field over the cell is given by

σ = C : (ε − ε̄) (3)

in which C is the elastic fourth order constitutive tensor
defined by C = [2Gν/(1 − 2ν)]1 ⊗ 1 + 2GI, where 1 and
I are the second and fourth order unit tensors, respec-
tively, ν is the Poisson’s ratio and G is the shear modulus.
A more general formulation, with dissipative effects in
the bulk, could be considered by replacing relation (3)
by a nonlinear constitutive relation based on plasticity
or damage theory, for instance.

2.1 Nonlinear behavior of the interface

The traction vector in the discontinuity interface can be
related to the jumps by means of a discrete (cohesive)
constitutive law of the form:

tS = Σd([[u]]) (4)

where Σ denotes the discrete (traction-displacement
jump) constitutive law, which gives the traction vector
along the interface for a given displacement jump and
its history.

Alternatively, one can write the interface discontinu-
ity displacement as the limit situation of a strain localiza-
tion band whose width tends to zero [21] by following the
regularized strong discontinuity approach [18]. In this
case the traction vector can be related to the strain along
the interface by means of a continuum (stress–strain)

constitutive relation. Thus, the traction vector reads

tS = nc · Σc(εS) (5)

where εS gives the interface strain and Σc denotes the
continuum constitutive law.

The strain in the interface can be approximated by
[16]

εS = ε̃ + 1
k

(nc ⊗ [[u]])S (6)

or

εS = ε − 1
lc

(mc ⊗ [[u]])S + 1
k

(nc ⊗ [[u]])S (7)

Parameter k in Eqs. (6) and (7) can be regarded as the
width of the very narrow band containing Sc, across
which the displacement discontinuity is regularized.
Then, the last component of the strain field presented
in Eqs. (6) and (7) corresponds to the strains that result
from the regularization of the displacement discontinu-
ity. When k tends to zero the discrete approach is recov-
ered and the continuum constitutive law is transformed
into a discrete one, provided that some requirements are
fulfilled by the continuum constitutive law [17,21].

2.2 Traction continuity condition

The tractions evaluated over the continuum portion and
along the interface inside the cell must be equal to enable
the continuum and interface coupling. This continuity
condition reads:

tS − nc · σ = 0 (8)

By substituting Eqs. (4) and (3) into Eq. (8) and tak-
ing into account the relations (1), the traction continuity
condition for the discrete approach can be expressed as

Σd([[u]]) − nc · C :
(

ε − 1
lc

(mc ⊗ [[u]])S
)

= 0 (9)

On the other hand, by replacing Eqs. (5) and (7) into
(8) one obtains the traction continuity for the regular-
ized strong discontinuity approach, given by the follow-
ing form:

nc · Σc
(

ε − 1
lc

(mc ⊗ [[u]])S + 1
k

(nc ⊗ [[u]])S
)

− nc · C :
(

ε − 1
lc

(mc ⊗ [[u]])S
)

= 0 (10)

2.3 Equivalent continuum constitutive relation

In order to compute the stresses from the total strain
over the cell, one has to identify the part of the total
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strain resulting from the continuous portion deforma-
tion. From a given total strain field at a cell internal
point, the displacement jump [[u]] can be found locally
by solving the nonlinear system of equations defined by
imposing the traction continuity condition, Eq. (9) (or
(10)), using the strain tensor, ε, evaluated at the chosen
point. Since the exact position of the discontinuity inside
the cell is irrelevant, the collocation point can always be
placed at the center.

Once the jump is found, the strains corresponding to
the discontinuity interface can be obtained from Eq. (1).
Then, the stresses can be evaluated by the linearly elastic
relation given by Eq. (3).

This procedure used to obtain the stresses in the
continuum portion from a given total strain field in the
interior of the cell with the presence of a discontinuity
interface can be interpreted as an equivalent contin-
uum constitutive relation, which is herein denoted by
Σ̂ . Thus, the stresses in the continuum region can be
written in terms of the current total strains as follows:

σ = Σ̂(ε) (11)

According to the procedure outlined previously, the
stresses over the cell are also given in terms of the total
strain and its history (reflected by the internal variables
of the interface constitutive model), the cell geometry
and the discontinuity interface position inside the cell
(mc, nc and lc).

Note that the resulting formulation tries to reproduce
the correct kinematic effect of the discontinuity in the
cell and, at the same time, enforces the equilibrium con-
dition at the interface. In the context of the FEM, these
ingredients generate the so-called statically and kine-
matically optimal non-symmetric formulation (SKON),
that renders non-symmetric stiffness matrix. Alternative
formulations leading to symmetric finite element equa-
tions can be achieved by relaxing the kinematic or the
static condition (see reference [11] for more details).
In the context of the BEM, the non-symmetry of the
resulting equations is not influenced by these conditions.

3 Implicit BEM equations

Let us consider an elastic solid Ω with boundary Γ ,
containing an inelastic narrow region Ω i over which an
inelastic field of strains εi is applied. The usual displace-
ment boundary integral equations for a collocation point
ζ , in absence of body forces, is given by [6]:

cζ · u =
∫
Γ

p · u∗dΓ −
∫
Γ

u · p∗dΓ +
∫
Ω i

εi : σ ∗dΩ (12)

where u and p are boundary displacement and traction
vectors, respectively, and p∗, u∗ and σ ∗ are the known
Kelvin’s elastic fundamental solutions. The cζ matrix
depends on the position of the collocation point ζ .

Replacing the inelastic strain by the total and elastic
strain parts, εi = ε − C−1 : σ , one obtains:

cζ · u =
∫
Γ

p · u∗dΓ −
∫
Γ

u · p∗dΓ

+
∫
Ω i

(ε − C−1 : σ ) : σ ∗dΩ (13)

The integral expression of the strains compatible with
the displacement field of Eq. (13) at internal collocation
points is given as [6]

ε =
∫
Γ

p · U∗dΓ −
∫
Γ

u · P∗dΓ +
∫
Ω

b · U∗dΓ

+
∫
Ω i

(ε−C−1 : σ ) : Σ∗dΩ+(ε − C−1 : σ ) : Ξ∗ (14)

where U∗, P∗, and Σ∗ are the symmetric gradient of
Kelvin’s elastic fundamental solutions, taken with re-
spect to the coordinates of the collocation point.

The last term in Eq. (14) arising from the derivative
of the singular integral of the inelastic term of Eq. (13)
reads:

Ξ∗ = − 1
8(1 − ν)

[
2(3 − 4ν) I − (1 − 4ν) 1 ⊗ 1

]
(15)

As usual for BEM formulations the non-linear prob-
lem represented by Eqs. (13) and (14) can be solved by
transforming them into algebraic representations. This
is obtained by dividing the boundary Γ into ne bound-
ary elements, Γe (e = 1, 2 , ..., ne), and the sub-region
Ω i of the domain into nc internal cells, Ωc (c = 1, 2, ...,
nc), over which the geometry and the variables of the
problem can be approximated in terms of nodal values.
After performing the relevant integrals over boundary
elements and internal cells, one can write the discretized
form of the displacement equation for each boundary
node to obtain the following set of algebraic equations:

[H]{u} = [G]{p} + [Q]
(
{ε} − {C−1 : σ }

)
(16)

where {u} and {p} are vectors collecting the nodal bound-
ary values and, {εi}, {ε} and {σ } are the vectors represent-
ing the inelastic strains, the total strains and the stresses
in the internal cells, respectively.

By grouping the unknown nodal variables into a vec-
tor {y}, Eqs. (16) can be rewritten as

[A]{y} = {f} + [Q]
(
{ε} − {C−1 : σ }

)
(17)
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where {f} is the vector of forces corresponding to the
prescribed nodal displacements and tractions.

In the same way, another set of equations can be
obtained by writing the discretized form of the strain
integral equation (14) for collocation points in the inter-
nal cells, rendering

{ε} = [A′]{y} + {f ′} + [Q′]
(
{ε} − {C−1 : σ }

)
(18)

By substituting vector {y} obtained from Eq. (17) into
Eq. (18) and taking into account that the stress in each
cell can be obtained from the total strain according to
the relation (11), Eq. (18) becomes the following system
of nonlinear equations in terms of the total strains:

{ε} = {m} + [S]
(
{ε} − {C−1 : Σ̂(ε)}

)
(19)

with

{m} = {f ′} − [A′][A]−1{f} (20)

[S] = [Q′] − [A′][A]−1[Q] (21)

where {m} is the purely elastic solution.
The nonlinear system of equation (19) can then be

implicitly solved for the strains by means of an itera-
tive technique combined with an incremental procedure.
The incremental procedure is obtained by multiplying
the force vectors f and f ′ in the previous equations by the
loading factor λn, which scales the loading level for the
nth loading increment. By doing this, the incremental
form of the system of equations (19) can be written as:

{εn} − λn{m} − [S]
(
{εn} − {C−1 : Σ̂(εn)}

)
= 0 (22)

which can be solved for the strains corresponding to
the nth loading increment, εn, by means of the iterative
Newton–Raphson method. Once the strains are found,
the corresponding boundary unknowns can be obtained
from Eq. (17) and the loading factor can be updated for
the next increment.

4 Concrete fracture analysis

Modeling concrete fracture problems requires an inter-
face constitutive model to describe the main features of
the concrete failure under tension, as well as a scheme
for tracking the crack path during the analysis. In this
paper, these specific ingredients are chosen as follows:

4.1 Interface constitutive law

The nonlinear behavior in the interface is provided by
the regularized strong discontinuity approach outlined
in Sect. 2.1. The material along the interface line is

described by the standard associative elastoplastic con-
stitutive model, which can be described by the following
set of rate equations [26]:

σ̇ = C (ε̇ − ε̇p) (23)

ε̇p = λ̇
∂φ

∂σ
(24)

α̇ = λ̇ (25)

q̇ = H(α) α̇ (26)

where C is the elastic material matrix, ε̇p is the plastic
strain vector, λ̇ is the plastic multiplier, α is the strain-
like internal variable, q is the softening internal variable,
and H is the softening modulus.

The loading and unloading situations are distin-
guished by the Kuhn–Tucker conditions:

φ(σ , q) ≤ 0, λ̇ ≥ 0, λ̇ φ(σ , q) = 0 (27)

where φ is the yield function which defines the elastic
domain when φ(σ , q) < 0.

To describe the mixed-mode crack behavior in quasi-
brittle materials, the following expressions for the yield
surface and softening law are adopted:

φ(σ , q) =
√

2
3

‖S‖ + p − q (28)

q = ft e
− ft

GF
kα ; H = ∂q

∂α
= −k

f 2
t

GF
e
− ft

GF
kα (29)

where p = Tr(σ )/3 is the mean stress, S = σ − pI stands
for the deviatoric stresses, ft is the tensile strength, GF
is the fracture energy and k is the regularization strong
discontinuity parameter defined in Sect. 2.1.

The exponential evolution law of the stress-like vari-
able q, given by Eq. (29), ensures dissipation compatible
with the fracture energy, GF , which is considered as a
material property (see reference [21]).

Fig. 2 Tracking scheme to trace the discontinuity path
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Fig. 3 Nooru test:
a geometry and boundary
conditions; b internal cell
discretization

Fig. 4 Numerical results at the end of the analysis: a internal cells
containing the crack path; b deformed mesh

4.2 Tracking the crack path

Since the position and direction of crack propagation in
general are not known prior to an analysis, an algorithm
is developed to track the crack that propagates during
the loading. A polygonal line is constructed by sequen-
tially adding straight crack segments in the internal cells
whose stress state reaches the failure criterion. The pro-
cess starts from the first cell that reaches the failure crite-
rion and propagates through its neighbor cells, keeping
continuity of the crack across the cell boundaries (see
Fig. 2). Only the cell that has one side “touching” the
crack tip is allowed to fail causing crack propagation.
In this approach the computation of the direction of a
crack and the checking of the failure criterion are based
on the stress state at the center of the cell. The crack
initiation criterion coincides with the plastic yield crite-
rion of the interface constitutive law and the direction
of the propagation is taken as the maximum principal
stress direction at the crack initiation time.

The procedure outlined here is able to track one crack
line propagating from the first element that reaches the
failure criterion. Propagation of few crack lines can also

Fig. 5 Nooru test. Normal (vertical) force, PN , versus normal
(vertical) displacement of the top edge, UN

Fig. 6 Four-point bending test. Geometry and boundary
conditions

be modeled if the first cell of each potential crack line
is identified prior to the analysis. This simple technique
is suitable for the numerical studies performed in this
paper. A more general technique for tracking multiple
cracks is provided in reference [22].

Only those cells containing the crack path are
required to be computed in the nonlinear system of
equation (19), which becomes larger as the crack
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Fig. 7 Four-point bending
test. a Internal cells;
b internal cells containing the
crack path; c deformed mesh

Fig. 8 Four-point bending test. Force versus CMSD curves

propagates. This feature drastically reduces the com-
putation effort to solve the nonlinear problem.

4.3 Concrete fracture tests

4.3.1 Double-edge-notched specimen

To assess the performance of the model to simulate
propagation of curved crack paths, the double-edge
notched plain concrete specimen tested by Nooru-
Mohamed [15] was chosen for the numerical study. Sim-
ulations in the context of the finite element method
can be found in reference [28]. In this test, a concrete
square with deep notches on both sides was subjected
first to a shear (horizontal) load PS = 10 kN and then
to a normal (vertical) tensile load PN under displace-
ment control, while keeping the shear load constant.
The geometry and boundary conditions of the test are
depicted in Fig. 3a. The numerical simulation was per-
formed by distributing the shear force on the upper
left edge and imposing an increasing vertical displace-
ment along the top edge, so that the normal load was
computed as the resulting reaction force. The assumed
material properties are: Young’s modulus E = 32 GPa,
Poisson’s ratio ν = 0.18, yield stress σy = 3.75 MPa
and fracture energy GF = 100 N/m. The regularization

parameter was k = 1 mm and plane stress was assumed
with an out-of-plane thickness of 50 mm.

To impose this non-proportional loading, the forces
vectors f and f ′ were replaced by fS + λnfN and f ′

S +
λnf ′

N , respectively, in the boundary element equations
of Sect. 3. λn is the loading factor corresponding to the
nth loading increment, fS and f ′

S are the force vectors
due to the shear load and fN and f ′

N are the ones corre-
sponding to the prescribed vertical displacement on the
top edge.

Figure 3b shows the mesh used in the boundary ele-
ment discretization of the specimen. Cracks are allowed
to propagate from the two cells located near the notch
tips. Although the entire domain is divided into inter-
nal cells, only those cells that were crossed by the crack
path during the loading process took part in the nonlin-
ear analysis.

Figure 4a shows only the internal cells containing the
crack lines at the end of the analysis. As can be observed,
the crack pattern predicted by the numerical model is
very close to that of the experimental test. The deformed
specimen (enlarged 150 times) at the end of the analy-
sis is shown in Fig. 4b. As expected, it can be seen that
the high deformation of the cells reproduces the crack
discontinuity modes. Figure 5 shows the normal load-
displacement curve of the numerical model and the
experimental tests. Despite some scatter, the numerical
model is able to represent well the behavior observed
during the test.

4.3.2 Four-point bending test

The notched concrete beam test, which geometry and
boundary conditions are shown in Fig. 6, is also analyzed.
The results of this experimental test have been reported
by Arrea and Ingraffea [3]. The assumed parameters are:
Young’s modulus E = 32 GPa, Poisson’s ratio ν = 0.18,
yield stress σy = 2.5 MPa, fracture energy GF = 100 N/m
and regularization parameter k = 1 mm. Plane stress was
assumed with out-of-plane thickness of 155 mm.
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Figure 7a shows the unstructured internal cell mesh
used in the region where the crack was expected to form.
One crack line was allowed to initiate from the internal
cell located near the notch tip. The set of internal cells
crossed by the crack line at the end of the analysis is
shown in Fig. 7b, giving a good prediction of the crack
position observed in the experiment. As can be seen in
Fig. 7c, the localized deformation in those cells reflects
the crack discontinuity modes. Figure 8 shows the evolu-
tion of the load, P, with respect to the crack mouth slid-
ing displacement, CMSD. The numerical analysis was
able to give a good prediction of the structural behav-
ior of the specimen, even with the very simple interface
constitutive model adopted.

5 Conclusions

A BEM formulation has been proposed to simulate
strong discontinuity in solid mechanics. The formulation
is based on internal cells with embedded discontinuities.
The kinematics of the discontinuity is taken into account
by introducing an equivalent inelastic strain field over
the cell, which is designed to be a consistent distribu-
tion of the displacement jump across the cell interior.
The nonlinear behavior associated to the discontinu-
ity interfaces can be described by a discrete (traction-
displacement) constitutive relation, as in the fictitious
crack model, or by means of a continuum (stress–strain)
constitutive model in the context of the strong disconti-
nuity approach. By enforcing traction continuity
between discontinuity interface and continuum at col-
location points over the internal cells, it is possible to
obtain the stresses in the continuum portion of the cells
from the total strains. This allows for the problem involv-
ing discontinuity to be solved in the implicit BEM frame-
work.

The formulation showed suitable for fracture mechan-
ics analyzes with arbitrary crack paths. Only boundary
variables and the equivalent inelastic strain in the inte-
rior cells containing the discontinuity are approximated.

The main purpose of this work has been to intro-
duce the concepts of the strong discontinuity approach,
originally developed in the context of the FEM, in the
BEM. A comparative study of the performance of both
methods will be addressed in future work.
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