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Abstract The description of real-life engineering
structural systems is usually associated with some
amount of uncertainty in specifying material proper-
ties, geometric parameters and boundary conditions. In
the context of structural dynamics it is necessary to
consider joint probability distribution of the natural
frequencies in order to account for these uncertainties.
Current methods to deal with such problems are dom-
inated by approximate perturbation methods. In this
paper a new approach based on an asymptotic approx-
imation of multidimensional integrals is proposed. A
closed-form expression for general order joint moments
of arbitrary number of natural frequencies of linear sto-
chastic systems is derived. The proposed method does
not employ the small-randomness and Gaussian random
variable assumption usually used in the perturbation
based methods. Joint distributions of the natural fre-
quencies are investigated using numerical examples and
the results are compared with Monte Carlo simulation.

Keywords Random eigenvalue problem ·
Asymptotic method · Stochastic dynamical systems ·
Probabilistic structural mechanics

Nomenclature

κ
(r1,r2)

jk (r1, r2)th order cumulant of jth and
kth natural frequencies

D(•)(x) Hessian matrix of (•) at x
d(•)(x) gradient vector of (•) at x
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I identity matrix
K stiffness matrix
M mass matrix
µ mean of parameter vector x
O null matrix
φj jth mode shape of the system
� covariance matrix of parameter

vectors x
�ωjk covariance matrix of jth and kth

natural frequencies
θ optimal point
x basic random variables
εm, εk strength parameters associated

with mass and stiffness
coefficients

µ
(r1,r2)

jk (r1, r2)th order joint moment of
jth and kth natural frequencies

ωj jth natural frequencies of the
system

s̃ vector of complex Laplace
parameters s1 and s2

L(x) negative of the log-likelihood
funtion

m number of basic random variables
Mωj,ωk(s1, s2) joint moment generating function

of ωj and ωk
N degrees-of-freedom of the system
p(•) probability density function of (•)

(•)T matrix transpose
C space of complex numbers
R space of real numbers
Cov

(•, •)

covariance of random quantities
‖•‖ determinant of a matrix
exp exponential function
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E [•] expectation operator
∈ belongs to
�→ maps into
| • | l2 norm of (•)

(•) deterministic value
corresponding to (•)

dof degrees-of-freedom
jpdf joint probability density function
pdf probability density function

1 Introduction

Random eigenvalue problems arise in the dynamic anal-
ysis of linear stochastic systems – for example in the
problem of dynamic response prediction of cars roll-
ing out from a production chain, cabin noise predic-
tion of nominally identical helicopters across the fleet
and vibrations across the ensemble of Micro Electro
Mechanical Systems (MEMS) divides. The study of
probabilistic characterization of the eigensolutions of
random matrix and differential operators is now an
important research topic in the field of stochastic struc-
tural mechanics [3,4,6,16,20,36]. In this paper we aim
to obtain a closed-form expression of arbitrary order
joint moments of the natural frequencies of discrete
linear systems or discretized continuous systems. The
random eigenvalue problem of undamped or propor-
tionally damped systems can be expressed by

K(x)φj = ω2
j M(x)φj (1)

Here ωj and φj are the natural frequencies (square root
of the eigenvalues) and mode shapes (eigenvectors) of
the dynamic system. M(x) : R

m �→ R
N×N and K(x) :

R
m �→ R

N×N , the mass and stiffness matrices, are
assumed to be smooth, continuous and at least twice
differentiable functions of a random parameter vector
x ∈ R

m. The vector x may consist of material proper-
ties, e.g., mass density, Poisson’s ratio, Young’s modulus;
geometric properties, e.g., length, thickness, and bound-
ary conditions. These quantities, that is the elements
of the vector x, are considered to be uncertain in this
study. Therefore, the statistical properties of the system
are completely described by the joint probability den-
sity function (jpdf) px(x) : R

m �→ R. For mathematical
convenience we express

px(x) = exp {−L(x)} (2)

where −L(x) is often known as the log-likelihood
function. For example, if x is a m-dimensional multi-
variate Gaussian random vector with mean µ ∈ R

m and
covariance matrix � ∈ R

m×m then

L(x) = m
2

ln(2π) + 1
2

ln ‖�‖ + 1
2

(x − µ)T �−1 (x − µ)

(3)

We consider that the random parameters are
non-Gaussian and correlated, i.e., L(x) can have any
general form provided it is a smooth, continuous and at
least twice differentiable function. It is further assumed
that M and K are symmetric and positive definite ran-
dom matrices so that all the eigenvalues are real and
positive. In this paper we consider parametric uncer-
tainty approach. Random eigenvalue problems associ-
ated with nonparametric approach has been discussed
by Soize [37–39].

The aim of studying random eigenvalue problems is to
obtain the jpdf of the eigenvalues and the eigenvectors.
The current literature on random eigenvalue problems
arising in engineering systems is dominated by the mean-
centered perturbation methods [7,14,15,26,31–35,40].
These methods work well if the uncertainties are small
and the parameters follow a Gaussian distribution. In
order to overcome the problems associated with the
perturbation method, several authors [2,8,11–13,19,22,
25,29,30,41,42] have also proposed non-perturbative
methods. Majority of these works consider probabilis-
tic characteristics of single eigenvalues. For dynamic
response analysis, failure analysis through buckling and
in many other practical problems the joint distribution of
the eigenvalues are required. Under very special circum-
stances, for example when the system matrix is Gaussian
unitary ensemble (GUE) or Gaussian orthogonal ense-
mble (GOE), an exact closed-form expression can be
obtained for the jpdf of the eigenvalues [23,24]. How-
ever, the system matrices of real structures may not
always follow such distributions and consequently some
kind of approximate analysis is required for structural
engineering problems. While several papers are avail-
able on the distribution of individual eigenvalues, joint
distributions of the eigenvalues seem to have received
little attention in literature. To the best of authors knowl-
edge only mean-centered first-order perturbation based
results are available for the joint pdf of the eigenvalues.
In this paper a new asymptotic method is proposed to
obtain the joint distribution of the natural frequencies
of discrete linear systems.

2 Joint natural frequency statistics using
the perturbation method

In 1969 using the first-order perturbation method
Collins and Thomson [7] derived the jpdf of the
eigenvalues and eigenvectors of linear systems with
uncertain parameters following Gaussian distribution.
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Over the past three decades, several authors [14,15,26,
31–35,40] have applied first-order perturbation method
in various problems of practical interest. Adhikari [1]
used the first-order perturbation method in complex
random eigenvalue problems arising in non-proportion-
ally damped systems. The widespread application of the
first-order perturbation method is primarily due its com-
putational efficiency compared to other methods. The
limitations of this method are well understood – if uncer-
tainties in the system parameters are ‘large’ then the
method do not produce very accurate results. The accu-
racy and the range of applicability of the first-order per-
turbation method can be extended if higher-order terms
are included (see the classic book by Scheidt and Purkert
[36]). Here we briefly review the joint statistics of the
natural frequencies using the second-order perturbation
method.

2.1 Perturbation expansion

The mass and the stiffness matrices are in general non-
linear functions of the random vector x. We denote the
mean of x as µ ∈ R

m, and consider that

M(µ) = M, and K(µ) = K (4)

are the ‘deterministic parts’ of the mass and stiffness
matrices, respectively. In general M and K are different
from the mean matrices. The deterministic part of the
natural frequencies

ωj = ωj(µ) (5)

is obtained from the deterministic eigenvalue problem:

K φj = ω2
j M φj (6)

The natural frequencies, ωj(x) : R
m �→ R are non-linear

functions of the parameter vector x. If the natural fre-
quencies are not repeated, then each ωj(x) is expected
to be a smooth and twice differentiable function since
the mass and stiffness matrices are smooth and twice
differentiable functions of the random parameter vec-
tor. In the perturbation approach the function ωj(x) is
expanded by its Taylor series about the point x = µ as

ωj(x)≈ωj(µ)+dT
ωj

(µ) (x−µ)+ 1
2

(x−µ)T Dωj(µ) (x−µ)

(7)

Here dωj(µ) ∈ R
m and Dωj(µ) ∈ R

m×m are respectively
the gradient vector and the Hessian matrix of ωj(x) eval-
uated at x = µ, that is

{

dωj(µ)
}

k
= ∂ωj(x)

∂xk
|x=µ and (8)

{

Dωj(µ)
}

kl
= ∂2ωj(x)

∂xk ∂xl
|x=µ (9)

The expressions of the elements of the gradient vec-
tor and the Hessian matrix are given in Appendix A.
Equation (7) implies that the natural frequencies are
effectively expanded about their corresponding deter-
ministic values ωj.

In general Eq. (7) represents a quadratic form in basic
non-Gaussian random variables. The first-order pertur-
bation can be obtained from Eq. (7) by neglecting the
Hessian matrix. In this case the natural frequencies are
simple linear functions of the basic random variables.
This formulation is expected to produce acceptable
results when the random variation in x is small. If the
basic random variables are Gaussian then the first-order
perturbation results in a joint Gaussian distribution of
the natural frequencies [7]. In this case a closed-form
expression for their jpdf can be obtained easily. When
the second-order terms are retained in Eq. (7), each
ωj(x) results in a quadratic form in x. In this case the
resulting distribution of ωj(x) is however not Gaussian.
Joint statistics of the natural frequencies are discussed in
the next subsection using the theory of quadratic forms.

2.2 Joint statistics of the natural frequencies

Discussions on quadratic forms in Gaussian random
variables can be found in the books by Johnson and
Kotz [17] (Chapt. 29) and Mathai and Provost [21].
Using the methods outlined in these references joint
moments/cumulants of the natural frequencies are
obtained in this section.

Considering x as multivariate Gaussian random vec-
tor with mean µ ∈ R

m and covariance matrix � ∈ R
m×m,

the joint moment generating function of ωj(x) and ωk(x),
for any s1, s2 ∈ C, can be obtained as

Mωj,ωk(s1, s2) = E
[

exp
{

s1ωj(x) + s2ωk(x)
}]

=
∫

R
m

exp
{

s1ωj(x) + s2ωk(x) − L(x)
}

dx

= (2π)−m/2‖�‖−1/2
∫

R
m

exp{s1ωj(x)

+ s2ωk(x) − 1
2

(x − µ)T �−1 (x − µ)}dx

(10)
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Applying the quadratic expansion in Eq. (7) for j and k,
and rearranging the terms within the exponent we have

s1ωj + s2ωk +
(

s1dωj + s2dωk

)T
(x − µ) − 1

2
(x − µ)T

×
[

�−1 − s1Dωj − s2Dωk

]

(x − µ) (11)

The dependence on µ has been omitted for notational
convenience. Using the transformation y = (x − µ) the
integral in (10) can be evaluated exactly as

Mωj,ωk(s1, s2) =
∥

∥

∥I − s1Dωj� − s2Dωk�

∥

∥

∥

−1/2

× exp

{

(

s1ωj + s2ωk
) + 1

2

(

s1dωj + s2dωk

)T

×�
[

I − s1Dωj� − s2Dωk�
]−1 (

s1dωj + s2dωk

)

}

(12)

To obtain the joint pdf of ωj and ωk, the two-dimensional
inverse Laplace transform of (12) is required. An exact
closed-form expressions for the general case is not pos-
sible. Therefore, we calculate the joint cumulants of the
natural frequencies.

If first-order perturbation is used then Dωj = Dωk =
O and from Eq. (12) we obtain

Mωj,ωk(s1, s2) = exp

{

µT
ωjk

s̃ + 1
2

s̃T�ωjk s̃
}

(13)

where

s̃ =
{

s1
s2

}

, µωjk
=

{

ωj
ωk

}

, and

�ωjk =
[

dT
ωj

�dωj dT
ωj

�dωk

dT
ωj

�dωk dT
ωk

�dωk

]

(14)

This implies that ωj and ωk are jointly Gaussian distrib-
uted with mean µωjk

and covariance matrix �ωjk .
For the second-order perturbation, the joint cumu-

lants of ωj and ωk can be obtained by taking the log-
arithm of the joint moment generating function (also
known as the cumulant generating function). A general
(r1, r2)th order cumulant of the jth and kth natural fre-
quencies can be obtained from

κ
(r1,r2)

jk = ∂r1+r2

∂sr1
1 ∂sr2

2

ln Mωj,ωk(s1, s2)|s1=0,s2=0 (15)

After some simplifications the following results can be
derived

κ
(1,0)

jk = E
[

ωj
] = ωj + 1

2
Trace

(

Dωj�
)

, (16)

κ
(0,1)

jk = E [ωk] = ωk + 1
2

Trace
(

Dωk�
)

, (17)

κ
(1,1)

jk = Cov
(

ωj, ωk
)

= 1
2

Trace
((

Dωj�
)(

Dωk�
)) + dT

ωj
�dωk (18)

The general case can be obtained as

κ
(r1,r2)

jk = 1
2

(r1 + r2 − 2)!
{

(r1 + r2 − 1)

× Trace
((

Dωj�
)r1

(

Dωk�
)r2

)

+ r1 (r1 − 1) dT
ωj

(

Dωj�
)r1−2 (

Dωk�
)r2 � dωj

+ r2
(

r2 − 1
)

dT
ωk

(

Dωj�
)r1

(

Dωk�
)r2−2

� dωk

+ 2r1r2 dT
ωj

(

Dωj�
)r1−1(Dωk�

)r2−1
� dωk

}

,

for r1 ≥ 1, r2 ≥ 1 (19)

Because all the cumulants are known from the preceding
expressions, the jpdf of the natural frequencies can be
calculated, for example using Edgeworth expansion, up
to any desired accuracy. Recall that the limitation of this
approach arises from the second-order Taylor expansion
of the natural frequencies around the deterministic val-
ues. Therefore, the inclusion of higher order cumulants
in the expression of the joint pdf will not overcome this
fundamental limitation.

The method described in this section is only useful
when the basic random variables are Gaussian. If the ele-
ments of x are non-Gaussian then neither the first-order
perturbation nor the second-order perturbation meth-
ods are helpful because there is no general method to
obtain the resulting statistics in a simple manner. In such
cases the method proposed in the next section might be
useful.

3 Asymptotic integral based method

Consider a function f (x) : R
m �→ R which is smooth

and at least twice differentiable. Suppose we want to
evaluate an integral of the following form:

J =
∫

R
m

exp {−f (x)} dx (20)

This is an m-dimensional integral over the unbounded
domain R

m. The maximum contribution to this inte-
gral comes from the neighborhood where f (x) reaches
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its global minimum. Suppose that f (x) reaches its global
minimum at an unique point θ ∈ R

m. Therefore, at x = θ

∂f (x)

∂xk
= 0, ∀k or df (θ) = 0 (21)

Using this, the integral in (20) can be approximated using
the asymptotic method [5,27,43] as

J ≈ exp {−f (θ)}
∫

R
m

∥

∥Df (θ)
∥

∥

−1/2 exp

{

−1
2

(

ξTξ
)

}

dξ

(22)

or J ≈ (2π)m/2 exp {−f (θ)} ∥

∥Df (θ)
∥

∥

−1/2 (23)

Here Df (θ) is the Hessian matrix of f (x) evaluated at
x = θ . The approximation in Eq. (22) is also known as
the saddle point approximation.

3.1 Joint moments of two natural frequencies

A general (r1, r2)th order joint moment of two natural
frequencies ωj and ωk can be expressed as

µ
(r1,r2)

jk = E
[

ω
r1
j (x)ω

r2
k (x)

]

=
∫

R
m

ω
r1
j (x)ω

r2
k (x)px(x) dx

=
∫

R
m

exp
{−(

L(x)−r1 ln ωj(x)−r2 ln ωk(x)
)}

dx,

r1, r2 = 1, 2, 3, . . .

(24)

This equation can be expressed in the form of Eq. (20)
by choosing

f (x) = L(x) − r1 ln ωj(x) − r2 ln ωk(x) (25)

Differentiating the above equation with respect to xi we
obtain

∂f (x)

∂xi
= ∂L(x)

∂xi
− r1

ωj(x)

∂ωj(x)

∂xi
− r2

ωk(x)

∂ωk(x)

∂xi
(26)

The optimal point θ can be obtained from (21) by equat-
ing the above expression to zero. Therefore at x = θ

∂f (x)

∂xi
= 0, ∀ i or (27)

r1

ωj(x)

∂ωj(x)

∂xi
+ r2

ωk(x)

∂ωk(x)

∂xi
= ∂L(θ)

∂xi
or (28)

dL(θ) = r1

ωj(θ)
dωj(θ) + r2

ωk(θ)
dωk(θ) (29)

The elements of the Hessian matrix Df (θ) can be
obtained by differentiating Eq. (26) with respect to xl as

∂2f (x)

∂xi ∂xl
= ∂2L(x)

∂xi ∂xl
+ r1

ω2
j (x)

∂ωj(x)

∂xl

∂ωj(x)

∂xi

− r1

ωj(x)

∂2ωj(x)

∂xi ∂xl
+ r2

ω2
k(x)

∂ωk(x)

∂xl

∂ωk(x)

∂xi

− r2

ωk(x)

∂2ωk(x)

∂xi ∂xl
(30)

Combining this equation for all i and l we have

Df (θ) = DL(θ) + r1

ω2
j (θ)

dωj(θ)dT
ωj

(θ) − r1

ωj (θ)
Dωj(θ)

+ r2

ω2
k (θ)

dωk(θ)dT
ωk

(θ) − r2

ωk (θ)
Dωk(θ) (31)

Using the asymptotic approximation (22), the joint
moment of two natural frequencies can be obtained as

µ
(r1,r2)

jk ≈ (2π)m/2ω
r1
j (θ)ω

r2
k (θ)

× exp {−L (θ)} ∥

∥Df (θ)
∥

∥

−1/2 (32)

The mean of the natural frequencies can be obtained by
substituting r1 = 1 and r2 = 0 in Eq. (32) as

E
[

ωj
] = µ

(1,0)

jk ≈ (2π)m/2ωj(θ)

× exp {−L (θ)} ∥

∥Df (θ)
∥

∥

−1/2 (33)

where θ is obtained from

dL(θ) = dωj (θ) /ωj (θ) and (34)

Df (θ) = DL(θ) + (

dωj(θ)dT
ωj

(θ) /ωj (θ)

−Dωj (θ)
)

/ωj (θ) (35)

The elements of the covariance matrix of the natural
frequencies can obtained as

Cov
(

ωj, ωk
) = E

[(

ωj − E
[

ωj
] )(

ωk − E [ωk]
)]

= µ
(1,1)

jk − µ
(1,0)

jk µ
(0,1)

jk (36)

3.2 Arbitrary joint moments of multiple natural
frequencies

The formulation presented in the previous subsection
can be readily generalized to obtain arbitrary order joint
moments of multiple natural frequencies. We want to
obtain

µ
(r1,r2,...,rn)

j1j2···jn =
∫

R
m

{

ω
r1
j1

(x)ω
r2
j2

(x) · · · ωrn
jn

(x)
}

px(x) dx (37)
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By choosing the function

f (x) = L(x) − r1 ln ωj1(x)

−r2 ln ωj2(x) − · · · − rn ln ωjn(x)

(38)

and applying the asymptotic approximation in Eq. (22)
it can be shown that

µ
(r1,r2,...,rn)

j1j2···jn ≈ (2π)m/2
{

ω
r1
j1

(θ) ω
r2
j2

(θ) · · · ωrn
jn

(θ)
}

× exp {−L (θ)} ∥

∥Df (θ)
∥

∥

−1/2 (39)

where θ is obtained by solving

dL(θ) = r1

ωj1(θ)
dωj1

(θ) + r2

ωj2(θ)
dωj2

(θ)

+ · · · + rn

ωjn(θ)
dωjn

(θ)

(40)

and the Hessian matrix is given by

Df (θ) = DL(θ) +
jn,rn
∑

j=j1,j2,...
r=r1,r2,...

r

ω2
j (θ)

dωj(θ)dT
ωj

(θ)

− r
ωj (θ)

Dωj(θ) (41)

Equation (39) is perhaps the most general formula to
obtain the moments of the natural frequencies of linear
stochastic dynamic systems. Once the joint moments
are known, the jpdfs of the natural frequencies can be
obtained, for example, using the maximum entropy prin-
ciple [18]. It should be recalled that whether the system
parameters are Gaussian or not, the jpdf of the eigen-
values must expected to be non-Gaussian in general.

4 Computational approaches for the asymptotic
method

The computational efficiency of the asymptotic method
crucially depends on the computation of the optimal
point θ ∈ R

m. The elements of the vector θ should be cal-
culated by solving the coupled non-linear set of Eq. (29).
Because the explicit analytical expression of dωj in terms
of the derivative of the mass and stiffness matrices is
available (see Appendix A), expensive numerical differ-
entiation of ωj(x) at each step is not needed. Since px(x)

is available in closed-form, the expression of dL(x) can
be obtained easily by differentiating it successively. We
illustrate the proposed method to systems with multi-
variate Gaussian random variables.

In this case L(x) is given by Eq. (3) and by differenti-
ating Eq. (3) successively we obtain

dL(x) = �−1 (x − µ) and (42)

DL(x) = �−1 (43)

We are interested in the mean and covariance of the
natural frequencies. For the elements of the covariance
matrix of the natural frequencies, the optimal point θ

should be obtained by substituting r1 = 1 and r2 = 1 in
Eq. (29) as

�−1 (θ − µ) = dωj(θ)

ωj(θ)
+ dωk(θ)

ωk(θ)
or (44)

θ = µ + �

[dωj(θ)

ωj(θ)
+ dωk(θ)

ωk(θ)

]

(45)

This equation can be used to obtain θ in an iterative
manner by following these steps:

1. Select the initial guess as θ = µ and an error toler-
ance ε.

2. Obtain an updated value of θ from Eq. (45) as

θ (new) = µ + �

[dωj(θ)

ωj(θ)
+ dωk(θ)

ωk(θ)

]

(46)

3. If | θ (new) − θ |< ε then select θ = θ (new) and leave
the iteration process.

4. Otherwise select θ = θ (new) and continue from step 2.

The convergence of the above iteration scheme can nei-
ther be guaranteed nor be proved analytically. For every
iteration step, the solution of a deterministic eigenvalue
problem is required. If nr is the number of iteration, then
nrN(N + 1)/2 number of eigenvalue problems needs to
be solved to obtain the complete covariance matrix.

For the problems considered in the numerical exam-
ples later in the paper, only the first few steps in the
iterative procedure produced an acceptable results.

Note that the mean-centered perturbation (for which
θ = µ) can be viewed as the zeroth order case in this
iterative procedure. In the numerical examples in Sect. 5,
only one step in the iteration procedure is used. For this
case only one additional eigenvalue problem needs to
be solved compared to the perturbation method. Substi-
tuting L(x) from Eq. (3), the joint moment of the natural
frequencies can now be obtained from Eq. (32) as

µ
(1,1)

jk ≈ ωj(θ)ωk(θ) exp

{

−1
2

(θ − µ)T �−1 (θ − µ)

}

× ∥

∥I + ˜Df (θ)
∥

∥

−1/2
(47)
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where

˜Df (θ) = �−1

[

dωj(θ)dT
ωj

(θ)

ω2
j (θ)

− Dωj(θ)

ωj (θ)

+dωk(θ)dT
ωk

(θ)

ω2
k (θ)

− Dωk(θ)

ωk (θ)

]

(48)

The optimal point for the mean of the natural fre-
quencies can be obtained using a similar iterative pro-
cedure with

θ
(new)
1 = µ + �dωj(θ1)

ωj(θ1)
(49)

Once θ1 is obtained, the mean values can be calculated
from

E
[

ωj
] = ωj(θ1) exp

{

−1
2

(θ1 − µ)T �−1 (θ1 − µ)

}

×
∥

∥

∥

∥

∥

I +
�−1dωj(θ1)dT

ωj
(θ1)

ω2
j (θ1)

− �−1Dωj(θ1)

ωj (θ1)

∥

∥

∥

∥

∥

−1/2

(50)

In the next section the proposed asymptotic method is
applied to a 20 degree-of-freedom (dof) system with
uncertain properties and a 3 dof random system with
closely spaced natural frequencies.

5 Numerical examples

5.1 A 20 dof random system

5.1.1 System model and computational methodology

A linear system consisting of an array of spring-mass
oscillators is considered to illustrate a possible use of the
expressions developed so far. Figure 1 shows the system
together with the numerical values assumed for the sys-
tem parameters. Twenty masses, each of with nominal
mass mu, are connected by springs of nominal stiffness
value ku. The mass matrix of the system has the form

M = diag
[

muj

]

and the stiffness matrix of the system is

given by

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ku1 + ku2 −ku2

−ku2 ku2 + ku3 −ku3

. . .
. . .

. . .
ku19 + ku20 −ku20

−ku20 ku20

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
20×20

(51)

It is assumed that the mass and stiffness associated with
all the units are random. Randomness associated with

Fig. 1 Linear array of random spring-mass oscillators; n = 20,
muj = mu

(

1 + εmxj
)

, kuj = ku
(

1 + εkx20+j
)

, mu = 1 kg, ku =
2, 500 N/m

each unit has the following form

muj = mu
(

1 + εmxj
)

kuj = ku
(

1 + εkx20+j
) (52)

Here x = {x1, x2, . . . , x40}T ∈ R
40 is the vector of ran-

dom variables. It is assumed that all random variables
are Gaussian and uncorrelated with zero mean and unit
standard deviation, that is µ = 0 and � = I. There-
fore, the mean values of muj and kuj are given by mu =
1 kg and ku = 2, 500 N/m. The numerical values of the
‘strength parameters’ are assumed to be εm = 0.15 and
εk = 0.20, that is the randomness associated with mass
and stiffness values are 15 and 20%, respectively.

In order to obtain the statistics of the natural fre-
quencies using the methods developed in this paper, the
gradient vector and the Hessian matrix of the natural
frequencies are required. As shown in Appendix A, this
in turn requires the derivative of the system matrices
with respect to the entries of x. For most practical prob-
lems, which usually involve Finite Element modeling,
these derivatives need to be determined numerically.
However, for this relatively simple example the deriva-
tives can be obtained in closed-form. For the mass matrix
we have

∂M
∂xi

= muεm

⎡

⎢

⎣

0 · · · 0
... 1{ith diagonal} 0
0 · · · 0

⎤

⎥

⎦
∈ R

20×20 (53)

and ∂M
∂xi

= O when i > 20. For the stiffness matrix,
∂K
∂xi

= O when i ≤ 20,

∂K
∂x21

= kuεk

⎡

⎢

⎣

1 · · · 0
...

. . . 0
0 · · · 0

⎤

⎥

⎦
∈ R

20×20 and (54)

∂K
∂x20+i

= kuεk

⎡

⎢

⎢

⎢

⎢

⎣

0 · · · 0 0
... 1{(i−1)th row} −1{ith column} 0
... −1 1 0
0 · · · 0 0

⎤

⎥

⎥

⎥

⎥

⎦

∈ R
20×20, 2 ≤ i ≤ 20 (55)

We calculate the joint moments and jpdfs of the nat-
ural frequencies of the system. Attention is restricted
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Table 1 Deterministic and mean values of the first ten natural frequencies

Deterministic First-order Second-order Proposed MCS
perturbation perturbation method (15 k samples)

3.8303 3.8303 (2.1130) 3.7588 (0.2072) 3.7598 (0.2335) 3.7510
11.4683 11.4683 (2.0845) 11.2544 (0.1805) 11.2573 (0.2060) 11.2342
19.0391 19.0391 (2.0718) 18.6845 (0.1709) 18.6894 (0.1971) 18.6527
26.4982 26.4982 (2.0522) 26.0058 (0.1561) 26.0126 (0.1822) 25.9653
33.8017 33.8017 (2.0398) 33.1757 (0.1501) 33.1843 (0.1761) 33.1260
40.9069 40.9069 (1.9997) 40.1527 (0.1192) 40.1630 (0.1450) 40.1049
47.7720 47.7720 (1.9829) 46.8964 (0.1137) 46.9082 (0.1389) 46.8431
54.3568 54.3568 (1.9073) 53.3682 (0.0539) 53.3818 (0.0794) 53.3394
60.6225 60.6225 (1.8299) 59.5312 (−0.0032) 59.5460 (0.0216) 59.5331
66.5326 66.5326 (1.7557) 65.3511 (−0.0513) 65.3670 (−0.0270) 65.3846

The numbers in the parenthesis correspond to the percentage error with respect to the MCS with 15 k samples

Table 2 Standard deviation of the first ten natural frequencies

First-order Second-order Proposed MCS
perturbation perturbation method (15 k samples)

0.1295 (−7.3038) 0.1327 (−5.0327) 0.1436 (2.8147) 0.1397
0.3878 (−8.0871) 0.3982 (−5.6108) 0.4088 (−3.1070) 0.4219
0.6438 (−6.9767) 0.6643 (−4.0072) 0.6784 (−1.9777) 0.6920
0.8960 (−6.1678) 0.9315 (−2.4480) 0.9418 (−1.3643) 0.9549
1.1429 (−6.3319) 1.2006 (−1.6091) 1.1995 (−1.6991) 1.2202
1.3832 (−6.4917) 1.4727 (−0.4423) 1.4511 (−1.8993) 1.4792
1.6153 (−5.1973) 1.7487 (2.6306) 1.6933 (−0.6200) 1.7038
1.8379 (−5.5455) 2.0362 (4.6426) 1.9321 (−0.7054) 1.9459
2.0498 (−4.5226) 2.3324 (8.6411) 2.1534 (0.3039) 2.1469
2.2496 (−4.0835) 2.6462 (12.8241) 2.3583 (0.5508) 2.3454

The numbers in the parenthesis correspond to the percentage error with respect to the MCS with 15 k samples

up to the second-order joint statistics of two natural fre-
quencies. Following four methods are used to obtain the
joint moments and the jpdfs:

1. First-order perturbation: For this case the mean and
covariance matrix of the natural frequencies are cal-
culated using Eqs. (16) and (18) by substituting the
Hessian matrices Dωj = O and Dωk = O. Recalling
that for this problem � = I, the resulting statistics
for this special case can be obtained as

E [ω]j = ωj and (56)

Cov
(

ωj, ωk
) = dT

ωj
dωk (57)

The gradient vector dωj can be obtained from
Eq. (73) using the system derivative matrices given
by Eqs. (53)–(55).

2. Second-order perturbation: In this case the Hessian
matrices Dωj and Dωk are used in calculating the
joint statistics of the natural frequencies using
Eqs. (16) and (18). The elements of the Hessian
matrices Dωj and Dωk can be calculated using
Eq. (75). The resulting statistics for this special case

can be obtained as

E [ω]j = ωj + 1
2

Trace
(

Dωj

)

and (58)

Cov
(

ωj, ωk
) = dT

ωj
dωk + 1

2
Trace

(

Dωj Dωk

)

(59)

Comparing these results with Eqs. (56) and (57),
the contributions of the Hessian matrices can be
regarded as the corrections to the first-order per-
turbation results.

3. Method based on the asymptotic integral: In this
case the mean and covariance matrix of the natural
frequencies are calculated using Eqs. (33) and (36).
The function L(x) can be obtained by substituting
µ = 0 and � = I in Eq. (3) as

L(x) = m
2

ln(2π) + 1
2

xTx (60)

The gradient vector and the Hessian matrix of L(x),
needed to apply this method, are given by

dL(x) = x and DL(x) = I (61)
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In order to calculate the optimal points, we have
used only one step in the iterative procedure out-
lined in Sect. 4. Recall that with one step iteration
process, only one additional deterministic eigen-
value needs to be solved to obtain the optimal
point θ .

4. Monte Carlo simulation (MCS): The samples of the
40 independent Gaussian random variables xi, i =
1, . . . , 40 are generated and the natural frequen-
cies are computed directly from Eq. (1). A total of
15, 000 samples are used to obtain the statistical
moments and histograms for the jpdf of the natu-
ral frequencies. The results obtained from MCS are
assumed to be the benchmark for the purpose of
comparing the analytical methods.

5.1.2 Numerical results

The nominal undamped natural frequencies of the sys-
tem are uniformly spaced and range from near 3.8 to
approximately 100 rad/s. Among the 20 natural frequen-
cies, we consider only the first ten for statistical analysis.
Table 1 shows the deterministic values and the mean
of the first ten natural frequencies obtained using the
first-order perturbation method, second-order pertur-
bation method, proposed asymptotic method and MCS
with 15 k samples. Table 2 shows the standard devi-
ation the first ten natural frequencies obtained using
the four methods discussed before. Percentage error
associated with the computed values are also shown
in Tables 1 and 2. For the analytical methods, the per-
centage error associated with any quantity is calculated
as

Errorith method = [(•)ith method − (•)MCS]

(•)MCS
× 100,

i = 1, . . . , 3 (62)

Using the proposed asymptotic method, the covariance
matrix of the first ten natural frequencies is obtained as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0206 0.0374 0.0593 0.0856 0.1097 0.1329 0.1443 0.1769 0.2069 0.2021
0.1671 0.1863 0.2570 0.3279 0.4002 0.4618 0.5222 0.5858 0.6475

0.4602 0.4268 0.5398 0.6546 0.7648 0.8652 0.9647 1.0649
0.8871 0.7605 0.9114 1.0609 1.2040 1.3513 1.4779

1.4387 1.1743 1.3579 1.5369 1.7286 1.8855
2.1057 1.6689 1.8753 2.0850 2.2882

2.8672 2.2539 2.4638 2.6840
3.7331 2.8848 3.0627

4.6372 3.5769
5.5617

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(63)
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Fig. 2 Percentage error with respect to Monte Carlo simulation
(MCS, 15 k samples) in the elements of the covariance matrix.
Only the consecutive rows of the triangular part above the diago-
nal corresponding to Eq. (63) are shown

Due to the symmetry of the covariance matrix, only
the elements of the upper triangular part are shown
above. The square-root of the diagonal elements of the
above matrix are the standard deviations of the natural
frequencies which are also shown in Table 2. Figure 2
shows the percentage error with respect to MCS in the
elements of the upper triangular part of the covariance
matrix of the natural frequencies. For the mean and the
standard deviation, the first-order perturbation method
is the least accurate, followed by the second-order per-
turbation method. The same fact is also mostly true for
the elements of the covariance matrix. For all the calcu-
lations, the asymptotic method is clearly the most accu-
rate among the three analytical methods used in this
study.

Now we consider the pdf of the natural frequen-
cies. Because the asymptotic method is the most accu-
rate among the three methods discussed here, we will
only pursue this method in the remaining discussions.
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Fig. 3 Probability density function of the first ten natural fre-
quencies of the linear spring-mass system

Fig. 4 Fitted joint Gaussian probability density function of the
natural frequencies using asymptotic method

Gaussian distributions are fitted with the mean and
standard deviation of the natural frequencies given in
Tables 1 and 2 and compared with MCS. The marginal
pdf of the first ten natural frequencies obtained from the
asymptotic method and MCS are shown in Fig. 3. Each
MCS pdf in Fig. 3 is obtained by normalizing the histo-
gram of the samples so that the area under the curve
obtained by joining the middle points of the histogram
bins is equal to unity. The Gaussian distributions calcu-
lated from the asymptotic method fit quite well to the
MCS. This result implies that the pdf of the individual
natural frequencies may be approximated well using a
Gaussian distribution with correct set of parameters.

Now we focus on the joint distribution of the nat-
ural frequencies. In line with the univariate Gaussian
distributions shown in Fig. 3, we can obtain bivariate

Fig. 5 Joint probability density function of the natural frequen-
cies from MCS

m1

m2

m3
k k5k1 k3

k2

k 6

4

Fig. 6 The three dof random system. mi = 1.0 kg for i = 1, 2, 3;
ki = 1.0 N/m for i = 1, . . . , 5 and k6 = 1.5 N/m

Gaussian distribution for each pair of natural frequen-
cies. Joint probability density function of the natural
frequencies obtained from the asymptotic method and
MCS are shown in Figs. 4 and 5. In total 55 joint distri-
butions, pωj,ωk , j = 1, . . . , 10, k = j, . . . , 10 are shown in
Figs. 4 and 5. Each analytical jpdf in Fig. 4 is obtained by
fitting a bivariate Gaussian distribution with the mean
vector and covariance matrix taken from Table 1 and
Eq. (63) for the corresponding set of natural frequen-
cies. The MCS pdf in Fig. 5 is obtained by normalizing
the two dimensional histogram of the samples so that
the volume under the surface obtained by joining the
middle points of the histogram bins is equal to unity. It
is difficult to compare two 3D plots directly, however
one can see similar trends in Figs. 4 and 5.

5.2 A three DOF system with closely spaced natural
frequencies

5.2.1 System model

A three-dof undamped spring-mass system, taken from
reference [10], is shown in Fig. 6. The main purpose of
this example is to understand how the proposed meth-
ods work when some of the system natural frequencies
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are closely spaced. This is an interesting case because it is
well known that closely spaced eigenvalues are parame-
ter sensitive. We will investigate how the parameter unce-
rtainty affects the joint eigenvalue distribution in such
cases. This study has particular relevance to the dynamics
of nominally symmetric rotating machines, for example,
turbine blades with random imperfections. The mass and
stiffness matrices of the example system are given by

M =
⎡

⎣

m1 0 0
0 m2 0
0 0 m3

⎤

⎦ and

K =
⎡

⎣

k1 + k4 + k6 −k4 −k6
−k4 k4 + k5 + k2 −k5
−k6 −k5 k5 + k3 + k6

⎤

⎦

(64)

It is assumed that all mass and stiffness constants are ran-
dom. The randomness in these parameters are assumed
to be of the following form:

mi = mi (1 + εmxi) , i = 1, 2, 3 (65)

ki = ki (1 + εkxi+3) , i = 1, . . . , 6 (66)

Here x = {x1, . . . , x9}T ∈ R
9 is the vector of standard

Gaussian random variables, εm = 0.15, εk = 0.20 and
values of mi and ki are shown in the caption of Fig. 6.

5.2.2 Numerical results

For the given parameter values the natural frequencies
(in rad/s) of the corresponding deterministic system is

given by

ω1 = 1, ω2 = 2, and ω3 = 2.2361 (67)

Figure 7 shows percentage error with respect to MCS in
the elements of the mean vector and covariance matrix
of the natural frequencies. The general trend of these
errors are similar to the previous example except that
the magnitudes of the errors corresponding to second
and third natural frequencies are significantly higher
compared to the first one. This is expected because these
two natural frequencies are close to each other.

Now consider the pdf of the natural frequencies. Only
the asymptotic method will be considered because from
Fig. 7 it is clear that this is the most accurate among the
three methods discussed here. First we focus on the mar-
ginal pdf of the natural frequencies. Using the asymp-
totic method, the mean and standard deviation of the
natural frequencies are obtained as

µω = {0.9952, 1.9847, 2.2886}T and (68)

σω = {0.0728, 0.1508, 0.1884}T (69)

Gaussian distributions are fitted with these parameters
and compared with MCS. The marginal pdf of the nat-
ural frequencies obtained from the asymptotic method
and MCS are shown in Fig. 8. The Gaussian distributions
calculated from the asymptotic method fit quite well to
the MCS. This result implies that the pdf of the individ-
ual natural frequencies can be approximated reasonably
well using a Gaussian distribution even when the natural
frequencies are closely spaced.
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Fig. 7 Percentage error with respect to MCS (15 k samples)
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Fig. 8 Probability density function of the natural frequencies of
the three dof system

Now we focus on the joint distribution of the natural
frequencies. The covariance matrix and the matrix of
correlation coefficients were obtained using the asymp-
totic method as

�ω =
⎡

⎣

0.5293 0.5528 0.6157
0.5528 2.2752 1.1049
0.6157 1.1049 3.5483

⎤

⎦ × 10−2 (70)

and

ρω =
⎡

⎣

1.0000 0.5037 0.4493
0.5037 1.0000 0.3889
0.4493 0.3889 1.0000

⎤

⎦ (71)

This indicates that the natural frequencies are moder-
ately correlated. The correlation between ω1 and ω2 is
more than that between ω1 and ω3. This is expected
because from ω1, ω3 is more distant than ω2. However,
the correlation between ω1 and ω3 is more than that
between ω2 and ω3 in spite of ω1 being further from ω3
compared to ω2.

Joint probability density function of the natural fre-
quencies obtained from the asymptotic method and
MCS are shown in Figs. 9 and 10. In total three joint
distributions, namely pω1,ω2 , pω1,ω3 and pω2,ω3 are shown
in Figs. 9 and 10. Each analytical jpdf in Fig. 9 is obtained
by fitting a bivariate Gaussian distribution with the mean
vector and covariance matrix taken from Eqs. (68) and
(70) for the corresponding set of natural frequencies.
At first it may appear that, like the marginal pdfs in
Fig. 8, the jpdfs of the natural frequencies are also jointly
Gaussian distributed. But a closer inspection reveals
that this is not always the case. Figure 11 compares the
contours of the analytical jpdf with that obtained from
MCS. The adjacent natural frequencies, that is, ω1 and

Fig. 9 Fitted joint Gaussian probability density function of the
natural frequencies using asymptotic method

Fig. 10 Joint probability density function of the natural frequen-
cies from MCS

ω2 and ω2 and ω3 are not jointly Gaussian distributed
as the contours of the analytical jpdf is quite different
from that obtained using MCS. The jpdf of ω1 and ω3 is
however close to a bivariate Gaussian density function.
The important conclusion that can be drawn from this
limited numerical results is that the natural frequencies
are in general not jointly Gaussian distributed although
individually they may be. Further research is however
required to investigate the generality of this conclusion.

Another factor influences the Gaussian nature of the
eigenvalues is the number of random variables in the
system. For a system with large number of random vari-
ables, the jpdf of the eigenvalues may be close to the
Gaussian distribution due to the central limit theorem.
In the example in Subsect. 5.1 there are 40 random vari-
ables as opposed to only 9 random variables appearing
in this example. As a result, the jpdf of the eigenvalues
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Fig. 11 Contours of the joint probability density function of the
natural frequencies

in the previous example is more close to Gaussian than
what is obtained here.

6 Conclusions

Joint statistics of the natural frequencies of discrete lin-
ear dynamic systems with parameter uncertainties have
been considered. It is assumed that the mass and stiffness
matrices are smooth and at least twice differentiable
functions of the random variables describing the uncer-
tainty of the system. The random variables are in gen-
eral considered to be non-Gaussian and correlated. The
usual assumption of small randomness is not employed
in this study. A new approach based on asymptotic eval-
uation of multidimensional integrals has been proposed
to obtain joint statistics of the natural frequencies. A
closed-form asymptotically correct expression for the
general order joint moments of arbitrary number of nat-
ural frequencies of linear stochastic systems with general
non-Gaussian distribution has been derived.

The proposed formulae are applied to a 20 dof spring-
mass system and a 3 dof system with closely spaced nat-
ural frequencies. The mean, covariance and the jpdf of
the natural frequencies match well with the correspond-
ing MCS results. However, when some natural frequen-
cies are closely spaced, the proposed methods do not
produce very accurate results. It was observed that for
the system with closely spaced natural frequencies, the
natural frequencies are not jointly Gaussian distributed
although their marginal pdfs are Gaussian distributed.
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Appendix

A The gradient vector and the hessian matrix of the
natural frequencies

The eigenvectors of symmetric linear systems are orth-
ogonal with respect to the mass and stiffness matrices.
We normalize the eigenvectors such that

φT
j Mφj = 1 (72)

Using this and differentiating Eq. (1) with respect to xk
it can be shown that [9] for any x

∂ωj(x)

∂xk
= φj(x)TGjk(x)φj(x)

2ωj(x)
(73)

where Gjk(x) =
[

∂K(x)

∂xk
− ω2

j (x)
∂M(x)

∂xk

]

(74)

Differentiating Eq. (1) with respect to xk and xl Plaut
and Huseyin [28] have shown that, providing the natu-
ral frequencies are distinct,

∂2ωj(x)

∂xk ∂xl
=

⎡

⎣

1
2ωj(x)

∂2
(

ω2
j (x)

)

∂xk ∂xl
− 1

ωj(x)

∂ωj(x)

∂xl

∂ωj(x)

∂xk

⎤

⎦

(75)

where

∂2
(

ω2
j (x)

)

∂xk ∂xl
= φj(x)T

[

∂2K(x)

∂xk ∂xl
− ω2

j (x)
∂2M(x)

∂xk ∂xl

]

φj(x)

−
(

φj(x)T ∂M(x)

∂xk
φj(x)

)

(

φj(x)TGjl(x)φj(x)
)

−
(

φj(x)T ∂M(x)

∂xl
φj(x)

)

(

φj(x)TGjk(x)φj(x)
)

+ 2
N

∑

r=1

(

φr(x)TGjk(x)φj(x)
) (

φr(x)TGjl(x)φj(x)
)

ω2
j (x) − ω2

r (x)

(76)

Equations (73) and (75) completely define the elements
of the gradient vector and Hessian matrix of the natural
frequencies.
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