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Abstract The investigation of microstretch and
micromorphic continua (which are prominent exam-
ples of so-called extended continua) dates back to Erin-
gens pioneering works in the mid 1960, cf. (Eringen in
Mechanics of micromorphic materials. Springer, Berlin
Heidelberg New York, pp 131–138, 1966; Eringen in
Int J Eng Sci 8:819–828; Eringen in Microcontinuum
field theories. Springer, Berlin Heidelberg New York,
1999). Here, we re-derive the governing equations of
microstretch continua in a variational setting, providing
a natural framework within which numerical implemen-
tations of the model equations by means of the finite
element method can be obtained straightforwardly. In
the application of Dirichlets principle, the postulation of
an appropriate form of the Helmholtz free energy turns
out to be crucial to the derivation of the balance laws and
constitutive relations for microstretch continua. At pres-
ent, the material parameters involved in the free energy
have been assigned fixed values throughout all numeri-
cal simulations—this simplification is addressed in detail
as the influence of those parameters must not be under-
estimated. Since only few numerical results demonstrat-
ing elastic microstretch material behavior in engineering
applications are available, the focus is here on the pre-
sentation of numerical results for simple twodimension-
al test specimens subjected to a plane strain condition
and uniaxial tension. Confidence in the simulations for
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microstretch materials is gained by showing that they
exhibit a “downward-compatibility” to Cosserat con-
tinuum formulation: by switching off all stretch-related
effects, the governing set of equations reduces to the
one used for polar materials. Further, certain material
parameters can be chosen to act as penalty parameters,
forcing stretch-related contributions to an almost negli-
gible range in a full microstretch model so that numerical
results obtained for a polar model can be obtained as a
limiting case from the full microstretch model.

Keywords Microstretch continua · Variational
approach · Finite element method · Elasticity

1 Introduction and outline

Microstretch continua belong to the class of micromor-
phic continua introduced by Eringen (in e.g. [12,14,
15,17] and cumulatively summarized and extended by
Eringen in [18]) and by Mindlin (in [34], where in the
latter, the terminology “micromorphic” is, however,
not used).

In order to set the stage for the subsequent investiga-
tions, and, also, to determine the “location” of
microstretch theory relative to other continuum field
theories, let us recall that in the standard Boltzmann
continuum, each material point is solely characterized
by its mass and has three translational degrees of free-
dom. Typically, macroscopic descriptions of e.g. engi-
neering materials (steels, concrete, ceramics, fluids etc.),
geomaterials (such as soils, rocks, ice), or biomaterials
(bones, tissues, blood) are based on a Boltzmann contin-
uum. However, it is well known that complex materials
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such as e.g. monodisperse media can not adequately be
described using Boltzmann continuum theories, since
the rotational motion of individual grains gives rise to
an additional dynamic field called intrinsic spin.

Thus, a general continuum theory accounting for the
intrinsic rotational motion has been proposed in [6]
and re-discovered e.g. in [13,19,21,22,47,48]—it is today
known as Cosserat theory, or, polar theory. In this the-
ory, a material point is characterized by its mass and by
microstructural properties described by a rigid triad of
vectors (the so-called directors) attached to each point
so that consequently, each material point has three trans-
lational and three rotational degrees of freedom. Today,
polar theory is commonly used in macroscopic descrip-
tions of materials with rigid microstructure1 including
liquid crystals, polymer suspensions, granular media,
and porous materials, see for instance [7,10,32]. More-
over, micropolar continuum formulations have in the
last decades been intensively studied within the con-
text of localization computations. It has been discov-
ered that in the numerical modeling of the behavior
of e.g. strain softening materials, the independent rota-
tional degree of freedom introduced as an amendment
to the standard Boltzmann continuum has a regularizing
effect in the sense that the pathological mesh depen-
dence of the post–peak response (which is observed
for implementations based on the standard continuum
formulation) is overcome, see e.g. [8,11,35,36]. While
the independent rotational degree of freedom is obvi-
ously activated under shearing loads, it is certainly inac-
tive when tensile loads are applied. Consequently, one
can in general not expect to benefit from the regu-
larizing effect of the independent rotational degree of
freedom if numerical schemes based on polar theory
are used to solve problems dominated by the appli-
cation of tensile loads. Besides capturing size effects,
it is well-known that the inclusion of higher gradients
in the constitutive modeling is a physically motivated
option to regularize the pathological mesh dependence
in inelastic softening computations, cf. e.g. [1,8,10,11,
35,36,45]. In many of these cases a micropolar descrip-
tion based on the Cosserat-approach ([6]) is applied for
the regularization of shear-localization, in particular for
granular materials. Nevertheless it turns out that the
inclusion of the curvature does not provide for a regu-
larization of tensile-localization, cf. [11]. This in turn can
be achieved e.g. in 1d by the inclusion of the gradient of
the normal strain, which is demonstrated repeatedly in
the localization community for the examples of brittle

1 Obviously, the description of continua which are characterized
by a deformable microstructure such as e.g. materials with chang-
ing porosity is beyond the scope of a polar theory.

and ductile materials. For isotropic gradient damage the
regularizing effect is demonstrated e.g. in [46]. The mi-
crostretch approach thus clearly promises to combine
the benefits of the two above approaches when it comes
to the regularization of localization both in shear and
tension.

If the deformation of the microstructure is no longer
regarded as rigid—as is the case for polar media—but
restricted to an inflation (expansion) or contraction
(compression), that is, if we consider continuous materi-
als with isotropically deforming microstructure such as
e.g. bubbly liquids and porous foams (where bubbles/
voids inflate and collapse), the so-called microstretch
continuum theory provides the proper framework for a
theoretical description and analysis of those media. In
microstretch materials, each material point is thus char-
acterized by its mass and by microstructural properties
described by an isotropically deformable triad of vectors
attached to each point—consequently, a material point
has three translational, three rotational and one stretch-
ing degree of freedom. After Eringens pioneering work
[12] in the 1960s, recent interest in the theory of elastic
microstretch materials arouse from the 1990s on when
issues related to the problem of stress concentrations
(around a circular hole and around a rigid inclusion, see
e.g. [9,27]), the propagation of waves (see e.g. [29,43]),
the thermomechanical coupling (see e.g. [16]), the exis-
tence and uniqueness of solutions to the static (linear)
boundary value problem as well as to the bending prob-
lem of homogeneous, isotropic plates (see e.g. [5,24,26])
and to deformations of anisotropic microstretch mate-
rials (see [40]) have been investigated. All those cited
works have in common that they take the balance equa-
tions for microstretch materials as derived by Eringen
as a starting point; moreover, they are written in a pri-
marily mathematically spirit,2 so that we here take the
opportunity to re-derive the balance equations using an
alternative approach which is simultaneously particu-
larly suited to be used for numerical investigations.

In the long run, we are interested in the question of
whether numerical computations for e.g. elastoplastic
strain softening microstretch materials turn out to be
mesh independent irrespective of whether shear loads
(which obviously activate the independent rotational
degree of freedom) or tensile loads (which activate the
independent stretching degree of freedom) are applied.
However, in order to do one step at a time, we shall in
the present article only be concerned with elastic micro-
stretch material behavior as this already provides ample

2 The mathematical analysis of microstretch solids is at present
restricted to the static case and linear elastic bodies in an infini-
tesimal theory.
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opportunity to get acquainted with phenomena related
to the additional microstretch degree of freedom. The
theoretical and numerical analysis as well as the algorith-
mic treatment of inelastic microstretch material behav-
ior (e.g. in the framework of an associative deviatoric
elastoplasticity) including strain softening phenomena
is the subject of a subsequent article.

The structure of the present article is organized as fol-
lows: after introducing notation in Sect. 2, the balance
equations governing an elastic microstretch continua are
derived in the framework of a variational principle. Fur-
ther, constitutive relations describing hyperelastic mate-
rial behavior are addressed. The discretization of the
resulting system of differential equations is described in
Sect. 3, so that we can turn to the presentation of numer-
ical examples for elastic microstretch materials in Sect.
4. Finally, Sect. 5 contains conclusions and an outlook.

Remark 1 Unfortunately, materials with unconstrained-
ly deforming microstructure such as metallic foams
(where general changes in porosity are due to e.g. the
opening of new channels which may stretch, wring,
inflate and be distorted) or suspensions of deformable
long chain polymers can still not be described by mi-
crostretch theory. So, finally, the so-called micromor-
phic theory has been designed (see again e.g. [14,15,
17,18,34]) to account for all possible deformations of
a microstructure, not just isotropic ones. In a micro-
morphic theory, each material point possesses (in addi-
tion to its three translational degrees of freedom) nine
additional degrees of freedom. While most investiga-
tions of micromorphic continua are limited to elastic
material behavior under static conditions and at infini-
tesimal strains, recent progress in the realm of constitu-
tive modeling has been achieved by Forest and Sievert
in [20], dealing with viscoplastic micromorphic mate-
rial behavior. A constitutive theory for micromorphic
thermoplasticity has been suggested by Lee and Chen
[31], but still awaits its numerical implementation. On
the mathematical side, Neff [38] has recently presented
general existence theorems for elastic, micromorphic
continua subject to finite strain conditions. For the case
of linear, dynamic micromorphic elasticity, Iesan and
Nappa [25] have established existence and uniqueness
theorems, while Nappa [37] establishes variational prin-
ciples which fully characterize the solution of initial
boundary value problems of linear, dynamic micromor-
phic thermoelasticity. In order to pave the way for the
development of efficient algorithms to be used for forth-
coming comprehensive numerical investigations of mi-
cromorphic continua, a unifying discussion of variational
principles for gradient and micromorphic continua has
recently been presented in [28], focusing in particular

on the considerable influence of the theoretical results
derived on forthcoming numerical implementations.

2 Variational principle

2.1 Notation

To set the stage, let us introduce some notation. Unless
otherwise stated, vectors and tensors of rank 2 will
throughout this article be denoted by small, bold letters.
A dot (·) is used to indicate the contraction over one
index, so that we have a · b = aibi (∀ i, j = 1, 2, 3, a, b ∈
R

3), (a · b)i = aijbj (∀ i, j = 1, 2, 3, a ∈ R
3 × R

3, b ∈ R
3)

and (a ·b)ik = aijbjk (∀i, j, k = 1, 2, 3 and a, b ∈ R
3 ×R

3).
Moreover, the contraction of a tensor of rank 3 and a
vector is given by e.g. (ε · a)ij = εijkak. In these rela-
tions, Einsteins summation convention is used through-
out. The complete contraction of two tensors of rank 2
is denoted by a double dot, (:), i.e. a : b = aijbij ∀i, j =
1, 2, 3 and a, b ∈ R

3 × R
3. The twofold contraction of a

tensor of rank 4, say J , and a tensor of rank 2 is given by
(J : a)ij = Jijklakl. The dyadic product of two tensorial
quantities is represented by the symbol ⊗.

Special quantities encountered throughout the arti-
cle are I, J, Jsym and J

skw denoting the second-order,
the fourth-order, the symmetric fourth-order and the
skew-symmetric fourth order identity tensors with com-
ponents δij, δikδjl, (δikδjl + δilδjk)/2, (δikδjl − δilδjk)/2,
respectively. Moreover, we define the symmetric fourth-
order deviatoric and volumetric operators as follows:
J

dev = J
sym − J

vol where J
vol = (I ⊗ I)/3. With the

help of these definitions, we observe that any 2-tensor
a can be decomposed additively into its volumetric,
symmetric deviatoric and skew-symmetric part, viz.
a = J

vol : a + J
dev : a + J

skw : a. Furthermore, ε is the
third-order Ricci tensor (permutation tensor), while spn
denotes the spin-operator. Applied to a vector a, it yields
spn a = −ε · a, or, in index-notation, (spn a)ij = −εijkak.

As usual, the material body under consideration is
viewed as a subset of the Euclidean space R

3, is denoted
by V and has boundary ∂V with outward unit normal
vector n. The particles (or, material points) contained
within V are labeled by x, and all further quantities intro-
duced will also be referred to the configuration V . Since
we work here for simplicity in a geometrically linear
setting, the displacement field

u = u(x) : V → R
3 (1)

is one of the primary independent variables which will
later have to be determined by solving (numerically)
the governing equations of microstretch continua.
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Moreover, we introduce the independent vector-valued
field of rotation and the independent scalar-valued field
of microstretch,

ω = ω(x) : V → R
3, ξ = ξ(x) : V → R. (2)

To be able to account for short-range non-local effects
in the material behavior, we further introduce

κ := ∇x ω , (κij = ωi,j) τ := ∇x ξ (τi = ξ,i) (3)

and refer to κ and τ as the curvature tensor and the
stretch gradient, respectively.

2.2 General remarks

A variational approach to describe micromorphic con-
tinua has been presented by Mindlin more then 40 years
ago, see [34]. There, rather then restricting attention to
stationary conditions and applying Dirichlet’s principle,
the stress equations of motion have been deduced in
a geometrically linear setting by defining a Lagrangian
and adopting Hamilton’s principle. A closer re-investi-
gation of variational principles applied in the 1960s to
micromorphic and so-called “second-gradient-of strain
models” is given in [28], where apart from the standard
Dirichlet principle and the restriction to the geometri-
cally linear setting also mixed (regularized) variational
formulations and a geometrically non-linear setting are
considered. The emphasis in [28] is on an identifica-
tion of the inherent properties of the deduced balance
equations for higher gradient and micromorphic con-
tinua with regard to subsequent implementations into
e.g. FEM codes.

Specializing and continuing the analysis presented
in [28], we will here again apply Dirichlet’s principle
and modify the so-called micropolar Dirichlet princi-
ple proposed in [45] in a suitable manner to derive
the balance equations for microstretch materials. As
expected, the microstretch Dirichlet principle proposed
here turns out to be a specialization of the micromor-
phic Dirichlet principle investigated in [28]. Eringen, in
contrast, deduces in his works [16–18] the correspond-
ing equations by considering invariance properties of
(a modified) energy balance. It will be seen that upon
postulating an appropriate form of the (Helmholtz) free
energy, we get exactly the same balance equations as e.g.
in [18].

Remark 2 In mechanics as well as in mathematics, var-
iational principles have been used for more than two
centuries. Historical comments on the role of varia-
tional principles in mechanics can e.g. be found in [39]
where also more detailed bibliographical information is

gathered. The Dirichlet Principle, which is here in the
focus of our attention, states that any field u minimiz-
ing the potential energy of a system under consideration
is also a solution of the corresponding Euler–Lagrange
equations (also known as the balance equations) asso-
ciated to this system. Moreover, the converse is true
so that fields which are solutions of the balance equa-
tions minimize the potential energy �. In mechanics,
the Dirichlet Principle is hence also referred to as the
principle of minimum potential energy, yielding the equi-
librium conditions for static, elastic bodies, see [39].
Mathematically, the equivalence of the two statements
“�(u) is minimal” and “u satisfies the Euler–Lagrange
equations” is established under quite general conditions
in a functional analytic framework in the theorem of Lax
and Milgram, see [30].

The application of variational principles in mechan-
ics has two outstanding features that make this approach
favorable against other ones:3 as mentioned above, bal-
ance equations are derived, and, in addition, constitu-
tive relations describing elastic material behavior are
obtained as a by-product of the variational analysis.
Should we wish to model e.g. elastoplastic material
behavior, the elastic constitutive relations deduced from
the variational approach have to be complemented by
evolution equations for e.g. the plastic strain which, usu-
ally, are obtained by invoking the principle of maximum
plastic dissipation, see e.g. [23]. Moreover, the varia-
tional formulation provides a natural framework within
which a numerical implementation of the model equa-
tions by means of the finite element method is concep-
tually relatively easy obtained.

2.3 Balance laws and constitutive relations describing
elastic microstretch continua

For simplicity, we restrict attention to hyperelastic mate-
rial behavior in conservative systems and assume the
existence of a total potential energy � under
(quasi)static conditions, which is consisting of two con-
tributions, viz.

� := �̂(u, ω, ξ) = �int(u, ω, ξ)+�ext(u, ω, ξ) . (4)

Extending the micropolar Dirichlet Principle investiga-
ted in [45], we specify �int with the help of the free

3 An alternative approach is to deduce the balance equations
from first principles and to establish constitutive relations by
exploiting entropy principles—this is known as the rational
mechanics approach and which has been established by Truesdell
and Noll in [49].
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(Helmholtz) energy ψ as (ρ is the mass density)

�int :=
∫

V
ρψ

(
J

sym :∇xu, J
skw :∇xu + ε ·ω,

∇xu :I − ξ , κ , τ
)

dv , (5)

while we let

�ext := −
∫

V
ρ[f u ·u + f ω ·ω + fξ ξ ] dv

−
∫

∂V
[tu ·u + tω ·ω + tξ ξ ] da . (6)

Above, f u and tu are the usual (volume distributed)
body force vector (such as e.g. gravitation) and the
(surface distributed) traction vector. Moreover, we have
postulated volume- and surface-distributed forces asso-
ciated with the rotation and the stretch, respectively,
which are of the form f ω, tω and fξ , tξ .

Remark 3 The introduction of additional body tractions
and forces related to the microstructure is carried out in
formal analogy to e.g. [2].

In the following, attention is restricted to the consid-
eration of small strains, and the underlying strain mea-
sures are chosen as

ε := ∇xu + ε · ω, e := ∇xu : I − ξ . (7)

Here, ε is a Cosserat-type-strain and e is a volumet-
ric strain referred to as the effective dilatation, cf. also
[44]. Note that e combines micro- and macroscale effects
and can hence (namely by a simple change of sign)
provide information about whether macroscopic effects
dominate microscale influences rooting in the stretch-
ing degree of freedom (e > 0) or vice versa. Since the
arguments of free energy ψ are given by the symmet-
ric gradient of the displacement (Jsym : ∇xu), the rela-
tive strain e and a gradient of the microstructural field
quantity (τ = ∇xξ), the representation (5) is in fact a
specification of its general form used to model
micromorphic continua, see [28]. What is however addi-
tionally accounted for in (5) are the arguments stem-
ming from considering independent rotations, i.e. J

skw :
∇xu+ ε ·ω and κ = ∇xω. Although accounting for those
rotation related fields requires a more complicated anal-
ysis than e.g. carried out for microstretch materials with-
out independent rotations (in which case (5) could be
viewed as a direct specialization of its counterpart given
in [28]), it has the advantage that the results to be derived
can easily be compared to existing results deduced e.g.
for micropolar materials in [45] (namely by switching
off all stretch related effects).

Expressing the principle of minimal potential
energy as

δ�(•) = d
dα

(
�

(
(•)+ αδ(•)))

∣∣∣
α=0

!= 0 , (8)

where δ denotes the variation and α ∈ R is a small
parameter, an exploitation of (8) yields – since the vari-
ations δu, δω and δξ are arbitrary and independent of
each other and we tacitly assume sufficient smoothness
of the fields involved—the following balance equations:

div (σ t + sI)+ ρf u = 0 in V , (9)

ε :σ + div mt + ρf ω = 0 in V , (10)

s + div λ + ρfξ = 0 in V . (11)

Here, the superscript t denotes the transpose of a
2-tensor, while the symbol div is the divergence-operator
acting on the last index of a 2-tensor. Note that the total
stress σ total entering the balance of linear momentum is
given by σ total = σ + sI, that is, it is additively composed
of the bulk (Cauchy) stress σ and the microscopic stress
sI as arising in the description of compressibility effects
of interstitial pore gas in closed cell foams, see e.g. [44].

Provided that we deal with static conditions only,
relations (9)–(11) constitute the balances of linear
momentum, intrinsic spin and microstretch of an elastic
generalized continuum. Equations (9)–(11) are comple-
mented by the boundary conditions

[σ + sI]t ·n = tu, mt ·n = tω, λ·n = tξ on ∂V , (12)

derived also from (8) and in which tu, tω and tξ are
(generalized) surface tractions associated with the dis-
placement, the rotations and the stretch, respectively.
In (9)–(12), σ and m are the Cauchy stress and couple
stress tensor, respectively, while s and λ are referred to
as the microstretch pressure and the microstress vector.
With the help of the free energy, ψ , these constitutive
quantities are defined as

σ t := (Jvol + J
dev + J

skw) : σ t

:= ρ
∂ψ

∂Jvol : ε
+ ρ

∂ψ

∂Jdev : ε
+ ρ

∂ψ

∂Jskw : ε
, (13)

s := ρ
∂ψ

∂ e
, mt := ρ

∂ψ

∂κ
, λ := ρ

∂ψ

∂τ
, (14)

and have in fact been obtained as a “by-product” in
the course of deducing the Euler–Lagrange Equations
(9)–(11).

Remark 4 It is emphasized that the balances of linear
momentum and stretch, (9) and (11), are coupled: the
total stress in (9) consists of the “usual” Cauchy stress
σ and the microstretch pressure tensor, sI. If the mi-
crostretch vanishes identically, ξ = 0, we recover the
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linear momentum balance in its standard from, while
the stretch balance also vanishes. Since the balance of
spin remains unaffected, the system (9)–(11) reduces
thus for ξ = 0 to the standard balance equations for
polar materials.

To model linearly elastic microstretch continua, we let
the free energy be given by a quadratic function of its
arguments listed in (5), viz.

ρψ = ρψ̂(Jvol :ε, Jdev :ε, Jskw :ε, e, κ , τ )

:= 1
2

K
[[Jvol :ε] : I

]2 + 1
2

Kξ e2 + µ
[[Jdev :ε]2 + l2κ2]

+µc[Jskw :ε]2 + 1
2
πξτ

2 . (15)

where we have used

J
sym :∇xu=J

vol :∇xu + J
dev :∇xu=J

vol :ε + J
dev :ε (16)

and

(Jskw :∇xu)+ ε ·ω = J
skw :(∇xu + ε ·ω) = J

skw :ε . (17)

In (15), K and Kξ are the “usual” and the microstretch
bulk modulus, respectively, and µ and µc denote the
shear moduli. Further, l is a characteristic length, while
πξ is a parameter related to the microstretch. Combining
(13) and (14) with (15), we derive explicit constitutive
relations of the form

J
vol :σ = K

[[Jvol :ε] :I
]
I, J

dev :σ = 2µJ
dev : ε ,

J
skw :σ = −2µcJ

skw :ε, s = Kξ e ,

mt = 2µl2κ , λ = πξτ .

(18)

Therefore, strain ε, effective dilatation e, curvature κ

and microstretch gradient τ are connected to the Cauchy
stress σ , the microstretch pressure s, the couple stress m
and the microstress λ by the continuum elastic tangent
operator Te as follows:

⎡
⎢⎢⎣

σ

m
λ

s

⎤
⎥⎥⎦

t

=

⎡
⎢⎢⎣

KI ⊗ I + 2µJ
dev + 2µcJ

skw 0 0 0
0 2µl2I 0 0
0 0 πξ I 0
0 0 0 Kξ

⎤
⎥⎥⎦

︸ ︷︷ ︸
=:Te

⎡
⎢⎢⎣

ε

κ

τ

e

⎤
⎥⎥⎦.

(19)

Note that the representation (19) suggests that the stres-
ses σ , m, λ and s are decoupled on the constitutive level
if linear elastic microstretch materials are considered
(a weak coupling exists however through the kinematic
relations (7)). Moreover, Te can in its form (19) immedi-
ately be used to implement the material behavior of elas-
tic microstretch continua into a finite element program.

3 Discretization

To make the equations derived in the previous sections
accessible to a numerical treatment, their spatial discret-
ization in the spirit of the finite element method (FEM,
cf. e.g. [3,4,33,41,50] for details) is briefly presented.

As always, the material volume V is spatially discret-
ized by choosing an appropriate triangulation: a collec-
tion of nodes is placed into V forming a grid consisting
of the so-called elements Ve, e = 1, . . . , nel, which satisfy

V =
nel⋃

e=1

Ve,

Vi ∩ Vi =
{
∂Vi ∩ ∂Vj if elements i �= j are neighbors,

∅ otherwise

(20)

for i, j ∈ {1, . . . , nel}. In two dimensions, the elements
Ve are typically given by (sufficiently regular) triangles
or rectangles, respectively. In later applications, we will
decompose V into a varying number nel of four-noded
so-called Q1-elements.

On the element Ve, the primary unknowns u, ω and ξ
are approximated by their discrete counterparts uh

e ,ωh
e,ξ

h
e

given by

uh
e = ∑nen

k=1 ukNk(x), ωh
e = ∑nen

k=1 ωkNk(x),
ξh

e = ∑nen
k=1 ξkNk(x) , e = 1, . . . , nel .

(21)

Above, nen denotes the number of element nodes (here,
nen =4), Nk, k = 1, . . . , nen are the so-called shape func-
tions and the vectors uk, ωk and ξk are referred to as
nodal values. Note that convergence of the approximate
solution to the exact one, e.g. uh

e → u, can in principle
be achieved by either increasing nen (“p-FEM”) of by
refining the mesh, i.e. increasing nel (“h-FEM”), see [41].

A characteristic feature of the FEM is that numerical
solutions for a given boundary value problem are sought
starting not from its local form [here given by (9)–(12)]
but taking its corresponding weak form as the point of
departure, viz:

∫

V

[
σ t + sI

]
: ∇xδudv

=
∫

V
ρf u · δu dv +

∫

∂V
tu · δu da , (22)

∫

V

[
ε : σ t · δω + mt : ∇xδω

]
dv
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=
∫

V
ρf ω · δω dv +

∫

∂V
tω · δω da , (23)

∫

V
−[

sδξ + λ · δ∇xξ
]

dv =
∫

V
ρfξ δξ dv+

∫

∂V
tξ δξ da .

(24)

Applying the isoparametric concept, the discrete coun-
terparts of (22)–(24) are obtained by using the relation
∫

V
(•)dv =

nel⋃
e=1

∫

Ve

(•)dv =
nel⋃

e=1

∫

V�

(•)det Jiso
e dξ , (25)

stating that the sum of integrals over individual elements
Ve can in essence be evaluated on a so-called master-ele-
ment V� with local coordinates ξ [in 2d, V� is typically
given by the square [−1; 1]×[−1; 1] so that ξ = (ξ1, ξ2)],
once Ve has been mapped onto V� by means of the
isoparametric mapping, denoted here only by its Jaco-
bian det Jiso

e . The discrete virtual work expression is then
derived with (25) and (21) as

nel⋃
e=1

nen∑
k=1

δuk ·
∫

V�

[σ t + sI] · ∇xNkdetJiso
e dξ

=
nel⋃

e=1

nen∑
k=1

δuk ·
∫

V�

ρNkf udetJiso
e dξ , (26)

nel⋃
e=1

nen∑
k=1

δωk ·
∫

V�

[ε : σ tNk + mt · ∇xNk]detJiso
e dξ

=
nel⋃

e=1

nen∑
k=1

δωk ·
∫

V�

ρNkf ωdetJiso
e dξ , (27)

nel⋃
e=1

nen∑
k=1

δξk

∫

V�

−[sNk + λ · ∇xNk]detJiso
e dξ

=
nel⋃

e=1

nen∑
k=1

δξk

∫

V�

ρNkfξdetJiso
e dξ .

Remark 5 We have neglected those entries in the dis-
cretized weak form which are due to given generalized
boundary tractions, cf. (12): they can be treated in full
analogy to the classical Boltzmann continuum formula-
tions. In other words, the boundary tractions associated
with the additional degrees of freedom require no spe-
cial attention in coding at all.

With the help of the (element) strain–displacement
operator (typically denoted by Be), the (components
of) strain ε, curvature κ , stretch gradient τ and effec-
tive dilatation e are computed on each element Ve for
node k from the primary unknowns u, ω and ξ . For plane

strain conditions (in the x, y-plane), to which attention
is restricted in the subsequent numerical examples, the
primary unknowns reduce to u = (u, v), ω = ω and ξ
while Be is (at each node k) given by

Be,k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nk,x 0 0 0
0 Nk,y 0 0
0 0 0 0

Nk,y 0 Nk 0
0 Nk,x −Nk 0
0 0 Nk,x 0
0 0 Nk,y 0
0 0 0 Nk,x
0 0 0 Nk,y

Nk,x Nk,y 0 −Nk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

In (28), Nk,(·) denotes differentiation of Nk with respect
to (·) and we have used the fact that the discrete analogs
of the strain ε, the curvature κ = ∇xω, the stretch gradi-
ent τ = ∇xξ and the effective dilatation e = ∇xu : I − ξ

are given by [cf. (7) and (21)]

εh
e = ∑nen

k=1 uk ⊗ ∇xNk(x)+ ∑nen
k=1 ε · ωkNk(x),

κh
e = ∑nen

k=1 ωk ⊗ ∇xNk(x),

τh
e = ∑nen

k=1 ξh∇xNk(x),

eh
e = ∑nen

k=1 uk ⊗ ∇xNk(x) : I − ∑nen
k=1 ξkNk(x).

(29)

Again, the argumentation used to combine the discrete
strain-displacement operator Be,k and the elasticity
matrix Te from (19) to form the element stiffness matrix
is of the standard form found in simple linear elasticity
involving the typical multiplication BT

e TeBe. The same
holds true when computing the internal force vector.

Remark 6 The plane strain condition that will be
imposed in all forthcoming numerical examples is
ε33 = 0 as is well-known when dealing with Boltzmann
continuum formulations. However, for a continuum with
additional internal degrees of freedom giving eventu-
ally rise to additional strain measures, cf. (7), it is not a
priori obvious how a plane strain conditions has to be
formulated. Here, we have chosen to leave the second
naturally arising strain measure, namely the effective
dilatation e, unrestricted: this implies that neither the
stretch ξ nor the rotation ω affect the plane condition.
Furthermore, the particular choice of the plane strain
condition utilized is the one which can be most accu-
rately approximated when performing experiments to
identify real material parameters in a further project
stage; it is not clear to the authors how to keep track
of a plane strain condition involving the non-standard
degrees of freedom, thus the choice of the condition is
the only appropriate one.
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4 Numerical examples

4.1 General remarks

To motivate our numerical investigations, we recall that
in the numerical modeling of the behavior of e.g. strain
softening materials, the independent rotational degree
of freedom introduced in polar continuum formulations
as an amendment to the standard Boltzmann continuum
has a regularizing effect. The latter is to be understood in
the sense that the pathological mesh dependence of the
post-peak response (which is observed for implemen-
tations based on the standard continuum formulation)
is overcome, cf. Sect. 1 and the references listed there.
While the independent rotational degree of freedom is
obviously activated under shearing loads, it is certainly
inactive when tensile loads are applied—consequently,
numerical schemes based on the polar theory for prob-
lems dominated by the application of tensile loads can
in general not be expected to benefit from the regulariz-
ing effect of the independent rotational degree of free-
dom. To cure this drawback, we have thus introduced an
additional independent stretching degree of freedom,
cf. Sect. 2, which is in particular activated under ten-
sile and compressive loads. In other words, it is hoped
that by generalizing the polar theory to microstretch
theory numerical computations for e.g. strain soften-
ing elastoplastic microstretch materials turn out to be
mesh-independent irrespective of whether shear loads
or tensile/compressive loads are applied.

As the treatment of localization phenomena in inelas-
tic microstretch continua can be viewed as a long-term
goal, we will here study the effects of the additional
stretching degree of freedom designed to capture micro-
structural properties as well as its influence on typical
macroscopic quantities for (hyper)elastic materials only.
In particular, it has to be shown that the numerical rou-
tines developed for the microstretch continuum exhibit
a downward-compatibility in the sense that micropolar
material behavior is recovered by switching of all stretch-
related effects. Further, we expect to detect possible
mutual interaction between the Cosserat rotational
degree of freedom and the stretching degree of freedom
by comparing a restricted4 microstretch model (in which
independent rotations are neglected) and a full micro-
stretch model. For notational convenience, we thus
introduce the following nomenclature for the three
different models investigated in the sequel (degrees of

4 To date, a universally accepted terminology for this material,
which is referred to as “dilating continua of Goodman–Cowin
type” in [44], is not yet available.

freedom is abbreviated by dof):

– case 1©: polar model;
displacement field u + Cosserat rotations ω (6 dof in
3d/3 dof in 2d)

– case 2© restricted microstretch model;
displacement field u + independent isotropic stretch
ξ (4 dof in 3d/3 dof in 2d);

– case 3© full microstretch model;
displacement field u + Cosserat rotations ω + inde-
pendent isotropic stretch (7 dof in 3d/4 dof in 2d).

4.2 Prelude: referential “volume” element subject to
simple shear

In the first numerical example, a two-dimensional
referential “volume” element exhibiting elastic micro-
stretch material behavior is subjected to simple shear
while plane strain conditions are prescribed. We wish
to show that the rotational degree of freedom ω is—
as expected—activated while the stretching degree of
freedom, ξ , remains inactive.

Consequently, the set of nodal degrees of freedom
is given by {u, v,ω, ξ}, where u and v are the horizontal
and vertical macroscopic displacement (i.e. the displace-
ments in x and y-direction), ω is the rotation about the
normal (i.e. the z-axis) to the xy-plane, and ξ is the
isotropic stretch acting uniformly in the x and y direc-
tion. In its undeformed state, the specimen has a size of
6 cm by 6 cm and is discretized by 24 quadrilateral, four-
noded elements (Q1 elements). However, the authors
are aware of the drawbacks of a simple Q1-element for-
mulation which leads by the particular definition of the
strain measures in (7) to different, incomplete polyno-
mial approximations of the various strains; the easiest
way to cure this drawback is the implementation of
the material model in a Taylor–Hood-type framework
with complete monomials to approximate the macro-
and microscopic strains. Furthermore, this will also to
increase the speed of spatial convergence; the imple-
mentation is scheduled for the next step.

A total horizontal displacement of 0.3 cm is
prescribed at the top boundary of the specimen, giving
rise to a global strain of 5%. The material parameters
used in the numerical simulations are given by

Kξ = 1 GPa, µc = 5.77 GPa,

l = 0.5 mm, πξ = 5
kN
mm

, (30)

and

K = 25 GPa, µ = 11.54 GPa . (31)
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Fig. 1 Distribution of a independent rotation and b stretch in a referential 2d region subject to simple shear, cf. Sect. 4.2, as obtained
for model 3©

Remark 7 Note that the bulk modulus K and the shear
modulusµ are determined via prescribing Young’s mod-
ulus E and Poisson’s ratio ν as E = 30, 000 MPa and
ν = 0.3 according to the formulae

K = E
3(1 − 2ν)

, µ = E
2(1 + ν)

, (32)

while µc is chosen as 0.5µ.

Prescribing boundary conditions such that ω = 0
holds at the bottom nodes of the specimen, the fol-
lowing results are obtained for the full microstretch
model 3©: The absolute value of the rotation ω increases
from its (prescribed) minimum ω = 0 at the bottom to
|ω| = 0.024 at the top of the specimen, while the stretch
ξ is zero everywhere, cf. Fig. 1. Note that a relaxation
of the boundary conditions imposed on ω (i.e. leaving
ω unconstrained at the bottom) results in a homoge-
neous distribution of independent rotation,ω = −0.024,
throughout the specimen. The negative sign corresponds
to a shearing in positive x-direction; the sign changes
if a horizontal displacement in negative x-direction is
prescribed. Obviously, the full microstretch model 3©
behaves as expected in simple shear tests – we are thus
encouraged to proceed with the investigation of (the
hierarchy of) models 1©– 3© in tensile tests; this is the
subject of the following subsections.

4.3 Non-contracting strip subjected to uniaxial tension

In this second example, a twodimensional strip exhib-
iting elastic microstretch material behavior is subjected
to a uniform tensile load while, again, plane strain con-
ditions are prescribed. Prior to deformation, the strip
has an initial length of 2 cm, while its width is chosen
as 1 cm. The strip is discretized by 32 Q1-elements and
the tensile load acting at the top of the strip is modeled
by prescribing a total displacement of 0.1 cm; hence, the

applied axial global strain amounts to 5%. The mate-
rial parameters are as given in (30), (31). Prescribing
boundary conditions, the bottom nodes at y = 0 are
fixed in the sense that a macroscopic displacement in
horizontal as well as vertical direction is prohibited (i.e.
u|y=0 = v|y=0 = 0), while the microscopic degrees of
freedom (rotation and stretch) have no preassigned val-
ues at y = 0 and remain thus unconstrained. More-
over, to avoid transverse contractions of the specimen,
also the nodes at y = const-gridlines are constrained in
x-direction: u|y=const = 0. These particular constraints
will be removed later on to allow for the investigation
of the onset of necking phenomena.

Next we consider the results obtained for the model
hierarchy 1©– 3©: As expected, we observe non-activated
and hence vanishing independent rotations in the Cosse-
rat-model 1©, cf. Fig. 2a. Turning attention to the
restricted microstretch model 2©, we observe the devel-
opment of a non-vanishing uniform stretch-field with
ξ = 0.005, cf. Fig. 2b. As the stretch is uniform, its

Fig. 2 Distribution of rotation a and stretch b in a non-contract-
ing strip subject to uniaxial tension, cf. Sect. 4.3. The rotations are
plotted for model 1©, while the stretch distribution results from
model 2©. The microscopic degrees of freedom are unconstrained
at the bottom boundary
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Fig. 3 Distribution of a stretch ξ , b vertical stretch gradient τy and c effective dilatation e in a non-contracting strip subject to uniaxial
tension, cf. Sect. 4.3. Results are plotted for model 2©, and ξ |y=0 = 0 is prescribed as boundary condition

value adjusts itself [due to energy considerations, cf.
(15)] such that the effective dilation e vanishes and
hence does not contribute to the stored energy W. Then,
by virtue of (19), also the microstretch pressure s van-
ishes, s = 0. Finally, as τ = ∇ξ , the stretch gradient
vanishes by definition. For the particular set-up chosen
for this first numerical example (tensile loaded non-
contracting specimen), we expect no changes of the
so-far obtained numerical results when turning to the
full microstretch model 3©: as the Cosserat rotations
are not activated, they can not interfere with the mi-
crostretch degree of freedom. Hence, the distribution of
rotation and of stretch are exactly as in Fig. 2. They are
not reproduced here and lead, as for model 2©, to vanish-
ing microstress τ , microstretch pressure s and effective
dilatation e.

Remark 8 It is mentioned that the axial stress σyy

assumes a constant value of σyy = 2020 MPa for all
models 1©– 3©.

Let us now consider a slightly different situation in
which only the boundary conditions forω and ξ are mod-
ified: for the setting described above, we now constrain
the microstructural degrees of freedom at the bottom
of the strip such that ω|y=0 = 0 and/or ξ |y=0 = 0 at
the respective nodes holds. The results are as follows:
as the rotations are not activated under tensile loads,
the boundary condition on ω has no effects in the polar
model 1©. Consequently, we have again vanishing rota-
tions. The restricted microstretch model 2© however is
influenced by fixing the stretch ξ to zero at the bottom
of the strip: a stretch field that is varying with y develops
and attains its maximal value ξ = 0.014 for y = 2.1 and
all x ∈ [0; 1], see Fig. 3a. As ξ does not vary with x, only
the y-component of the stretch gradient τ = (τx, τy) is
non-vanishing: τy assumes values in [0.002; 0.014] and
is strongest developed in a bottom boundary layer, see

Fig. 3b. Overall, the specimen is dominated by the mac-
roscopic material response as the effective dilatation e
has positive values in the entire strip. Since the maxi-
mum values of e are localized close to the bottom of
the strip and decrease toward its top, micro- and macro-
scale material behavior is recognized to be pronounced
different from each other in this bottom boundary layer
while it is becoming less disparate toward the top, see
Fig. 3c. The stress(like) quantities corresponding to the
(y component of the) stretch gradient and the effective
dilatation are the (y component of the) microstress vec-
tor λ and the microstretch pressure s: both are displayed
in Fig. 4a and b. In contrast to the homogeneous distri-
bution of the macroscopic axial stress σyy (which again
assumes a constant value of σyy = 2020 MPa for models
1©– 3©, cf. Remark 8), the microscopic stresses λy and
s vary significantly with y, albeit their nominal values
are two orders of magnitude smaller than the macro-
scopic axial stress. Turning to the full microstretch model

Fig. 4 Distribution of the vertical component of the microstretch
vector λy a and the microstretch pressure s b in a non-contracting
strip subject to uniaxial tension, cf. Sect. 4.3. Results are plotted as
obtained from model 2© , and ξ |y=0 = 0 is imposed as a boundary
condition
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3©, the numerical simulations reproduce—as expected—
exactly those obtained for model 2© and are hence not
re-displayed.

4.4 Horizontally contracting strip subjected to uniaxial
tension

In the following, a horizontal contraction of the linearly
elastically behaving microstretch strip will be accounted
for. This is achieved by relaxing, in the interior5 of the
strip, the constraints imposed beforehand (in Sect. 4.3)
on nodal degrees freedom in x-direction: we no longer
require u|y=const = 0 but rather let u|y=const unconstrai-
ned. Although the macroscopic contraction is almost
negligible due to the small overall deformation of only
5%, it can certainly be regarded as the onset of necking.
Moreover, it is powerful enough to trigger microscopic
effects: first, the rotational degree of freedom, ω, is acti-
vated in regions where horizontal contractions (how-
ever small they may be) occur. Consequently, the two
additional microstructural degrees of freedom, stretch
and rotation, are now competing and their individual
influence on the material response has to be deter-
mined. Moreover, a non-uniform distribution of stretch
is obtained even for unconstrained stretch boundary
conditions as will be seen in Sect. 4.4.2.

Remark 9 As in the preceding examples, we shall inves-
tigate linearly elastic microstretch material behavior
subject to two different types of boundary conditions
given either by ξ |y=0 = 0 (cf. Sect. 4.4.1) or by letting
ξ |y=0 unconstrained (cf. Sect. 4.4.2). It is remarked that
we refrain from varying the boundary conditions for the
independent rotations (ω is free to develop as no bound-
ary condition is imposed) since the primary focus is on
the distribution of stretch ξ .

4.4.1 Constrained stretch boundary conditions

We now apply a tensile load resulting in an axial global
strain of 5% at both ends of the strip introduced in Sect.
4.3. The boundary conditions for the stretch field are
prescribed such that ξ |y=0 = 0 and ξ |y=2 = 0, that is,
the stretch is forced to vanish at the top and bottom
nodes of the specimen. The material parameters remain
unchanged and are listed in (30) and (31). Prior to the
presentation of numerical results, we emphasize the role
of the material parameters:

Remark 10 Judging from (15) alone, the parameters Kξ ,
µc, l andπξ can in principle take any values in R

+—phys-
ically meaningful ranges are only known for the bulk

5 That is, everywhere except at the bottom and the top.

modulus K and the shear modulus µ. Thus, a detailed
parameter study revealing the influence and likely range
of Kξ , πξ , µc and l is certainly one of the pressing issues
to be addressed in the modeling of microstretch con-
tinua. However, doing this at an untimely stage (i.e.,
too early) we would (with the words of the statistician
J. Naisbitt) be “drowning in information and starving
for knowledge”. In all here presented numerical exam-
ples, we have hence fixed the material parameters to
the values given in (30) and (31). In addition, we have
performed a first parameter screening the outcome of
which suggests that the parameters Kξ , πξ , µc and l act
like penalty parameters as occurring e.g. in the (algorith-
mic) treatment of contact mechanics: Large values of l
and µc (whereby “large” means “large in comparison to
Kξ and πξ and has still to be quantified) severely limit
the influence of κ = ∇ω and spnω in the minimization
of � or ψ , respectively. Consequently, large l and large
µc imply that effects due to the independent rotational
field ω are suppressed, enabling the microstretch related
effects to dominate the scene. Vice versa, large values of
Kξ and πξ penalize the stretch-related contributions and
allow a pronounced development of Cosserat-effects in
a full microstretch model.

The parameter screening addressed in Remark 10 indi-
cates that Kξ , πξ as given in (30) are “large” penalties
while l and µc are “small”. Thus, in the mutual inter-
action of ω and ξ in the full microstretch model 3©,
the stretch-related effects will be dominated by strongly
developed rotational effects. For the here considered
horizontally contracting strip, we have chosen to pres-
ent only numerical results obtained for model 3©: a com-
parison of models 1©, 2© and 3© is postponed to Sect.
4.5 where a modified geometry (enhanced by a notch)
favors the development of differences in the numerical
results.

Starting with the primary macroscopic and micro-
scopic quantities, we plotted in Fig. 5a and b the mac-
roscopic horizontal and vertical displacement u and v,
respectively, and the fields of independent rotation ω

and stretch ξ , views c and d in Fig. 5. The horizontal
contraction manifests itself in the distribution of u, cf.
Fig. 5a, and the slight arching of the isolines in the dis-
tribution of v is attributed to the boundary conditions,
see Fig. 5b. The rotations are antisymmetric about both
symmetry axes (at x = 0.5 and y = 1) and are acti-
vated under the applied tensile load solely because the
material has (due to the relaxed conditions on u|y=const)
gained an additional mobility, cf. Fig. 5c. In Fig. 5d, a pro-
nounced variation in the stretch field is observed: from
the loaded boundaries, where the boundary conditions
enforce ξ = 0, the values of the stretch increase to reach
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Fig. 5 Horizontal and vertical displacement a and b, rotation c and stretch d for a horizontally contracting strip subject to uniaxial
tension, cf. Subsect. 4.4. Results are plotted for model 3©, and ξ |y=0 = ξ |y=2 = 0 has been imposed as boundary condition

a maximal value of ξ = 0.0026 in the central region of
the strip. Yet the stretch effects are small compared to
the overall macroscopic response in volumetric strain as
captured by ∇u : I: the effective dilation e = u : I − ξ

is with e ∈ [0.027, 0.042] positive throughout the speci-
men. The distribution of e as shown in Fig. 6a however
suggests that micro- and macroscale effects captured by
∇u : I and ξ , respectively, are almost equally influential
in an hourglass-like region formed by minimal values
of e and located in the central region of the strip expe-
riencing the largest horizontal contractions. Finally, we
present in Fig. 6b the x-component of the microstretch
vector, λx. It is, for the linearly elastic material behavior
considered here, proportional to the x component of the
stretch gradient, τx, via (19). It is observed that λx, and
hence τx, is symmetric about both axis of symmetry and
assumes its largest values for those y where, at x = 0 and
x = 1, maximal changes in horizontal displacements are
detected.

Fig. 6 Distribution of effective dilatation e a and the x-component
of the microstretch vector, λx b for a horizontally contracting strip
subject to uniaxial tension, cf. Subsect. 4.4. Results are plotted for
model 3©, and ξ |y=0 = ξ |y=2 = 0 has been imposed as boundary
condition

4.4.2 Unconstrained stretch boundary conditions

Relaxing the boundary conditions imposed on the
stretching degree of freedom in Sect. 4.4.1, we now let
ξ be unconstrained while the remainder of the set-up is
unchanged. The interesting results are the distribution
of stretch and effective dilatation—all other quantities
remain either more or less unchanged or are (in the
linearly elastic regime) directly related to ξ and e.

The distribution of the stretch field as obtained from
model 3© is plotted in Fig. 7a. Recall that in the pre-
ceding examples, unconstrained stretch values at the
boundaries necessarily implied the development of a
uniform stretch field in the specimen. However, in the
present example, where horizontal contraction of the
specimen is allowed, a non-uniform stretch field devel-
ops although the stretch values at y = 0 and y = 2 are
unconstrained. We note that the resulting stretch field
(although positive in the entire specimen as was the case

Fig. 7 Distribution of stretch ξ a and effective dilatation e b in
a horizontally contracting strip subject to uniaxial tension, cf.
Sect. 4.4. Results are plotted for model 3©, and the stretch ξ is
unconstrained at the boundaries
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Fig. 8 A horizontally contracting, notched strip subject to uniaxial tension is meshed by 768 Q1 elements a, cf. Sect. 4.5. For brevity, the
mesh and the axes are omitted when the horizontal displacement u is plotted for models 1©– 3© in panels b–d

in Sect. 4.4.1) is different from the one obtained if restric-
tions are imposed on ξ |y=0 and ξ |y=2. As a matter of fact,
with increasing distance from y = 1, that is for y → 2.05
and y → −0.05, the values of ξ increase but it is empha-
sized that the variation in the stretch takes place at a
small scale only: the difference between minimal and
maximal values amounts only to 0.00016. Moreover, it
is recognized that even the “large” stretch values at the
ends of the strip are small compared to the macroscopic
values of ∇u : I as the effective dilatation e is positive
at the bottom and the top of the strip, cf. Figure 7.b.
It is in the interior of the strip where, despite “small”
stretch values, microscopic effects dominate over the
macroscopic contribution ∇u : I as e < 0. This behavior
is fundamentally different (despite plots looking almost
alike, cf. also Figure 6.a from the one observed for the
effective dilatation e (which in the present example has
values in [−0.002; 0.01]) if ξ is constrained at the top and
bottom boundaries of the specimen.

4.5 Horizontally contracting, notched strip subjected to
uniaxial tension

In the following, a twodimensional, horizontally con-
tracting notched strip consisting of elastic microstretch
material is investigated. Initially, the strip has a length
of 6 cm in the y direction and a width of 2 cm in the x
direction. A mesh consisting of 768 Q1 elements is used,
cf. Fig. 8a, and a global axial strain of 5% (elongating
the strip to 6.3 cm) is applied. As before, the material
parameters are taken from (30) and (31). Note that in
order to facilitate the plot-reading, the mesh as well
as the axes are omitted in all forthcoming figures. For

Fig. 9 Distribution of axial stress σyy in a horizontally contracting,
notched strip in tension, cf. Sect. 4.5. Identical results are obtained
for models 1© and 3©, cf. panel a, while those for model 2© shown
in panel b differ. The well-known stress concentration by a factor
3 is reproduced in all models

brevity,6 we present only numerical results for uncon-
strained microscopic boundary conditions, i.e. no val-
ues are preassigned to ξ ||y|=30 and ω||y|=30. Again, this
choice of boundary condition is motivated by experi-
mental capabilities which allow to control macroscopic
displacements but no additional degrees of freedom
such as rotations or stretch; furthermore, no difficulties

6 Prescribing ξ ||y|=30 = 0 merely forces the stretch values to
decrease to zero within a thin boundary layer. The far field val-
ues of ξ , i.e. the distribution of stretch away from the bottom and
top boundary layer, is not affected by the boundary conditions
imposed on ξ .
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in obtaining unique numerical results were detected
even without prescribing a single value of the fields.
Macroscopically, the strip is fixed at its bottom bound-
ary to resist a vertical motion so that v|y=−30 = 0. Note
that a horizontal contraction of the specimen can take
place as no conditions on u are imposed.

Investigating this typical, often benchmarked geome-
try, numerical results obtained for the polar, the
restricted and the full microstretch model are presented
now in a synoptical manner in order to demonstrate
the penalizing effect of the material parameters aris-
ing in (15), cf. Remark 10. Starting with macroscopically
observable quantities, we first present the horizontal dis-
placement as obtained for models 1©– 3© in Figs. 8b–d.
For the polar model 1©, the distribution of horizontal
displacement is antisymmetric about the axis x = 0 and
symmetric about the axis y = 0, cf. Fig. 8b, and has
non-vanishing values in a horizontal layer the length (in
y direction) of which encompasses en gros the notch.
These nonvanishing values of u visualize the horizontal
contraction which is, however, so small that it is hardly
visible in unscaled plots. Comparing the results for u for
the polar model with those obtained for the full mi-
crostretch model 3©, no differences can be detected,
cf. Fig. 8d. This indicates that Kξ and πξ have been
assigned values which are large in comparison to µc

and l and that the former penalize the stretch contribu-
tions, cf. Remark 10. If the rotations are omitted as in the
restricted microstretch model 2©, the distribution of hor-
izontal displacement is qualitatively and quantitatively
different from the one obtained for models 1© and 3©, see
Fig. 8c. While the axes of symmetry remain unchanged
compared to models 1© and 3©, the action of the micro-
stretch ξ in model 2© gives rise to a pronounced ver-
tically banded distribution of horizontal displacement
throughout the entire strip. It is emphasized that the
overall horizontal contraction is smaller (by a factor 2)

than in models 1© and 3©. Comparing the restricted and
the full microstretch model, we observe that non-neg-
ligible interferences between the stretching degree of
freedom and the rotational degree of freedom develop:
the responsible agent for this are small values of l and
µc which penalize contributions stemming from ω only
to a very small extend. Numerical results obtained for
the vertical displacement y exhibit exactly the same fea-
tures as just presented for the horizontal displacement:
models 1© and 3© yield identical distributions of y, while
it is slightly different for model 2©—for brevity, corre-
sponding plots are not shown.

Among the macroscopic quantities, we rather pres-
ent the results obtained for the axial stress σyy in Fig. 9a
(results obtained for models 1© and 3©) and b (results
obtained for model 2©). As above, the full microstretch
model 3© is – due to the choice of material parameters
– dominated by the action of the independent rotation,
which is why models 1© and 3© yield identical results,
cf. also Remark 10. Note, however, that the well-known
stress–concentration by a factor 3 at those edges of the
notch pointing toward the lateral boundaries of the strip
is reproduced in all models. Turning to the microscopic
quantities ω and ξ , the plots in Fig. 10 are consistent
with the preceding ones in the sense that they confirm
the interpretation of the parameters as discussed above:
The rotations are the same in models 1© and 3©—in other
words, the rotations are in a full microstretch model not
affected at all by the presence of the additional stretch-
ing degree of freedom, cf. Fig. 10a. We refrain from plot-
ting the rotations for model 2©. In contrast, the stretch is
affected by the presence of a rotational degree of free-
dom, indicating that ω dominates over ξ for the choice
of parameters given in (30) and (31). As ξ changes from
2 to 3, differences can also be detected in the derived (e
and τ ) and conjugated (s and λ) quantities, but corre-
sponding plots are not shown for the sake of brevity.

Fig. 10 a Distribution of
rotation in a horizontally
contracting, notched strip in
tension, cf. Sect. 4.5. Identical
results are obtained for
models 1© and 3©. b, c
Distribution of stretch in a
horizontally contracting,
notched strip in tension, cf.
Sect. 4.5. Different results are
obtained for models 2© and
3©, cf. b and c
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5 Conclusion and outlook

The investigation of microstretch and micromorphic
continua (which are prominent examples of so-called
extended continua) dates back to Eringens pioneer-
ing works in the mid 1960ies, cf. [12,14,18]. Despite
the fact that 40 years have passed, and despite the fact
that many of todays innovative engineering materials
are characterized by an inherent microstructure calling
for extended continuum modeling approaches, micro-
morphic and microstretch continuum theories have not
gained a broad acceptance in engineering. Consequently,
numerical investigations for micromorphic materials
are rare.

To overcome this drawback, first numerical bench-
marks for microstretch continua in engineering applica-
tions have been established in this article. The numerical
implementation of the model equations by means of the
finite element method is conceptually straightforward
if the governing equations of microstretch continua are
derived in a variational framework as given by the appli-
cation of Dirichlet’s principle—this procedure has been
presented here, cf. Sect. 2, and complements Eringens
approach in a novel way.

Upon postulating a specific expression for the Helm-
holtz free energy, Eringens balance equations have been
re-derived, and constitutive relations describing elastic
microstretch material behavior were obtained as a "by-
product" of the variational analysis, cf. Sect. 2. It has
also been shown that the microstretch model derived
here exhibits a “downward-compatibility” to Cosserat
continuum models in the sense that by switching off
all stretch-related effects, a polar continuum model is
regained. The focus in the numerical analysis presented
in Sect. 4 has thus been on a hierarchy of models, namely
a full microstretch model (denoted by 3© and includ-
ing Boltzmann, Cosserat and stretching degrees of free-
dom), a restricted microstretch model (referred to by 2©
and characterized by Boltzmann and stretching degrees
of freedom), and the polar model (abbreviated by 1© and
including Boltzmann and Cosserat degrees of freedom).
The specimens investigated exhibit simple, twodimen-
sional geometries and are subjected to a plane strain
condition. Numerical results have been produced for a
fixed set of material parameters characterizing the free
energy, while various boundary conditions prescribed
for the microstructural degrees of freedom (indepen-
dent rotations, stretch) have been accounted for. It has
been shown that those material parameters in the free
energy which are related to the additional microscopic
degrees of freedom play a crucial role in the numerical
analysis—they can act as penalty parameters as known
e.g. in the algorithmic treatment of contact mechanics.

In order to gain more insight into the complex interac-
tion of microstructural effects described by independent
Cosserat rotations and an independent stretch field, a
detailed parameter study, revealing e.g. conditions under
which an equally weighted co-existence of stretch effects
and Cosserat effects in the full microstretch model 3©
is possible, is thus of pressing importance. Adding addi-
tional relevance to this issue, work in progress has shown
that material parameters may not be chosen indepen-
dently from each other—the algorithmic treatment of
plasticity based on the standard radial return algorithm
is only applicable if some of the material parameters are
coupled.

Thus, the modeling, algorithmic treatment and
numerical investigation of inelastic microstretch mate-
rials is the next step to be undertaken. Hoping for a reg-
ularizing effects of the stretching degree of freedom in
tensile test (where the known regularization of the Coss-
erat rotations is not activated), strain softening plasticity
for microstretch materials will be in the focus of a forth-
coming article.
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