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Abstract This paper presents a stabilized meshfree
method formulated based on the strong formulation and
local approximation using radial basis functions (RBFs).
The purpose of this paper is two folds. First, a regulariza-
tion procedure is developed for stabilizing the solution
of the radial point collocation method (RPCM). Sec-
ond, an adaptive scheme using the stabilized RPCM and
residual based error indicator is established. It has been
shown in this paper that the features of the meshfree
strong-form method can facilitated an easier implemen-
tation of adaptive analysis. A new error indicator based
on the residual is devised and used in this work. As
shown in the numerical examples, the new error indica-
tor can reflect the quality of the local approximation and
the global accuracy of the solution. A number of exam-
ples have been presented to demonstrate the effective-
ness of the present method for adaptive analysis.
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1 Introduction

Undoubtedly, finite element method (FEM) is one of
the most successful numerical methods invented in the
last century. FEM has been developed since 1950 and
achieved remarkable progress in various fields. How-
ever, the inherited shortcoming of FEM has also been
revealed along the progress of development. In the for-
mulation of FEM, the continuous problem domain is dis-
cretized into many meshes. Due to the use of mesh, FEM
encounters difficulty while dealing with those problems
which involve in high distortion, large deformation,
explosion, crack propagation etc.

Since the main drawback of FEM is caused by the
used of mesh, it motivates and leads to the develop-
ment of a new generation of numerical method, mesh-
free method, which is formulated without relying on
mesh. Such salient feature has been drawing many atten-
tions and gaining great interest in the computational
mechanics community in the past few decades. Hence,
many meshfree methods has been proposed and devel-
oped. Intensive reviews of various meshfree methods
and their development are abundantly available in
literature [3,14,18].

Meshfree methods can be classified into three major
categories according to their formulation procedure. The
majority of the existing meshfree methods are formu-
lated based on the weak formulation, or short for mesh-
free weak-form method. Element-free Galerkin (EFG)
method [2], meshless local Petrov-Galerkin (MLPG)
method [1], local radial point interpolation method (LR-
PIM) [16], the point interpolation method [15,25,34]
and reproducing kernel particle method (RKPM) [10,
20] are under the categories of meshfree weak-form
method. The meshfree weak-form methods do not
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require mesh for function approximation but back-
ground mesh is still needed for integration resultant
from the used of weak formulation, and hence is not
regarded as “truly” mesh free. The second category of
meshfree method is formulated based on strong for-
mulation, or short for meshfree strong-form method,
including finite point method [29], radial point colloca-
tion method [26], smooth hydrodynamics method [22,
27] etc. The meshfree strong-form method does not use
mesh for both field function approximation and back-
ground integration, and therefore it is regarded as a
“truly” meshfree method. The last category of mesh-
free method is formulated based on both weak and
strong formulation, for instance, the meshfree weak-
strong forms (MWS) method [23]. The weak-strong form
method requires mesh for derivative boundary. A more
detailed reviews on these methods can be found in the
book by Liu and Gu [14,18].

Function approximation based on the scattered nodes
is the key ingredient in the meshfree method. Moving
least-square (MLS) approximation [2,28], integral form
of approximation i.e. RKPM [10,20] and point interpola-
tion approximation are commonly used in the meshfree
method. In this paper, point interpolation approxima-
tion is adopted and based on the radial basis function
and polynomial function using local nodes. The idea of
using RBFs globally for solving PDEs was introduced by
Kansa [11]. Since then many of the research woks have
been carried out extensively [5,6,9,12,30,35]. However,
the global RBF scheme results in a full coefficient ma-
trix incurs high computational cost and also leads to ill
condition [12]. In the recent years, a series of meshfree
method which formulated based on local nodes has been
actively discussed and well studied [13,16,17,23,24,34],
including the radial point collocation method (RPCM)
[26].

Besides using local RBF scheme, the most distin-
guish feature of the RLS-RPCM is that it is formu-
lated based on strong formulation. In our work, we
regards RLS-RPCM as a truly mesh free method as,
(1) no mesh is needed for constructing shape functions,
and (2) no background mesh is needed in the present
formulation. Hence, the formulation procedure is sim-
ple and straight forward, integration is not required in
the formulation procedure which makes it a good can-
didate for adaptive analysis. However, due to the use
of the local nodes, unstable solution is often obtained
when Neumann boundary condition exists, which lim-
its its application for the practical problems that often
require adaptive analysis. Without an effective stabil-
ization measure, it is impossible to use the RPCM for
adaptive analysis. This argument will be clearly demon-
strated in the numerical examples.

The purpose of this paper is therefore, at first, to
develop a regularization procedure for stabilizing the
solution of the RPCM. Secondly, an adaptive scheme
using stabilized RPCM and residual based error indica-
tor is established.

Regularization technique is commonly used for stabi-
lizing the solution of ill-posed inverse problem [19]. It is
employed to restore the stability of the RPCM solution
for the forward problem in this work. After the stabil-
ity is restored, the attractive features of the strong-form
meshfree method can then be utilized to facilitate an
easier implementation of adaptive analysis. In the adap-
tive procedure, a reliable and effective error indicator
plays a very crucial role. A residual based error indicator
is proposed and used in this work. A number of numeri-
cal examples has shown that the error indicator is simple
and well reflects the quality of the local approximation
and the global accuracy of the solution.

A simple nodal refinement scheme based on the
Delaunay diagram is employed in this work. As the
RPCM is regarded as a truly meshfree method, node
insertions can be easily implemented without worry
about the nodal connectivity. With all these key ingredi-
ents of techniques: stabilization, error estimation and
nodal refinement, the stabilized RPCM can perform
adaptive analysis effectively to obtain solutions with de-
sired accuracy automatically as shown in the numerical
examples.

2 Function approximation

The radial basis functions (RBFs) have been widely used
for function approximation in the mathematic commu-
nity [4,8]. In early 1990s, Kansa had used RBFs for
solving partial differential equations (PDEs) [11]. In
his works, all nodes in the problem domain are used
for the function approximation, the full coefficient ma-
trix not only incurs large computation and also large
condition number [12]. In contrast to Kansa’s works,
our function approximation is constructed locally, only
vicinity nodes are involved for the local approximation.
There are many RBFs available in the literature. Typical
generalized RBFs with arbitrary real shape parameters
[14,18] are listed in the Table 1.

Consider an unknown field function u(x) can be appr-
oximated at an interest point x in the problem domain
by radial point interpolation in the following form:

uh(x) =
n∑

i=1

airi(‖x − xi‖) +
m∑

j=1

bjpj, (1)

where n is the total number of the supporting nodes in
the local domain, m is the number of monomials in the
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Table 1 Typical generalized radial basis functions [14,18], where
ri = ‖x − xi‖ is the Euclidian norm in the vector space

Type Expression Dimensionless
parameter

Multi-quadrics (MQ) Ri(x, y)=(
r2

i +(αcdc)
2)q

αc, q
Gaussian (EXP) Ri(x, y) = exp

(−cr2
i
)

c
Thin plate spline (TPS) Ri(x, y) = rη

i η

Logarithmic Ri(x, y) = rη
i log ri η

polynomial function, ri(‖·‖) is the radial basis function
and pj is the monomial in polynomial function for aug-
mentation. ai and bj are the coefficient of radial basis
function and monomial of polynomial function.

By enforcing the interpolation passing through the
nodal values at the nodes, the following expression can
be obtained,

⎡

⎢⎢⎢⎣

u1
u2
...

un

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

r1(‖x1 − x1‖) r1(‖x1 − x2‖) · · · r1(‖x1 − xn‖) p1(x1) · · · pm(x1)

r2(‖x2 − x1‖) r2(‖x2 − x2‖) · · · r2(‖x2 − xn‖) p1(x2) · · · pm(x2)
...

...
. . .

...
...

. . .
...

rn(‖xn − x1‖) rn(‖xn − x2‖) · · · rn(‖xn − xn‖) p1(xn) · · · pm(xn)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

an

b1
...

bm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

U = [
R P

] [
a
b

]
, (2)

where U is the vector of unknown nodal values, a and
b are the vector of coefficients of radial basis functions
and monomials of the polynomial function, respectively.

With the orthogonal condition [8,12],

PTa = 0, (3)

the vector of coefficients can be obtained as
[

a
b

]
=

[
R P
PT 0

]−1{ U
0

}
= G−1

{
U
0

}
. (4)

Therefore, the approximated unknown field function
u(x) at interest point x can be expressed as

uh(x) = [
φ1(x) φ2(x) · · · φn(x)

]
U = �(x)U, (5)

where φ(x) is the shape function called RPIM shape
function.

The derivative of the field function can be easily
obtained through differentiating the shape functions.
For example, the first derivative of the field function
with respect to k can be expressed as

uh
,k(x) = �,k(x)U. (6)

The details of constructing the RPIM shape function
can be found in e.g., [14,18].

One important property of the above shape function
shown in Eq. (5) is that RPIM shape function possesses
Kronecker delta property. Without special treatment,
other function approximations like MLS approxima-
tion and reproducing kernel particle approximation do
not possesses Kronecker delta property. Imposition of
essential boundary condition could be an issue to be
resolved. Since the RPIM shape functions process Kro-
necker delta property, the essential boundary conditions
can be directly imposed without any special treatment.
More properties of RPIM shape function is revealed and
well discussed in the [14,18].

In this work, multiquadrics (MQ) and completed sec-
ond order polynomial are used in the function approxi-
mation. The shape parameters used for MQ is adopted
from the recommended values reported by Liu et al.
[14,18,33]: αc = 3.0 and q = 1.03.

2.1 Nodal selection

To construct RPIM shape function, polynomial func-
tion augmented with RBF is used in the approximation
function. To solve the vector of coefficients in Eq. (4),
the number of supporting node, n, can not be less the
number of monomial terms, m, in the polynomial
function.

n >> m (7)

Besides, to avoid rank deficiency in the stiffness ma-
trix, we should not solely select the supporting node
based on their physical distance to collocation point.
The supporting nodes must at least form a “layer” of
nodes to surround the collocation point. For instance,
in the case of one dimension, the nodes on the left and
right hand side of the collocation point must be included
as the supporting nodes, as shown in Fig. 1.

For regularly distributed nodes in two-dimensional
case, the number of supporting could be nine nodes
which is the optimal number of forming one “layer”
of nodes to surround the collocation point. Two to three
times of the number of monomial terms is the suggested
number of nodes for constructing RPIM in the domain
with irregularly distributed nodes (see Fig. 2).
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Fig. 1 a Appropriate nodal selection, b inappropriate nodal selection in one dimension problem domain

Fig. 2 Nodal selection for a regular and b irregular node distribution in two dimension problem domain

3 Radial point collocation method

Consider a problem in a domain is governed by the fol-
lowing PDEs:

L(u) = f in �, (8)

with Neumann boundary conditions

B(u) = g on Γt, (9)

and Dirichlet boundary conditions

u = ū on Γu, (10)

where L(), B() are the differential operators and u is the
field variable.

Assume that the above equations, Eqs. (8)–(10), can
be collocated at the field nodes in the problem domain
and on the boundaries, respectively, the discretized gov-
erning system equations can be shown as follows.

L(ui) = fi in �, (11)

with Neumann boundary conditions

B(ui) = gi on Γt, (12)

and Dirichlet boundary conditions

ui = ūi on Γu, (13)

where subscript “i” denotes the collocation point.

The governing system equations, Eqs. (11)–(14), can
be collocated at their corresponding field nodes then be
assembled and expressed in the following matrix form
as

KU = F, (14)

where K is the stiffness matrix, F is the force vector and
U is the vector of unknown nodal values. Note that the
stiffness matrix of the collocation method is generally
unsymmetric.

The vector of unknown nodal values can be easily
solved as

U = K−1F, (15)

if K is not singular and well-conditioned.

4 Regularization procedure

Regularization technique is a very common technique
used for stabilizing the solutions of the ill-posed inverse
problems [19]. In this paper, instead of using the regu-
larization technique for inverse problems, this technique
is employed to stabilize the solutions of the RPCM for
the forward problems. In our regularization procedure,
Tikhonov regularization technique [19,31] is adopted.
By making use of the governing system equations as a
priori information, the regularization matrix and vector
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are formed. The regularization procedure is briefed as
follows.

4.1 Regularization equations

To form the regularization matrix and vector, priori
information is required. In the present formulation, the
governing system equations, Eqs. (8)–(10), are used as
the regularization equations for constructing the regu-
larization matrix and vector.

Consider a problem governed by a set of PDEs as
given in Eqs. (8)–(10), and the PDEs can be used as the
regularization equations. The regularization equations
can be collocated at the regularization points respec-
tively as shown in Fig. 3. Therefore, we have

L(ur) = fr in �, (16)

with Neumann boundary conditions

B(ur) = gr on Γt, (17)

and Dirichlet boundary conditions

ur = ūr on Γu, (18)

where subscript “r” denotes the regularization point.
The regularization points in the internal problem

domain are same as the interior field nodes. Else, the
regularization points along the boundaries are allocated
in between the boundary nodes as shown in Fig. 3.

After collocating the regularization equations at their
respective regularization points, a set of resultant alge-
braic equations can be formed and expressed as the
following matrix form as

KrU = Fr, (19)

where Kr is the regularization matrix and Fr is the regu-
larization vector. Note that the total number of algebraic
equations is same as the total number of the unknown
nodal values in the problem domain.

4.2 Regularization least-squares formulation

First, we define a functional Π as follows [19],

Π = {KU − F}T{KU − F}
+ α{KrU − Fr}T{KrU − Fr}, (20)

where α is the regularization factor which determine the
degree of regularization. The first term of Eq. (20) is the
L2 norm of the residual of the governing equations, and
the second term is the L2 norm of the residual of the reg-
ularization equations. Hence, functional Π is the total
sum of the both residuals in the system.

Seek for the minimal Π with respect to the unknown
vector U, the following equation can be obtained.

∂Π

∂U
= 2KT{KU − F} + 2αKT

r {KrU − Fr} = 0. (21)

The above equation can be rearranged and leads to the
following equation,
[
KTK + αKT

r Kr

]
U = KTF + αKT

r Fr

or

K̂U = F̂, (22)

where K̂ is the regularized coefficient matrix and F̂ is
the regularized force vector.

The vector of unknown nodal values can be solved as

U = K̂−1F̂, (23)

if K̂ is invertible and well-conditioned.

Fig. 3 Regularization points
in a problem domain and
boundaries
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The drawback of the regularization procedure is that
the condition number of the regularized coefficient
matrix K̂ is much larger than the stiffness matrix K.
However, one can notice in Eq. (22) that K̂ is a symmet-
ric and positive definite (SPD) matrix. With the SPD
property, the linear solver like Cholesky solver can be
used to solve for the solution more accurately and effi-
ciently. The computational error caused by large condi-
tion number can also be reduced.

4.3 Determination of regularization factor

From Eq. (22) one can observe that the regularization
factor α directly affects the regularized coefficient ma-
trix and force vector. The degree of regularization solely
depends on the values of regularization factor, hence the
determination of an appropriate regularization factor is
very crucial. The value of regularization factor, α, should
be positive and ranged from zero to infinity. When α = 0,
the effect of regularization is vanished. The RLS-RPCM
is reduced to the original RPCM. If α is equal to infinity,
the effect of regularization is also vanished as the solu-
tion is solely based on the Eq. (19). Both solutions are
unstable. The appropriate α should provide a minimum
residual for both terms in Eq. (20) [7,21].

From our previous work [21], the governing equa-
tion, Eq. (11), is used for constructing the regularization
matrix for the regularization points along the boundary
only. With such regularization scheme, L-curve approach
[7] was required to determine an appropriate regulariza-
tion factor. The determination process could be tedious
and an additional computational cost was incurred.

However, due to the special regularization equations
and regularization points used in our scheme, the deter-
mination of regularization factor can be avoided. The
vector of unknown nodal values U can be solved either
by Eq. (14) or Eq. (19), however, none of the solu-
tions is stable. By solving the same status problem with
two differences sets of discretized equations, the regu-
larization procedure provide a compromise solution to
satisfied both sets of system equations with minimum
residual. Hence, α = 1 is a logical choice to be used in
our formulation.

5 Adaptive scheme

As the radial point collocation method (RPCM) is a
truly meshfree method, it possess attractive features to
facilitate an easier implementation of adaptive scheme.
Without the constraint of the nodal connectivity,

additional nodes can be inserted during refinement
process easily.

A good error indicator is very important in the adap-
tive analysis. In this paper, an error indicator based on
residual of the system governing equations is proposed.
The residual based error indicator provides a good mea-
surement for the quality of the local approximation and
the global accuracy of the solution. The details of the
error indicator and refinement procedures are given as
follows.

5.1 Error indicator

The new error indicator is devised based on the residual
of the governing equations. In the strong-form colloca-
tion method, the governing equations are fully satisfied
at the interior nodes, but not elsewhere. In our adaptive
scheme, the problem domain is first represented using
Delaunay diagram. The residual of the governing equa-
tions is then measured at the center of the Delaunay
cells. The error indicator indicates the error over a local
region and it is defined as follows:

ηj = 1
3

Aj
∥∥Luj − fj

∥∥
L2

, (24)

where Aj is the area of the jth Delaunay cell and the∥∥Luj − fj
∥∥

L2
is the L2 norm of the residual of the gov-

erning equation measured at the center of the corre-
sponding cell.

With the above definition of the local error indi-
cator, the estimated global residual norm can be eas-
ily obtained by integrating the residual over the entire
domain

ηg =
∫

�

ηd�

=
nc∑

j=1

1
3

Aj
∥∥Luj − fj

∥∥
L2

, (25)

where nc is the total number of Delaunay cells.

5.2 Refinement and stopping criteria

Node is inserted at the center of the cell if the following
refinement criteria is met.

ηj ≥ κlηm, (26)

where κl is the local refinement coefficient and

ηm = max (ηj). (27)

The estimated global residual norm defined in Eq. (25)
is used as an indicator for termination criteria of the
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adaptive process. The stopping criteria is defined as

ηg ≤ κgηmg, (28)

where κg is the global residual tolerant and ηmg is the
maximum global error indicator value throughout the
adaptive process. Once the criteria is met, the adaptive
process will be terminated.

5.3 Refinement procedure

The Delaunay diagram is used for locating the position
of the additional nodes in the refinement process. Addi-
tional node will be inserted in the center of the Delaunay
cell if the refinement criteria, Eq. (20), is met as shown
in Fig. 4. As remeshing is not required at each adap-
tive step, the computation cost of the adaptive scheme
is tremendously reduced compared to the weak-form
method.

6 Numerical examples

A number of numerical examples is presented in this
work. The following norm for true error is defined as

e =
√√√√

∑
(sexact − sappr)

2

∑
(sexact)2 , (29)

where sexact is the exact solution and sappr numerical
solution.
Example 1 The first example demonstrates the instabil-
ity problem encountered by the RPCM. In this numeri-
cal example, a benchmark plane stress problem of solid
mechanics is studied. A cantilever beam with unit thick-
ness is subjected to a parabolic shear stress at the right

Fig. 4 Additional nodes inserted in the Delaunay cell

Fig. 5 Cantilever beam subjected to a parabolic shear stress at
the right end

end as shown in Fig. 5. The material properties and geo-
metrics are given as: Young’s modulus E = 3 × 107,
Poisson’s ratio υ = 0.3, length of cantilever L = 48.0 m
and the height H = 12.0 m. The loading is known as
τxy = − P

2I (H
2/4 − y2), where I is moment of inertial of

the cross section of cantilever and P = 1,000 N.
The equilibrium equation has to be satisfied in the

problem domain as

σij,j + bi = 0 in �. (30)

Dirichlet boundary conditions are given as

ui = ūi on Γu, (31)

and Neumann boundary conditions are given as

σijnj = ti on Γt. (32)

The analytical solution of this problem can be found
in the [32].

From our study, the Neumann boundary condition
is found as the cause of the instability. To demonstrate
this argument, the cantilever is first modelled by 951 ran-
domly distributed nodes in the problem domain.
Another 12 nodes are added into the first model to make
the second model with 963 nodes, that is the fact latter
model is quite similar to the first model. As the analyti-
cal solution is known, the Dirichlet boundary condition
is first imposed based on the analytical solution of dis-
placements along all the boundaries. One can observe
that the results of deflection along x = 0 m for both
models are remained good and close to each other as
shown in Fig. 6.

However, if the Dirichlet boundary condition is only
imposed on the left edge and Neumann boundary con-
ditions are imposed on the rest of the edges of the can-
tilever, the RPCM solutions of this problem for these
two similar models are totally different as shown in
Fig. 7. This example clearly reveals the inherited insta-
bility problem using conventional collocation method
such as the RPCM. Therefore, an effective stabilization
measure is a prerequisite for the RPCM before it is used
in the adaptive analysis.
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Fig. 6 Deflection of the cantilever beam for nodal distributions with a 951 nodes and b 963 nodes without Neumann boundary conditions

Fig. 7 Deflection of the cantilever beam for nodal distributions with a 951 nodes and b 963 nodes with Neumann boundary conditions

We had then used the regularization least-squares
procedure described in Sect. 4 to stabilize the solution
of the RPCM. The results for both models using the

regularized least-squares RPCM (RLS-RPCM) are
shown in Fig. 7. The solutions obtained by the RLS-
RPCM with two models are good and close to each
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Fig. 8 Comparison of convergence rate among the FEM, RPCM
and RLS-RPCM

Fig. 9 Comparison of computational time among the FEM,
RPCM and RLS-RPCM

other. The deflection of the cantilever obtained by the
RLS-RPCM is also much closer to analytical solution
compared to the RPCM.

To provide an overview of the computational cost
and the accuracy of the RLS-RPCM, the solution of the
RLS-RPCM is compared with the FEM and the RPCM.
Four sets of regularly distributed nodes are used in this
example, which are 25 × 7, 49 × 13 and 97 × 25 nodes.
Linear triangular mesh is used in the FEM and nine
nodes are used for the RPCM and the RLS-RPCM to
construct their shape functions. The convergence rate
and the computational time of three different numerical
methods are shown in the Figs. 8 and 9. The convergence
rate of FEM and RLS-RPCM is 1.95 and 2.39, respec-
tively. One can found that the accuracy of the RLS-
RPCM is comparable with the FEM. The accuracy of
the solutions obtained by the RPCM for displacements

Fig. 10 Model of a plate subjected to an unit traction in the
horizontal direction

is lower than other methods. However, the computa-
tional time of the RLS-RPCM is slightly higher that the
RPCM.

Although the RLS-RPCM requires a little more com-
putational time than the FEM, the RLS-RPCM pos-
sesses many attractive features to facilitate an easier
implementation of adaptive analysis. No special tech-
nique is required in the refinement procedure and no
remeshing is required at each adaptive step. A truly
meshfree method not only avoid the mesh related prob-
lem but also facilitate a simple adaptive scheme.

It is also very important to note that the FEM only
ensures that the displacement is continuous over the
entire problem domain. To provide a better approxima-
tion for stresses, post-processing treatment is required
for the FEM. In contrast, the RLS-RPCM provides a
convenience to obtain both displacements and stresses
in the entire problem domain.
Example 2 The second numerical example is an adap-
tive analysis of an infinite plate with circular hole sub-
jected to an unit traction P in the horizontal direction.
A plane strain case is considered in this example. Due to
the symmetry, only quarter of the problem is modelled
as shown in Fig. 10. The geometry and material prop-
erties are given as: a = 0.2, b = 2.0, Young’s modules
E = 1 × 103 and Poisson’s ratio υ = 0.3.

The governing equations for this problem are same
as Example 1 and given as Eqs. (30)–(32). Symmetric
boundary conditions are imposed on the left and right
edges. Analytical solutions can be found in [32].

The adaptive analysis started with 121 nodes irregu-
larly distributed in the problem domain. Twelve nodes
are used in support domain for constructing the shape
function. The local refinement coefficient is predefined
as κl = 0.1 and the global residual tolerant is set as
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Fig. 11 Nodal distributions at 1st, 3rd, 5th and 6th step

Fig. 12 Estimated global residual norm at each adaptive step for
Example 2

κg = 0.025. The adaptive analysis ended at 6th step with
958 nodes irregularly distributed in the problem domain,
as shown in Fig. 11.

The estimated global residual norm at each adaptive
step is plotted in Fig. 12. One can notice that the esti-
mated global residual norm is gradually reduced at each
adaptive step, it demonstrates excellent stability of the
RSL-RPCM. The error norm of the displacements in

Fig. 13 Error norms of displacements at each adaptive step for
Example 2

x and y direction are also plotted in Fig. 13. The error
norms have been dramatically reduced from initial step
5.7 and 31.32% to 0.13 and 0.53% at last step.

For reference purpose, the displacements in y direc-
tion along the left edge and displacements in x direction
along bottom edge are plotted at initial and final steps as
shown in Fig. 14 . The normal stresses and shear stresses
along the left edge at initial and final steps are also shown
in Fig. 15. It is evidently clear that the accuracy of both
displacements and stresses have been greatly improved
thru the effective adaptive scheme.
Example 3 In this example, an adaptive analysis for a
bridge with irregular geometry is studied. A half model
of the bridge is studied due to its symmetric, and a
plane strain problem is considered. A constant pres-
sure P = 1,000 N/m2 is subject to the top of the bridge.
The dimension of the bridge is shown in Fig. 16 and
the material properties are given as: Young’s modulus
E = 4 × 109 and Poisson’s ratio υ = 0.15.

This example is first started with 246 nodes in the
problem domain as shown in Fig. 17. Only 12 nodes
are used for the local function approximation. The local
refinement coefficient is preset as κl = 0.1 and the global
residual tolerant is predefined as κg = 0.1. The adaptive
process is terminated at the 8th step with 1,118 nodes as
shown in Fig. 17.

The estimated global residual norm at each adaptive
step is given in the Fig. 18. As no analytical solution is
available in this case, reference solutions for displace-
ments and stresses are obtained using ANSYS with very
fine quadrilateral mesh. The displacements in y direc-
tion along the left edge and top edge of the bridge are
plotted in Fig. 19. The solutions obtained by the RLS-
RPCM through the adaptive analysis are in very good
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Fig. 14 Displacements a uy along the x = 0, and b ux along the y = 0 at initial and final steps

Fig. 15 Normal stresses a σxx and b τxy along the x = 0 at initial and final steps

Fig. 16 A bridge subjected to a constant pressure on top with
a full model and b a half model

agreement with the references solutions. Besides the
displacements, the normal stresses σxx and σyy along the
left edge are also plotted in Fig. 20. The stresses obtained
by the RLS-RPCM through adaptive analysis are also
in very good agreement with the reference solutions.
Example 4 In example 4, an adaptive analysis for Pois-
son problem whose solution has sharp peak is studied.

Considered a Poisson equation is defined as

∇2u =
[
−400 + (200x − 100)2

+ (200y − 100)2
]

· e
−100

(
x− 1

2

)2−100
(

y− 1
2

)2

,

(33)

in domain of � : [0, 1] × [0, 1], with Neumann boundary
conditions,

∂u
∂n

= 0 along Γt : x = 0 and y = 0, (34)

and with Dirichlet boundary conditions,

u = 0 along Γt : x = 1 and y = 1. (35)

The analytical solution for this problem is given as

u = e
−100

(
x− 1

2

)2−100
(

y− 1
2

)2

. (36)

The plots for the exact solutions of the field function
u and its derivatives are given in the Fig. 21.
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Fig. 17 A bridge subjected to a constant pressure on top

Fig. 18 Estimated global residual norm at each adaptive step for
Example 3

The Poisson problem is first started with 100 regu-
larly distributed nodes and ended up at 8th step with
8,337 nodes in the problem domain. The local refine-
ment coefficient is predefined as κl = 0.1 and the global
residual tolerant is predefined as κg = 0.1. Due to the
presence of high peak, most of the nodes are inserted at
the high gradient region as shown in Fig. 22. From Fig. 23,
one can observe that the estimated global residual norm
is reduced gradually. While estimated global residual
norm is reduced in the adaptive process, the error norm
of the field function is also gradually reduced from 29.76
to 0.32% as shown in Fig. 24.

The approximated values of field function u along
y = 0.5 at initial and final steps are plotted with ana-
lytical solution as shown in Fig. 25. It is evidently clear
that proposed adaptive scheme is effective to improve

the accuracy of the solution for field function u. A three
dimensional plot of approximated field function and its
derivatives at the final step is also provided in the Fig. 26.
It shows not only that the approximated field function
but also the approximated field function derivatives are
in very good agreement with analytical solutions shown
in the Fig. 21.
Example 5 In this example, another Poisson problem
whose solution has multiple peaks is considered. The
purpose of this example is to show the robustness of
the simple error indicator for multi peak solution in a
problem domain. The Poisson equation is considered as
follows:

∇2u = 2π2(cos 2πx sin2 2πy + cos 2πy sin2 2πx) (37)

in the domain � : [−1, 1] × [−1, 1], with Neumann
boundary conditions

∂u
∂n

= 0 along Γt : x = 1; y = 1, (38)

and with Dirichlet boundary conditions

u = 0 along Γu : x = −1; y = −1. (39)

The exact solution of field function u is known as

u = sin2 πx sin2 πy (40)

The three dimensional plot of the exact solution is
plotted in the Fig. 27, four peaks can be observed in
problem domain.

In this example, ten nodes are used for the local func-
tion approximation. The local refinement coefficient is
predefined as κl = 0.1 and global residual tolerant value
is predefined as κg = 0.01. The adaptive analysis started
with 100 regularly distributed nodes and ended at 12th
step with 10,764 nodes. As there are four peaks exist
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Fig. 19 Displacements in y direction along the a left edge and b top of the bridge

Fig. 20 The normal stresses a σxx and b σyy along the left edge of the bridge

(a) (b) (c)

Fig. 21 Three dimensional plots for a field function u, b ∂u
∂x and c ∂u

∂y

in the problem domain, one can observe four rings of
dense node distributions are appeared at the final step,
as shown in Fig. 28.

For strong-form adaptive method, the accuracy of the
solution at the stage of refinement is very much relying
on the current node distribution. In this work, our error

estimation is based on residual in the strong formulation,
and no variational principle is used. Therefore, one can
observe that the global residual norm is monotonically
reduced rather than the error of the field function (as
shown in Figs. 29, 30). This is true that if there is sufficient
number of nodes to the capture the peaks. Nevertheless,
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Fig. 22 a The nodal distribution at 1st, 3rd, 5th and 8th steps, and
b an enlarged view of the node distribution at the final step

the overall error of the field function has been gradually
reduced in the overall adaptive process. From Fig. 30,
one can observe that the error norm of the field variable
is dramatically reduced from 324 to 0.62% in 12 steps.
The field function values u along the y = 0.5 at first,
fourth and final step are also plotted in the Fig. 31. The
accuracy of the solution for u is improved through the
adaptive scheme.

Fig. 23 Estimated residual norm at each adaptive step for
Example 4

Fig. 24 Error norm of field function u at each adaptive step for
Example 4

Fig. 25 Approximated values of field function u along y = 0.5 at
first and final steps
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Fig. 26 The three dimensional plots for field function u and its derivatives at the final adaptive step

Fig. 27 Exact solution of the field function u

7 Concluding remarks

In this paper, a novel stabilized meshfree strong-form
method is proposed. Regularization technique which
often used for the ill-posed inversed problems has suc-
cessfully stabilised the solution of RPCM for the forward
problems. From the numbers of numerical problems in
this works, stable and accurate results are shown by the
RLS-RPCM. As the stability is ensured, the features
of the meshfree strong-form methods can therefore be
utilized to facilitate an easier implementation of adap-
tive analysis. As the RLS-RPCM is a truly meshfree
method, the expensive computation cost of remeshing
process can be avoided. Simple refinement scheme using
Delaunay diagram can be used without undue worry of
nodal connectivity. In this work, an effective error esti-
mator based on residual is also introduced. The resid-
ual based error estimator is simple and yet effectively
reflects the quality of local approximation and the global
accuracy of the solution. The accuracy of the solution has
been improved in the adaptive analysis as shown in the
numerical examples.

However, the RLS-RPCM requires slightly higher
computational cost compared to the RPCM. The small

Fig. 28 a The nodal distributions at 1st, 4th, 8th, and 12th step,
and b the enlarged view of the nodal distribution of the final step
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Fig. 29 Estimated global residual norm at each adaptive step for
Example 5

Fig. 30 Exact error norm of field function u at each adaptive step
for Example 5

Fig. 31 Field function values u along y = 0.5 at first, fourth and
final steps

additional cost introduced by the regularization proce-
dure is to acquire the crucial stability and accuracy in the
solution. Nevertheless, this small amount of additional
cost is usually insignificant in the adaptive analysis.

The development of meshfree strong-form method
is still very sluggish compared to weak-form method.
The stability is still remained the most challenging issue
in the strong-form method. This paper provides a pos-
sible approach to restore the stability and successfully
implemented the stabilized strong-from method for the
adaptive analysis. There is still a big room for the
improvement. At the current stage, this RLS-RPCM is
only restricted for linear problem. It can be extended for
more complex problem such as nonlinear and dynamics
problem. The RLS-RPCM is also not considered for the
incompressible material at this stage.
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