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Abstract In this work, a new vertex-based finite
volume method (FVM) using unstructured grids and
cell-based data structure is proposed for computational
analysis of two-and three-dimensional (2D/3D) general
structural dynamic problems. The governing equations
are spatially discretized by the FVM and an implicit
dual time stepping scheme is employed to integrate the
equations in time. The proposed method is applied to
calculate deformations and dynamics of 2D and 3D
cantilevers, as well as simply supported and clamped
square plates. Computational results obtained are found
to agree well with analytical solutions. It can be a via-
ble alternative to the traditional finite element method
(FEM) for structural dynamic calculations. And it can be
seamlessly integrated into FVM-based Computational
Fluid Dynamics (CFD) solver for simulating fluid-struc-
ture interaction (FSI).

Keywords Finite volume method · Unstructured
grid · Dual time stepping · Structural dynamics

1 Introduction

The finite element method (FEM) is the most popu-
lar tool for computational structural mechanics (CSM),
especially for problems involving nonlinear material
properties and nonlinear deformations. And tradition-
ally, the finite volume method (FVM) is widely used
in computational fluid dynamics (CFD). Both methods
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make use of governing equations in integral forms. And
both methods are weighted residual methods where they
only differ with regard to the type of weighting functions
used. FV methods may be considered as a particular
case of the FE method with non-Galerkin weighting [1].
Unlike the finite element approach, in which the rele-
vant conservation principle and/or equilibrium of forces,
are only satisfied in a global sense, the finite volume
procedure is conservative from the whole-domain scale
down to the cell or control volume level. Their different
properties, applications and directions of development
have resulted in numerical software tools for CFD and
CSM that are different in almost every aspect. This dis-
crepancy has hindered research progresses in the fields
of multi-physics and fluid–structure interaction simula-
tion. The current efforts attempt to bridge this gap and
develop a structural dynamic solver that is based on
the unstructured-grid FV methodology, in order to inte-
grate the structural and fluid solvers seamlessly in future
fluid–structure interaction simulation.

FE methods are generally considered to be more
accurate for self-joint problems which are typical of
CSM. However the essential difference between FE
and FV in the numerical discretization of second-order
partial differential equations is negligible and for many
cases the two methods are equivalent [2]. In recent years,
the FV methods have been applied to a number of prob-
lems in various aspects of CSM. For example, plate bend-
ing analysis has been performed using FV methods by
Demirtzic et al. [3], Wheel [4] and Fallah [5]; the solu-
tions of different solid mechanics problems [6,7], stress
analysis of elasto-plastic solids by Demirtzic et al. [8],
analysis of dynamic solid mechanics [9] and application
to fluid-structure interaction by Slone et al. [10] have
also been reported in the literature. These works prove
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that for CSM problems the FV methods are competitive
with the FE methods in terms of numerical accuracy and
computational efficiency. Wheel [11] even showed that
the FV method achieves greater accuracy than the FE
method for a benchmark problem using a steel elliptic
membrane.

The implementations of FV methods for CSM com-
putations can be classified into two categories: the cell-
centered approach [3,4,6,8,11] and the cell-vertex one
[1,7,9,10,12]. In the cell-vertex approach, the displace-
ment and stress variables are stored at the vertices of the
mesh which are themselves enclosed by control volumes
formed by the median duals of the mesh; whereas in
the cell-centered method the variables are stored at the
centroids of cells which are also used as control volumes
themselves. Thus the cell-vertex approach needs consid-
erably less computational effort and memory for a given
mesh. For instance in the case of three-dimensional tet-
rahedral meshes, the stress computations can be per-
formed by looping over edges in the cell-vertex scheme,
whereas in a cell-centered scheme they are looped over
triangular faces. And the cell-vertex approach is better
suited to compute stresses, especially when the meshes
become highly irregular. One major drawback of the
cell-vertex scheme is that the solution quality is poorer
than that of the cell-centered scheme on the same mesh.
Both FV approaches are locally and globally conserva-
tive and have demonstrated superiority over traditional
FE methods in terms of accuracy in selected test cases
[11].

This paper describes a new cell-vertex FV method
using triangular and tetrahedral cells for general 2D
and 3D structural dynamic problems. Stresses are calcu-
lated in a cell-by-cell manner based on a cell-based data
structure and stress distribution is linear within cells, but
can be discontinuous across different cells, even within
the same control volume. The control volumes are con-
structed around vertices using the median dual of the
mesh. The deformation gradients and stresses are eval-
uated using Green theorem. Time-accurate solutions are
obtained by employing a implicit dual time stepping
scheme [13], wherein a pseudo time term is added to the
dynamic equations and the physical time term is inte-
grated by a second-order backward time discretization
scheme and the pseudo time term is finally eliminated
by a sub-iteration process. With the implementation of
FVM for solid mechanics and dynamics in this work, the
numerical methods can explicitly enforce the conser-
vation laws in integral forms both locally and globally,
whereas the traditional FEM can only do it globally. And
unlike other FV methods, the cell-vertex FV method
in this work does not use shape functions for spatial
discretization. In addition, it is a matrix-free implicit

dual-time stepping scheme, which can reduce computa-
tional efforts and storage requirements. And both static
and dynamic solutions can be obtained with the same
time-stepping method. To our knowledge, this work is
the first ever attempt in using the dual time stepping
scheme for structural dynamic problems. The success-
ful implementation of FV method makes it possible
to embed the FV structural dynamics solvers into exit-
ing FV fluid dynamics solvers for solving fluid-structure
interaction problems in a consistent manner, which re-
duces programming efforts greatly and improves com-
putational efficiency.

2 Numerical methods

2.1 Governing equations

The governing equation for continuum undergoing mo-
tion is given by the Cauchy’s equation in three dimen-
sions:

ρa = b + ∇ • σ ij (2.1)

Where b is body force, σ ij the stress tensor, ρ the mate-
rial density and a the acceleration. In this work, the term
equation of dynamic equilibrium is adopted to distin-
guish it from static structural problems. For structures
considered here, the body forces are negligible com-
pared with stresses and other forces acting on them.
There two types of these forces: the damping and exter-
nal forces. External forces generally vary as functions
of time. Damping is the ability of a structure to dissi-
pate energy. In structural mechanics, the most common
damping device is the ideal linear viscous damper. For
a structure with linear viscous damping, the damping is
directly proportional to the structure velocity, while act-
ing in the opposite direction of the velocity. Discarding
the body forces and considering the influences of exter-
nal and damping forces, equation (2.1) is transformed
into the following:

ρ
∂V
∂t

= ∇ • σ ij + f (t) − cV (2.2)

and

V =
⎡
⎣

u
v
w

⎤
⎦, σ ij =

⎡
⎣

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

⎤
⎦ (2.3)

where f is the external force, V is the structure velocity,
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c is damping ratio. The above equations are non-dimen-
sionalized as

(
x′, y′, z′) =

( x
D

,
y
D

,
z
D

)

(
u′, v′, w′) =

(
u

Uref
,

v
Uref

,
w

Uref

)
;

t′ = t
D/Uref

; f ′ = f
ρ(Uref)

2 ; σ ′
ij = σij

ρ(Uref)
2 ; (2.4)

where D is the characteristic length of the structure, Uref
is reference velocity. Dropping the primes for simplicity,
the non-dimensional governing equation is written as

∂V
∂t

= ∇ • σ ij + f (t) − D
ρUref

cV (2.5)

Equation (2.5) can be written as

∂V
∂t

= ∇ • σ ij + ∇ • F(t) (2.6)

where

∇ • F(t) = f (t) − D
ρUref

cV

To adopt the finite volume scheme for structural analy-
sis, the governing Eq. (2.6) is transformed into intergral
form:

∂

∂t

∫∫∫

cv

VdV =
∫∫∫

cv

∇ • σ ijdV +
∫

Scv

F(t) • dS (2.7)

According to Green’s theorem

∫∫∫

cv

∇ • σ ijdV =
∮

Scv

σ ij · n dS (2.8)

Finally, the integral governing equation (2.7) can be writ-
ten as

∂

∂t

∫∫∫

cv

VdV =
∮

Scv

σ ij · n dS +
∮

Scv

F(t) dS (2.9)

2.2 Constitutive relationship

The constitutive relationship between stress and strain
is the generalized Hook’s law. For an isotropic homoge-

neous structure, it is given as

⎛
⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

τxy

τyz

τxz

⎞
⎟⎟⎟⎟⎟⎟⎠

= E
(1 + υ)(1 − 2υ)

×

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − υ υ υ 0 0 0
υ 1 − υ υ 0 0 0
υ υ 1 − υ 0 0 0
0 0 0 1 − 2υ 0 0
0 0 0 0 1 − 2υ 0
0 0 0 0 0 1 − 2υ

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎛
⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

γxy

γyz

γxz

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.10)

where E is Young’s Modulus, and ν is Poisson’s ratio of
the structure. The stress vector is σT = [σxx σyy σzz

τxy τyz τxz
]

and the strain vector is εT = [
εxx εyy

εzz γxy γyz γxz
]
. The elastic strain can also be

expressed in terms of total and initial strains as:

σ = D(εt − ε0) (2.11)

where D is the constitutive matrix as shown in the large
brackets in equation (2.10), εt and ε0are the total and
initial strains respectively.

In this work, the strain–displacement formulation is
expressed in the Green–Lagrange tensor as

εij = 1
2

(
∂(	X)i

∂Xj
+ ∂(	X)j

∂Xi
+ ∂(�X)

∂Xi
• ∂(�X)

∂Xi

)
(2.12)

where 	XT = [dx dy dz
]

is the displacement vec-
tor. In vector form, the Green-Lagrange tensor can also
be expressed as:

⎛
⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

γxy

γyz

γxz

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂dx
∂x
∂dy
∂y
∂dz
∂z

1
2

[
∂dx
∂y + ∂dy

∂x +
(

∂dx
∂x

)2 +
(

∂dy
∂x

)2 +
(

∂dz
∂x

)2
]

1
2

[
∂dy
∂z + ∂dz

∂y +
(

∂dx
∂y

)2 +
(

∂dy
∂y

)2 +
(

∂dz
∂y

)2
]

1
2

[
∂dx
∂z + ∂dz

∂x +
(

∂dx
∂z

)2 +
(

∂dy
∂z

)2 +
(

∂dz
∂z

)2
]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.13)
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2.3 Finite volume formulation

In this method, unstructured meshes are used to discret-
ize the structural domain. Triangular and tetrahedral
meshes are chosen for 2D and 3D cases respectively.
Here the finite volume formulation is only described for
3D problems, bear in mind that it is straightforward to
reduce it to a 2D formulation. The governing Eq. (2.7) is
discretized on over tetrahedral cells as shown in Fig. 1.
For every vertex, a control volume is constructed using
the median dual of the tetrahedral mesh [14]. In Fig. 1,
nodes A, P, B and C form the vertex of the tetrahedral
cell and O is the center of cell APBC. Points a, b and
c are the median duals of the edges AP, BP and CP
respectively, while points 1, 2 and 3 are the centroids of
triangles APC, CBP and ABP. In the cell-vertex scheme,
the computed variables are stored at vertices A, P, B and
C. Triangles APC, CBP, ABC and ABP form the corre-
sponding control volume surfaces for the computation
of strains, stresses and forces. The external force and
stress terms in Eq. (2.7) for node P are calculated as

∫∫∫

cv

∇ • σ ijdV =
∮

Scv

σ ij · n dS =
ncell∑
n=1

[
σij · 	Sc

]
n (2.14)

∮

Scv

F(t) dS =
ncell∑
n=1

[
f (t)	Sc

]
n (2.15)

P

A 

B 

C

O
1

2

3 a

b

c

Cell n

Fig. 1 Construction of control volume within a tetrahedron for a
node P

where ncell is the number of elements associated with
node P and 	Scn is the part of control volume surface
in cell n. By using the following relation:
∮

s

dS = 0 (2.16)

The total vector surface of the control volume in a cell
n becomes

	Scn = 1
3
	Spn (2.17)

Thus, the computations of external force and stress can
be simplified as

∮

Scv

σ ij · n dS =
ncell∑
n=1

[
σij · 	Sc

]
n = 1

3

ncell∑
n=1

(
σij · 	Sp

)
n(2.18)

∮

Scv

F(t) dS =
ncell∑
n=1

[
f (t)	Sc

]
n = 1

3

ncell∑
n=1

(
f (t)	Sp

)
n (2.19)

where 	Spn is the surface vector of the face opposite
node P of the tetrahedron under consideration.

The strain tensor εij is calculated at the center of the
tetrahedron with a node P, and can be obtained by using
Green’s Theorem based on the displacement vectors at
the four vertices of the tetrahedron. Similar to the Galer-
kin type of formulation, the gradient of displacement
vector	X at the center of a tetrahedron is evaluated as
follows:

grad(	X) = −
∑4

k=1 (	X)k · 9Sk

27V

= −1
3

∑4
k=1 (	X)k · Sk

V
(2.20)

where (	X)k is the displacement vector at a vertex k of
the tetrahedron and Sk is the surface vector that is oppo-
site to vertex k, V is the volume of the tetrahedron. The
gradients of displacements obtained are substituted into
Eq. (2.13) for the computations of strain tensor εij. With
the strain tensor, the stresses are calculated according to
Eq. (2.10), and then the stresses are integrated over each
control volume as specified by Eq. (2.18). The treatment
of external forces is simpler since they are known func-
tions. The integration of external forces is carried out
over control volumes following Eq. (2.19).

2.4 Temporal discretization and integration

To enhance computational efficiency, an implicit dual
time-stepping scheme, which is widely used for solu-
tions of unsteady flows in CFD [13,15–17], is adopted
in this work for time discretization. Implicit schemes
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usually permit larger time-step sizes than explicit schemes,
if not taking into consideration of accuracy.

Following Jameson’s work [17], the derivative with
respect to a fictitious pseudo time τ , is added to Eq. (2.7).
Re-writing Eqs. (2.7) for a given node P with inputs from
Eq. (2.18) and (2.19) and the pseudo-time term, the spa-
tially discretized equations form a system of ordinary
differential equations, which can be reformulated as

∂

∂τ
(Vp	Vcv)

= −
⎡
⎣ ∂

∂t
(Vp	Vcv) − 1

3

ncell∑
n=1

(
σij · 	Sp

)
n

−1
3

ncell∑
n=1

(
f (t)	Sp

)
n

⎤
⎦

= −R(Vp) (2.21)

where R(Vp) represents the residual, which includes
stresses, external forces and inertial forces, 	Vcv is the
control volume of node P. The physical time derivative
term ∂

∂t is discretized with a second-order accurate back-
ward difference scheme, and the residual R(Vp) is re-
formulated as follows:

R(V t+1
p ) = 1.5V t+1

p 	Vt+1
cv − 2.0 V t

p	Vt
cv + 0.5V t−1

p 	Vt−1
cv

	t

−1
3

ncell∑
n=1

(
σij · 	Sp

)
n − 1

3

ncell∑
n=1

(
f (t)	Sp

)
n (2.22)

The superscript (t + 1) denotes the time level (t + 1)
	t and all the variables are evaluated at this time level.
Thus Eq. (2.21) can be written in the following discrete
form:

dV t+1,m
p

dτ
	Vt+1

cv = −R(V t+1,m
p ) (2.23)

whose solution is sought by marching to a pseudo equi-
librium state in τ . Here m denotes the pseudo time level
m	τ . Once the artificial equilibrium state is reached,
the derivative of Vp with respect to τ becomes zero,
and the solution satisfies R(Vn+1

p ) = 0. This is actually
the solution of Eq. (2.7). Hence, the original governing
equation is fully recovered. Therefore, instead of solving
the governing equation at each time step in physical time
domain (t), the problem is transformed into a sequence
of pseudo equilibrium-state computations in the arti-
ficial time domain (τ ). This can be performed using a
pseudo time explicit five-stage Runge–Kutta scheme [18,
19]. For time integration, Eq. (2.23) is re-formulated as

V t+1,m+1
p − V t+1,m

p

	τ
	Vt+1

cv = −R(V t+1,m
p ) (2.24)

To advance the solution in pseudo time from m to m+1,
the formulation of a five-stage Runge–Kutta scheme is
adopted:

V (0)
p = Vm

p

V (1)
p = V (0)

p − α1
	τ

	Vcv
R(V (0)

p )

V (2)
p = V (0)

p − α2
	τ

	Vcv
R(V (1)

p )

V (3)
p = V (0)

p − α3
	τ

	V(2)
cv

R(V (2)
p ) (2.25)

V (4)
p = V (0)

p − α4
	τ

	Vcv
R(V (3)

p )

V (5)
p = V (0)

p − α5
	τ

	Vcv
R(V (4)

p )

V (m+1)
p = V(5)

p

where the stage coefficients for a five-stage Runge–
Kutta time integration are as follows:

α1 = 1
4

, α2 = 1
6

, α3 = 3
8

, α4 = 1
2

, α5 = 1

To improve convergence rates, residual smoothing
[15] is adopted, which only destroys time accuracy in
pseudo time without affecting the accuracy in physi-
cal time. The idea behind this is to replace the residual
at one vertex with a smoothed or weighted average of
the residuals at the neighboring vertices. The averaged
residuals are calculated implicitly in order to increase
the local pseudo time step size, thus increasing the con-
vergence rate. The smoothing equation for a vertex k
can be expressed as

R̄k = Rk + ε R̄k (2.26)

where R is the original residual, R̄ is smoothed residual
and ε is the smoothing coefficient, which can be defined
as

ε = max

{
1
4

[(
CFL
CFL∗

)2

− 1

]
, 0

}
(2.27)

where CFL∗ is the maximum CFL number of the basic
scheme. The solution to the above equations can be ob-
tained on an unstructured grid by using Jacobi iterative
method as follows:

R̄(m)

k = R(0)

k + ε

numnod(k)∑
i=1

[R̄(m)
i − R̄(m)

k ]

i.e.

R̄(m)

k = R(0)

k + ε
∑numnod(k)

i=1 R̄(m−1,m)
i

1 + ε · numnod(k)
(2.28)
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where numnod(k) is the number of neighboring nodes
of vertex k. After the velocity is obtained, the displace-
ment is calculated using the average of V t−1 and V t as

(	X)t+1 = (	X)t + 	t
2

(
V t+1 + V t

)
(2.29)

2.5 Lumped mass representation and dynamic
behavior of structures

This work aims to compute the structural dynamics where
the presence of inertial force in Eq. (2.7) is represented
by lumped mass matrix. In numerical analysis, there
are two different types of representations for discrete
mass, i.e., the lumped mass matrix and the consistent
mass matrix. For FE methods, both representations are
possible depending on the models analyzed. However
for the cell-vertex FV formulation described in this work,
the lumped mass matrix is the only possible choice for
the FV stress and strain analyses.

The natural frequency of a structure depends on its
material properties, geometry and the loading condi-
tions acting on it. A structure may exhibit extensional,
torsional, flexural deformation or a combination of all
three. If a structure is subject to a combination of exten-
sional and flexural deformations the resulting natural
frequencies will differ from those occurring in pure flex-
ure or pure extension. The natural frequencies for flex-
ural modes of vibration are of most interest since the
natural frequencies are significantly lower than those for
extensional or torsional deformation, which may result
in higher stresses in the structure [20]. Axial loads ap-
plied to slender structures may be extensile or compres-
sive. Tensile loads will increase the natural frequency of
a structure while the compressive loads will decrease
them, while concentrated transverse loads and body
forces will always decrease the natural frequency [20].

2.6 Boundary conditions

The boundary conditions used in this work include fully
clamped and simply supported boundary conditions. For
simply supported edges, the following conditions are
imposed:

(a) 	X = 0, no displacement on the edge;
(b) ∇(	X) �= 0, rotation of the edge is allowed;
(c) Q �= 0, shear forces are prescribed on the edge;
(d) M = 0, bending moments are zero.

For fully clamped edges, the following conditions are
applied:

(a) 	X = 0, no displacement occurs on the edge;
(b) ∇(	X) = 0, rotation of the edge is suppressed;
(c) Q �= 0, shear forces are prescribed;
(d) M �= 0, bending moments are prescribed.

3 Numerical results and discussions

3.1 Deformation and dynamics of a 2D cantilever

The solver is first tested on a 2D clamped-free cantilever
supporting a load at its free end [21], a benchmark case
in structural mechanics. The cantilever is illustrated in
Fig. 2, where h, d and l are the height, width and length of
the cantilever respectively. F is the imposed load and for
2D analysis it is assumed that d=1.0. The static solution
to this problem given by Timoshenko and Goodier [21]
allows a slight distortion at the free end of the cantilever,
whereas the solution given by Fenner [22] has no such
distortions. This test case requires no such displacement
or distortion at the free end of the cantilever, therefore
the y displacement at the free end given by Fenner [22]
is adopted:

dy = − 4Fl3

Edh3 (3.1)

where E is Young’s modulus. The load F imposed at the
free end is set to be 250 N. The static solution given in
Eq. (3.1) is independent of Poisson’s ratio and is applica-
ble to a cantilever undergoing pure bending, i.e. no axial
load is applied and out of plane load on the cantilever
is zero. Thus for comparison with the analytical solution
a zero Poisson’s ratio is assumed. The geometrical and
material parameters of this cantilever are tabulated in
Table 1.

Clamped end F

l
d

h
Free end

Fig. 2 A clamped-free end cantilever

Table 1 Geometry and material properties for a 2D cantilever

Geometry Material properties

Length l 20.0 m Young’s modulus E 10 MPa
Width d 1.0 m Density ρ 2, 600 Kg/m3

Height h 2.0 m Load F 250 N



A 3D implicit unstructured-grid finite volume method for structural dynamics 305

Fig. 3 Grids used for Grid
convergence study; (i) 5 × 2
elements; (ii) 10 × 4 elements;
(iii) 20 × 8 elements; (iv)
40 × 16 elements; (v) 80 × 16
elements

(i) (ii)

(iv)

(v)

(iii)

With the above parameters and the load applied,
Eq. (3.1) gives the static displacement at the tip of
the cantilever is −0.1 m. Before embarking on the dy-
namic analysis of the 2D cantilever, a grid-independent
solution to the static displacement problem is sought.
Five grids are studied for the cantilever displacement as
shown in Fig. 3:

1. Grid (i) 5×2 elements, 12 grid nodes;
2. Grid (ii) 10×4 elements, 33 grid nodes;
3. Grid (iii) 20×8 elements, 105 grid nodes;
4. Grid (iv) 40×16 elements, 369 grid nodes;
5. Grid (v) 80×16 elements, 1,377 grid nodes.

The percentage errors in the y displacement are illus-
trated in Fig. 4 and tabulated in Table 2. A percentage
error of 4.2% is found with grid (iv) and a percentage
error of 1.5% is observed with grid (v). Thus grid (iv)
is deemed to fine enough, which is chosen for further
analysis. All simulations were run on an Origin Graphic
2000 workstation. And with the chosen grid (iv), the
CPU time is about 15 min.

Fig. 4 Grid convergence study for 2D cantilever

Table 2 Grids and percentage errors for 2D cantilever

Grids Percentage errors (%)

(i) 5×2 elements 66.2
(ii) 10×4 elements 32.7
(iii) 20×8 elements 10.2
(iv) 40×16 elements 4.2
(v) 80×16 elements 1.5

The maximum bending stress at the root of the canti-
lever occurs at the upper surface [23], which is calculated
as follows:

(σxx)max = My
Iz

= 6FL
dh2 (3.2)

With the 250 N load, the maximum bending stress at the
root of the cantilever is 7,500 Pa. The distributions of
bending (σxx) and shear (τxy) stress obtained on grid
(iv) are presented in Figs. 5 and 6. In the calculated
results, the bending stress on the upper surface at the
root of cantilever registers a value of 7,360 Pa, about
1.8% deviation from the analytical result of 7,500 Pa.
The distribution of shear stress in the cantilever distrib-
utes has a parabolic shape along the transverse direction,
with a maximum shear stress at the center and zero val-
ues on the upper and lower surfaces [23]. The maximum
shear stress is calculated as

(τxy)max = −Fh2

8Iz
= −3

2
F
dh

(3.3)

The maximum shear stress at the center is −1, 800 Pa
in the simulated result, which agrees with the analytical
solution of −1, 875 Pa calculated by Eq. (3.3).

The dynamic responses of the cantilever are investi-
gated in two different cases: forced vibration and free
vibration. The forced vibration is the dynamic response
of the cantilever under the imposed load F. The cantile-
ver starts vibrating once the load is applied and it will fi-
nallyreach a steady state with its steady-state
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Fig. 5 Distribution of
bending stress σxx(Pa)

Fig. 6 Distribution of shear
stress τxy(Pa)

displacement. The forced vibration of the cantilever
under constant load F [24] can be described as the
following:

y(t) =
(

y0 − F
k

)
e−ςωnt cos ωdt

+
[

ςωn(y0 − F/k) + •
y0

ωn
√

1 − ς2

]
e−ςωnt sin ωdt − F

k
(3.4)

•
y(t) = •

y0e−ςωnt cos ωdt

−
⎡
⎣ωn(y0 − F/k) + ς

•
y0√

1 − ς2

⎤
⎦e−ςωnt sin ωdt (3.5)

where y(t),
•
y(t), y0 and

•
y0 are the displacement, veloc-

ity, initial displacement and initial velocity of the tip
of the cantilever respectively, ωnand ωd are undamped
and damped natural frequencies of the cantilever. ς =

c
2mωn

is critical damping ratio, which represents damp-
ing in the structure. In this work, a 10% damping ratio
is adopted. k = 3EI

l3
is the stiffness of the structure. The

undamped natural frequency [24] for the first mode of
vibration of the cantilever is

ωn = (1.875)2

√
EIz

ml4
(3.6)

and the damped natural frequency [24] is

ωd = ωn

√
1 − ς2 (3.7)

The steady-state response is obtained from Eqs. (3.4)
and (3.5) by taking the limit as t → ∞. Since e−ςωnt → 0
as t → ∞, it follows that

yss = −F
k

= − F

3EIz
/

l3
= − 4Fl3

Edh3 (3.8)

•
yss = 0 (3.9)

Equation (3.8) is actually the same as Eq. (3.1), which
calculates the maximum displacement at the tip. The
velocity of the cantilever in forced vibration finally de-
creases to zero as stated in Eq. (3.9).

Free vibration of the cantilever is initiated by releas-
ing the load on the cantilever after reaching its steady
status, with an initial displacement of yss and a zero ini-
tial velocity. The equation describing free vibration [24]
is

y(t)
yss

= e−ςωnt

[
cos ωdt +

(
ς√

1 − ς2

)
sin ωdt

]
(3.10)

The displacement history of free vibration is shown in
Fig. 7, in which the simulated frequency and period are
found to be 0.053 Hz and 19 s. They compare favorably
with the analytical frequency and period of 0.05 Hz and
20 s.

3.2 Deformation and dynamics of a 3D cantilever

The 2D cantilever studied in the previous section is ex-
tended to three dimensions as shown in Fig. 2. For the
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Fig. 7 Displacement history of free vibration of 2D cantilever

Table 3 Grids and percentage errors for 3D cantilever

Grids Percentage errors (%)

(i) 25 elements 81.2
(ii) 100 elements 56.7
(iii) 200 elements 12.2
(iv) 1,600 elements 3.5
(v) 12,800 elements 1.2

3D case, the depth of the cantilever is 2 m. Length and
width remain the same. The imposed load increases to
500 N. Material properties are the same as the 2D can-
tilever as listed in Table 1. With these geometrical and
material parameters, displacement at the tip of cantile-
ver is −0.1 m according to Eq. (3.1). A grid convergence
study is also performed for the 3D cantilever on five
consecutively finer grids, which are listed as follows:

(a) grid (i) 5×5×1 25 elements, 24 grid nodes;
(b) grid (ii) 5×5×4 100 elements, 54 grid nodes;
(c) grid (iii) 10×5×4 200 elements, 99 grid nodes;
(d) grid (iv) 20×5×8 1,600 elements, 525 grid nodes;
(e) grid (v) 40×20×16 12,800 elements, 3,321grid nodes.

The results of the grid convergence study are tabulated
in Table 3 and illustrated in Figure 8. It is found that
grid (iv) is fine enough for the 3D cantilever. On the
Origin Graphic 2000 workstation, the CPU time for the
simulation is about 30 min.

The distributions of σxx and τxz at mid-y plane of
the loaded cantilever are shown in Figs. 9 and 10. The
maximum bending stress σxx is 7,500 Pa according to
Eq. (3.2). It is observed that the numerical results agree
well with the analytical solutions. The time history of dis-

Fig. 8 Grid convergence study for 3D cantilever

placement for free vibration of the cantilever is shown in
Fig. 11. The period of free vibration of the 3D cantilever
is 13.8 s as found in Fig. 11, which is in accordance with
the analytical value of 14 s.

3.3 Simply-supported square plate

The third test case is a simply-supported square plate
subject to a uniformly distributed load as shown in Fig. 12.
The geometry of the plate is 20 × 20 × 0.5 m. A mesh
of 40 × 40 × 10 elements is chosen for the simulation
after a grid convergence investigation. Young’s modu-
lus E and Poisson’s ratio v of the plate are 10 MPa and
0.3. The density of the plate is 2,600 kg/m3 . And the
uniform load q is 10 N/m2 . The maximum displacement
occurs at the center of the plate in z direction, and the
analytical solution of the maximum displacement given
by Timoshenko [25] is

Wmax = −0.00406
qL4

D
(3.11)

where

D = Et3

12(1 − v2)
(3.12)

and L is the length of edge and t is the thickness of the
plate. Therefore Wmax is −0.057 m according to Eq. (3.11).
The displacement contour of the plate is shown in Fig. 13,
in which the maximum displacement occurs at the cen-
ter with a value of −0.054 m, a small deviation from
the analytical solution. The maximum bending stresses
(σxx)maxand (σyy)maxare at the center of the plate [25].
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Fig. 9 Distribution
of bending stress σxx
on the mid-y plane

Fig. 10 Distribution of shear
stress τxz on the mid-y plane

Fig. 11 Displacement history of free vibration of 3D cantilever

Fig. 12 Geometry and mesh of a square plate

Fig. 13 Displacement contours of a simply-supported square
plate

For a square plate, (σxx)maxis equal to (σyy)max, which is
calculated as

(σxx)max = (σyy)max = −3qL2(1 + v)

2π t2
(3.13)

Maximum shear stresses (τxz)maxand (τyz)maxoccur at the
middle of the edges of plate [25]. They are calculated as
follows:

(τxz)max = (τyz)max = −3qL(3 − v)

8π t
(3.14)
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Fig. 14 a Distribution of σxx;
b Distribution of σyy on the
upper surface of plate

Fig. 15 a Distribution of τxz
on the mid-it z plane;
b Distribution of τxy

Hence the analytical values of maximum bending and
shear stresses are −3, 164 Pa and −129 Pa respectively.
The distributions of bending stresses and shear stresses
are presented in Figs. 14 and 15. In Fig. 14, it is found
that (σxx)max and (σyy)max are −3, 208 Pa at the center.
And in Fig. 15(a), the maximum shear stress (τxz)max is
at the middle of edges along y direction of the plate,
with a value of −150 Pa. The distribution of τyz is in the
same pattern as τxz, except the maximum value occurs
at the center of the edge along x direction. The distri-
bution of τxy is also presented in Fig. 15(b). Compared
with the analytical values, it is observed that the numer-
ical results are in good agreement with the analytical
solutions obtained from Eqs. (3.13) and (3.14).

The imposed load is released after the plate reaches
its steady state, the dynamic response is investigated for
free vibration of the plate with an initial displacement.
The frequency parameter of the free vibration is calcu-
lated as [26]

λ2 = ω2L4m
D

=
(

2π2
)2

(3.15)

hence

ω = 2π2

L

√
D
m

(3.16)

Therefore the exact frequency of free vibration of the
plate is 0.4639 rad/s and the period is 2.2 s. The free vibra-
tion of the plate is presented in Fig. 16, in which the
displacement is recorded at the center of plate. It is
observed in the numerical result that the period of free
vibration is 2.1 s and the frequency is 0.476 rad/s. The
simulation for the simply-supported square plate takes
about 60 min in CPU time.

3.4 Clamped square plate

In this section, the square plate studied in the last section
is modified with clamped boundaries, whilst all other
parameters remain the same. The maximum displace-
ment occurs at the center of plate [25], which is given
as

Wmax = −0.00126
qL4

D
(3.17)
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Fig. 16 Displacement history of free vibration of the simply sup-
ported plate

which generates a maximum displacement of −0.0176 m.
The numerical result gives a maximum displacement at
the center of −0.019 m as shown in Fig. 17. The maxi-
mum bending moment occurs at the middle of the edges
[25] which is calculated by

Mmax = 0.0513qL2 (3.18)

Therefore the maximum bending stresses at the middle
of the edges are

(σxx)max = (σyy)max = 6Mmax

t2
(3.19)

Fig. 17 Displacement contours of a fully clamped square plate

Hence the analytical value of maximum bending stresses
is 2,462 Pa. The simulated distributions of bending
stresses σxx and σyy are presented in Fig. 18. It is found
in this Figure that the maximum bending stresses are
at the middle of the edges with a value of 2,500 Pa,
which agree well with the analytical values. The max-
imum shear stresses also occur at the middle of edges of
the plate, which are calculated as [25]

(τxz)max = 1
2
(σxx − σzz) (3.20)

(
τyz
)

max = 1
2

(
σyy − σzz

)
(3.21)

The analytical solution obtained from Eq. (3.17) is
2,400 Pa. (τxz)max occurs at the middle of the edge along
y and

(
τyz
)

max occurs at the middle of the edge along x
as found in the simulation results, which are presented
in Fig. 19(a). The distribution of τxy is also presented in
Fig. 19(b). From the above analysis, it can be concluded
that the numerical results agree well with the analytical
solutions in terms of displacements and stress distribu-
tions.

The dynamic response of the clamped plate is studied
for free vibration, which is initiated from the deformed
status after it is released from the uniformly distributed
load. The frequency parameter given by Leissa [26] is

λ2 = ω2L4m
D

= (35.6852)2 (3.22)

hence

ω = 35.6852
L

√
D
m

(3.23)

which shows that the exact frequency of free vibration of
the plate is 0.8386 rad/s and the period is 1.2 s. The free
vibration of the clamped plate is presented in Fig. 20, in
which the displacement is recorded at the center of plate.
It is observed in the numerical result that the period of
free vibration is 1.26 s . The CPU time for the simulation
of the clamped square plate is almost the same as that
of the simply-supported square plate.

4 Conclusions

A new 3D vertex-centered unstructured-grid finite vol-
ume scheme is proposed in this work for structural sta-
tic and dynamic analysis. Stresses are evaluated using
the Green Theorem based on grid cells. To obtain time
accurate dynamic solutions, implicit dual time stepping
scheme is employed. Local timestepping scheme and
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Fig. 18 a Distribution of σxx;
b Distribution of σyy on the
upper surface of plate

Fig. 19 a Distribution of τxz
on the mid-z plane;
b Distribution of τxy

Fig. 20 Displacement history of free vibration of the fully
clamped plate

residual smoothing in pseudo time are implemented
to improve convergence. Numerical experiments prove
that the method is accurate and efficient in the analysis
of structural deformation and dynamics.
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