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Abstract A new high-order accurate time-continu-
ous Galerkin (TCG) method for elastodynamics is sug-
gested. The accuracy of the new implicit TCG method
is increased by a factor of two in comparison to that of
the standard TCG method and is one order higher than
the accuracy of the standard time-discontinuous Galer-
kin (TDG) method at the same number of degrees of
freedom. The new method is unconditionally stable and
has controllable numerical dissipation at high frequen-
cies. An iterative predictor/multi-corrector solver that
includes the factorization of the effective mass matrix of
the same dimension as that of the mass matrix for the
second-order methods is developed for the new TCG
method. A new strategy combining numerical methods
with small and large numerical dissipation is developed
for elastodynamics. Simple numerical tests show a sig-
nificant reduction in the computation time (by
5–25 times) for the new TCG method in comparison
to that for second-order methods, and the suppression
of spurious high-frequency oscillations.

1 Introduction

Most finite element procedures for elastodynamics
problems are based upon semi-discrete methods [7–
9,22,23,26–28]. For these methods, the application of
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finite elements in space to linear elastodynamics prob-
lems leads to a system of ordinary differential equations
in time

MMM ÜUU + CCC U̇UU + KKK UUU = RRR, (1)

which are in turn discretized by finite difference methods
for ordinary differential equations. Here MMM,CCC,KKK are the
mass, damping and stiffness matrices, respectively, UUU(t)
is the vector of the nodal displacement, RRR(t) is the vec-
tor of the nodal load. Among semi-discrete methods,
second-order accurate methods, such as the Houbolt
method, the Newmark method, the Wilson-θ method,
the Park method, and the HHT-α method, are the most
frequently used. Zienkiewich and coworkers (see [27,
28]) have developed and analyzed a set of algorithms,
called the unified set of a single step method, based on
the application of the weighted residual method to the
equation of motion. Many of the classical finite differ-
ence schemes mentioned above are particular cases of
the unified set. High accuracy can be obtained by using
higher-order interpolation polynomials. However, the
high-order accurate method suggested in [27,28] is not
unconditionally stable for elastodynamics.

Recently, new high-order accurate methods with a
step-by-step time integration scheme have been devel-
oped for elastodynamics (see [1,2,4,6,11–13,15–17,21,
24,25] and others). Most of them are based on semi-dis-
crete equations with the polynomial time approxima-
tions of unknown functions. The polynomial coefficients
are derived with the use of different approaches such as
TCG and TDG methods, weighted residual methods,
collocation methods and others. The ultimate goal in
the development of high-order accurate methods is to
construct an unconditionally stable method with
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controllable numerical dissipation that is much more
computationally effective than known second-order
methods. Because many high-order accurate methods
require the solution of a large system of equations (much
larger than the system for second-order methods), the
development of effective iterative predictor/multi-cor-
rector solvers is an important component of the method.

The focus of this paper is the development of a new
high-order accurate method for elastodynamics. The new
method is based on a modified continuous Galerkin for-
mulation and polynomial time approximations of dis-
placements and velocities. Initial conditions are strongly
enforced. For linear, quadratic and third-order polyno-
mial time approximations the method has the second,
fourth and sixth order of accuracy, respectively. It means
that the accuracy of the new implicit TCG method is
increased by a factor of two in comparison to that of
the standard TCG method [3] and is one order higher
than the accuracy of the standard TDG method [12–
15,17,18] (and the high-order accurate methods sug-
gested in [6,21]) at the same number of degrees of
freedom. The new method is unconditionally stable and
has controllable numerical dissipation at high frequen-
cies. An iterative predictor/multi-corrector solver that
includes the factorization of the effective mass matrix of
the same dimension as that of the mass matrix for the
second-order methods is developed for the new TCG
method. This iterative predictor/multi-corrector solver
requires only a few iterations in order to reach the accu-
racy of direct solvers. For example, two iterations are
needed for the fourth-order of accuracy and three iter-
ations for the sixth-order of accuracy. The suggested
predictor/multi-corrector solver is much more effective
than those developed for high-order methods. For exam-
ple, the predictor/multi-corrector solver suggested in
[21] for modified Nørsett methods requires one iteration
in order to improve the order of accuracy by one. The
predictor/multi-corrector solver for the TDG method
suggested in [17] is only conditionally stable for third-
order time approximations and is studied for problems
without damping. Many different iterative solvers were
developed for the TDG method but only for the linear
time approximations (see [1,2,4,5,18–20,25] and oth-
ers). Simple 1-D numerical tests show that even with a
direct solver the new TCG method reduces the compu-
tation time by 5–25 times in comparison to that of the
second-order methods and is much faster than the TDG
method. Because the numerical error is usually greater
for 2-D and 3-D problems and is accumulated during
the time integration, the new technique should be even
more effective for multi-dimensional problems.

It is necessary to note that known semi-discrete and
TDG methods lead to a spurious high-frequency response

for wave propagation problems [4,10,15,20,24], espe-
cially with non-uniform meshes (see Fig. 8b below).
However, numerical results considered in the paper show
that for the new TCG method, the spurious oscillations
can be excluded due to controllable numerical dissipa-
tion. In the paper we propose a new general strategy
that allows the effective use of numerical methods with
zero or small numerical dissipation for wave propaga-
tion problems. The idea consists in the combination of
numerical methods with small and large numerical dis-
sipation. The basic computations, especially for a long-
term integration, can be made with a high-order method
with zero or very small numerical dissipation. It means
that all modes are integrated very accurately. Then, in
order to damp out high modes, a method with large
numerical dissipation can be used for a number of last
time increments or as a post-processor. This method can
be considered as a filter of high modes. An example of
the application of the new strategy with the new TCG
method shows the effectiveness of the new approach.

2 Variational formulation of elastodynamics

2.1 Weak and discrete formulations of elastodynamics
based on continuous Galerkin time-stepping
methods

For the derivation of weak and discrete formulations of
elastodynamics, the so-called two-field formulation will
be used. For this aim the finite element equations (1)
can be rewritten as follows:

MMM V̇VV + CCC VVV + KKK UUU = RRR, VVV = U̇UU, (2)

where VVV(t) is the vector of the nodal velocity. Eq. (2) are
a system of ordinary differential equations. For the con-
tinuous Galerkin time-stepping method, we introduce a
partition of the whole time interval [0, T] in a not nec-
essarily uniform fashion by 0 = t0 < t1 < · · · < tn <

· · · < tN and define the time intervals Jn = (tn−1, tn], n =
1, . . . , N, where tN = T. A weak formulation of elasto-
dynamics for any time interval Jn can be derived from
Eq. (2) as follows:

∫

Jn

(v̄vvT + a ˙̄vvvT)[MMM V̇VV + CCC VVV + KKK UUU − RRR] λ1(t) dt = 0,

∫

Jn

(ūuuT + a ˙̄uuuT) (U̇UU − VVV) λ2(t) dt = 0, (3)
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where ūuu(t) and v̄vv(t) are the trial vector functions depend-
ing on time t; a is the scalar coefficient and has the
dimension of time (e.g. s); λ1(t) and λ2(t) are the weight-
ing scalar functions depending on time t only. At
time tn−1 nodal displacements and velocities UUU(tn−1)

and VVV(tn−1) are known from the solution for the pre-
vious time interval Jn−1, or from the initial conditions,
and ūuu(tn−1) = v̄vv(tn−1) = 000. For any time interval Jn a
local time t∗ = t − tn−1 can be introduced. Time t∗ var-
ies from 0 to �t (�t = tn − tn−1). For convenience,
for all derivations for time intervals Jn, the local time
t∗ will be used. However, in order to simplify notations
the local time will be designated as t. The advantages
of using additional scalar functions λ1(t) and λ2(t) were
considered in the author’s paper (A. V. Idesman, sub-
mitted). At special polynomial approximations of these
functions, they do not affect the accuracy of the numeri-
cal algorithm but allow control of additional algorithmic
characteristics, e.g., the spectral radii (A. V. Idesman,
submitted). In this paper we assume for simplicity that
λ1(t) = λ2(t) = 1. The numerical algorithm with poly-
nomial functions λ1(t) and λ2(t) can be derived without
any difficulties.

To get a discrete formulation from Eq. (3) the follow-
ing time polynomial approximations of the order n for
any time interval Jn will be used for UUU(t),VVV(t), ūuu(t) and
v̄vv(t)

UUU(t) = UUU0 + UUU1 t + UUU2 t2 + · · · + UUUn tn ,

VVV(t) = VVV0 + VVV1 t + VVV2 t2 + · · · + VVVn tn, (4)

ūuu(t) = ūuu0 + ūuu1 t + ūuu2 t2 + · · · + ūuun tn ,

v̄vv(t) = v̄vv0 + v̄vv1 t + v̄vv2 t2 + · · · + v̄vvn tn,

where UUU0 and VVV0 are the known initial displacement
and velocity, UUU1, . . . ,UUUn and VVV1, . . . ,VVVn are unknown
vectors to be determined, ūuu0 = v̄vv0 = 000, and ūuu1, . . . , ūuun

and v̄vv1, . . . , v̄vvn are trial vectors. When Eq. (4) is inserted
into Eq. (3), the final discrete system of algebraic equa-
tions for unknownsUUU1, . . . ,UUUn andVVV1, . . . ,VVVn is derived
as follows:

(MMM VVV1 + CCC VVV0 + KKK UUU0 )

(
�t

1 + k
+ a

)

+(2MMM VVV2 + CCC VVV1 + KKK UUU1)

(
�t

2 + k
+ ak

k + 1

)
�t

+ · · · + ( nMMM VVVn + CCC VVVn−1 + KKK UUUn−1 )

×
(

�t
n + k

+ ak
n + k − 1

)
�tn−1

+ (CCC VVVn + KKK UUUn )

(
�t

n + k + 1
+ ak

n + k

)
�tn

= RRRk , k = 1, 2, . . . , n (5)

(UUU1 − VVV0 )

(
�t

1 + k
+ a

)

+( 2UUU2 − VVV1 )

(
�t

2 + k
+ ak

k + 1

)
�t

+ · · ·+(nUUUn−VVVn−1)

(
�t

n + k
+ ak

n + k − 1

)
�tn−1

−VVVn

(
�t

n + k + 1
+ ak

n + k

)
�tn

= 000, k = 1, 2, . . . , n (6)

where

RRRk = 1
�tk

�t∫

0

RRR(t)(tk + aktk−1) dt. (7)

This procedure can be considered as the application of
the continuous Galerkin method to the system (2). Eqs.
(5) and (6) represent a system of 2n algebraic equations
with 2n unknown vectors UUU1, . . . ,UUUn and VVV1, . . . ,VVVn. It
is necessary to note that the system of n equations (6) can
be analytically solved separately from the system (5); i.e.,
unknown vectors VVV1, . . . ,VVVn can be expressed in terms
of unknown vectors UUU1, . . . ,UUUn. Then the final system
of equations (5) and (6) can be reduced to the system of
only n equations with unknown vectors UUU1, . . . ,UUUn. Let
us consider the derivation of the final system of equa-
tions for n = 1, n = 2 and n = 3 in detail. For the
higher number of n the derivation is similar to these
cases.

2.2 Linear time approximations (n = 1)

For the linear approximations of vectors UUU(t),VVV(t), ūuu(t)
and v̄vv(t), Eq. (4) can be rewritten as follows:

UUU(t) = UUU0 + UUU1 t , VVV(t) = VVV0 + VVV1 t ,

ūuu(t) = ūuu0 + ūuu1 t , v̄vv(t) = v̄vv0 + v̄vv1 t . (8)

Then from Eq. (6) we get

(UUU1 − VVV0 )

(
�t
2

+ a
)

− VVV1

(
�t
3

+ a
2

)
�t = 000 (9)

or

VVV1 = 3(�t + 2a)

�t(2�t + 3a)
UUU1 − 3(�t + 2a)

�t(2�t + 3a)
VVV0. (10)

At n = 1 Eq. (5) reduces to

(MMM VVV1 + CCC VVV0 + KKK UUU0 )
�t + 2a

2

+ (CCC VVV1 + KKK UUU1 )
2�t + 3a

6
�t = RRR1. (11)
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By the insertion of Eq. (10) into Eq. (11), the following
system can be obtained

(
MMM + a1CCC + a2

1KKK
)

UUU1

= − a1KKK UUU0 + MMM VVV0 + a2RRR1 , (12)

where

a1 = �t(2�t + 3a)

3(�t + 2a)
, a2 = 2(2�t + 3a)�t

3(�t + 2a)2 ,

RRR1 = 1
�t

�t∫

0

RRR(t)(t + a) dt. (13)

The vector UUU1 can be found from Eq. (12), then the
vector VVV1 can be calculated from Eq. (10).

2.3 Quadratic time approximations (n = 2)

For the quadratic approximations of vectors UUU(t),VVV(t),
ūuu(t) and v̄vv(t), Eq. (4) can be rewritten as follows:

UUU(t) = UUU0 + UUU1 t + UUU2 t2 ,

VVV(t) = VVV0 + VVV1 t + VVV2 t2, (14)

ūuu(t) = ūuu0 + ūuu1 t + ūuu2 t2,

v̄vv(t) = v̄vv0 + v̄vv1 t + v̄vv2 t2.

Then from Eq. (6) (n = 2, k = 1, 2) we get

(UUU1 − VVV0 )

(
�t
2

+ a
)

+ (2UUU2 − VVV1)

(
�t
3

+ a
2

)
�t

−VVV2 (
�t
4

+ a
3
)�t2 = 000, (15)

(UUU1 − VVV0 )

(
�t
3

+ a
)

+ (2UUU2 − VVV1)

(
�t
4

+ 2a
3

)
�t

−VVV2

(
�t
5

+ a
2

)
�t2 = 000. (16)

Solving Eqs. (15) and (16) we get

VVV1 = 2UUU2 + a1UUU1 − a1VVV0 , (17)

VVV2 = a2UUU1 − a2VVV0, (18)

where

a1 = 2(60a2 + 32a�t + 6�t2)
�t(20a2 + 12a�t + 3�t2)

,

a2 = − 10(12a2 + 6a�t + �t2)
�t2(20a2 + 12a�t + 3�t2)

. (19)

At n = 2 and k = 1, 2, Eq. (5) reduces to the following
two equations:

(MMM VVV1 + CCC VVV0 + KKK UUU0 )
�t + 2a

2

+( 2MMM VVV2 + CCC VVV1 + KKK UUU1 )
2�t + 3a

6
�t

+(CCC VVV2 + KKK UUU2 )
3�t + 4a

12
�t2 = RRR1, (20)

(MMM VVV1 + CCC VVV0 + KKK UUU0 )
2�t + 6a

6

+( 2MMM VVV2 + CCC VVV1 + KKK UUU1 )
3�t + 8a

12
�t

+(CCC VVV2 + KKK UUU2 )
4�t + 10a

20
�t2 = RRR2. (21)

With the insertion of Eqs. (17) and (18) into Eqs. (20)
and (21), the following system can be obtained (a matrix
form will be used):

BBB
{

MMM UUU1
MMM UUU2

}
+ DDD

⎧⎪⎪⎨
⎪⎪⎩

CCC UUU1
CCC UUU2
KKK UUU1
KKK UUU2

⎫⎪⎪⎬
⎪⎪⎭

= FFF

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

MMM UUU0
MMM VVV0
CCC UUU0
CCC VVV0
KKK UUU0
KKK VVV0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+
{

RRR1
RRR2

}
, (22)

where

BBB =
[

b11III2 b12III2
b21III2 b22III2

]
, (23)

DDD =
[

d11III2 d12III2 d13III2 d14III2
d21III2 d22III2 d23III2 d24III2

]
,

FFF =
[

f11III2 f12III2 f13III2 f14III2 f15III2 f16III2
f21III2 f22III2 f23III2 f24III2 f25III2 f26III2

]
,

III2 =
[

III 000
000 III

]
,

RRR1 = 1
�t

�t∫

0

RRR(t)(t + a) dt,

RRR2 = 1
�t2

�t∫

0

RRR(t)(t2 + 2at) dt. (24)

Here III is the unit matrix of the order m [m is the number
of nodal displacements in Eq. (2)]. The coefficients bij,
dij and fij can be expressed in terms of a and �t, and are
given in the Appendix. The vectors UUU1 and UUU2 can be
calculated from Eq. (22) by means of a direct solver.
Then the vectors VVV1 and VVV2 can be calculated from



A new high-order accurate continuous Galerkin method for linear elastodynamics problems 265

Eqs. (17) and (18). It is necessary to note that the dimen-
sion of system (22) is twice the dimension of the system
of standard methods of the second order of accuracy.

Alternatively, system (22) can be iteratively solved
using a predictor/multi-corrector algorithm. To develop
such an algorithm let us modify system (22). Let us mul-
tiply both sides of equation (22) by BBB−1. Then it follows
that

{
MMM UUU1
MMM UUU2

}
+ BBB−1 DDD

⎧⎪⎪⎨
⎪⎪⎩

CCC UUU1
CCC UUU2
KKK UUU1
KKK UUU2

⎫⎪⎪⎬
⎪⎪⎭

= BBB−1 FFF

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

MMM UUU0
MMM VVV0
CCC UUU0
CCC VVV0
KKK UUU0
KKK VVV0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+ BBB−1
{

RRR1
RRR2

}
, (25)

or

MMM UUU1 + b̄1mdm1CCC UUU1 + b̄1mdm2CCC UUU2

+b̄1mdm3KKK UUU1 + b̄1mdm4KKK UUU2 = R̄RR1 , (26)

and

MMM UUU2 + b̄2mdm1CCC UUU1 + b̄2mdm2CCC UUU2

+b̄2mdm3KKK UUU1 + b̄2mdm4KKK UUU2 = R̄RR2 , (27)

with

R̄RR1 = b̄1mfm1MMM UUU0 + b̄1mfm2MMM VVV0

+b̄1mfm3CCC UUU0 + b̄1mfm4CCC VVV0

+b̄1mfm5KKK UUU0 + b̄1mfm6KKK VVV0

+b̄11RRR1 + b̄12RRR2 ,

R̄RR2 = b̄2mfm1MMM UUU0 + b̄2mfm2MMM VVV0

+b̄2mfm3CCC UUU0 + b̄2mfm4CCC VVV0

+b̄2mfm5KKK UUU0 + b̄2mfm6KKK VVV0

+b̄21RRR1 + b̄22RRR2 . (28)

In Eqs. (26)–(28) the summation over the repeated index
m is meant (m = 1, 2), and the coefficients b̄ij can be
found as elements of the inverse matrix formed by coeffi-
cients bij; i.e.,

[
b̄11 b̄12
b̄21 b̄22

]
=

[
b11 b12
b21 b22

]−1

. (29)

It can been checked that the matrix in Eq. (29) formed
by the coefficients bij is non-singular for all values of a
and �t, and the inverse matrix always exists. Now the

following recurrence relations can be suggested for the
iterative solutions of Eqs. (26) and (27):

M̄MM UUU1
k = γ1CCC UUU1

k−1 + γ2KKK UUU1
k−1

−b̄1mdm1CCC UUU1
k−1 − b̄1mdm2CCC UUU2

k−1

−b̄1mdm3KKK UUU1
k−1 − b̄1mdm4KKK UUU2

k−1 + R̄RR1,

(30)

M̄MM UUU2
k̄ = γ1CCC UUU2

k−1 + γ2KKK UUU2
k−1

−b̄2mdm1CCC UUU1
k − b̄2mdm2CCC UUU2

k−1

−b̄2mdm3KKK UUU1
k − b̄2mdm4KKK UUU2

k−1 + R̄RR2

(31)

and

M̄MM UUU2
k = γ1CCC UUU2

k̄ + γ2KKK UUU2
k̄

−b̄2mdm1CCC UUU1
k − b̄2mdm2CCC UUU2

k̄

−b̄2mdm3KKK UUU1
k − b̄2mdm4KKK UUU2

k̄ + R̄RR2, (32)

where

M̄MM = MMM + γ1CCC + γ2KKK . (33)

Here, the parameters γ1 and γ2 in Eqs. (30)–(33) can
be selected by means of accuracy and stability analysis
of the iterative solver (see below); k is the number of
the current iteration (k = 1, 2, . . . , l); zero initial values
are taken for UUU1

0 and UUU2
0; i.e., UUU1

0 = UUU2
0 = 000. It is

necessary to note that for each iteration one correction
for the vector UUU1 and two corrections for the vector UUU2
are used. In the case of zero damping (CCC = 000) just one
correction for the vector UUU2 should be used; i.e., instead
of being expresses as two equations (31) and (32), the
following equation should be written

M̄MM UUU2
k = γ2KKK UUU2

k−1

−b̄2mdm3KKK UUU1
k − b̄2mdm4KKK UUU2

k−1 + R̄RR2.

(34)

The accuracy analysis (see below) shows that only two
iterations (k = 1, 2) are necessary in order to reach the
same order of accuracy that a direct solver yields; i.e.,
when Eqs. (22) are solved simultaneously.

Remark For zero and non-zero damping matrices CCC,
different iterative predictor/multi-corrector solvers are
used for the solution of elastodynamics problems; i.e.,
Eq. (34) does not follow from Eqs. (31) and (32).
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2.4 Third-order time approximations (n = 3)

For the third-order approximations of the vectors UUU(t),
VVV(t), ūuu(t) and v̄vv(t), Eq. (4) can be rewritten as follows

UUU(t) = UUU0 + UUU1 t + UUU2 t2 + UUU3 t3,

VVV(t) = VVV0 + VVV1 t + VVV2 t2 + VVV3 t3, (35)

ūuu(t) = ūuu0 + ūuu1 t + ūuu2 t2 + ūuu3 t3,

v̄vv(t) = v̄vv0 + v̄vv1 t + v̄vv2 t2 + v̄vv3 t3.

Then from Eq. (6) (n = 3, k = 1, 2, 3), we get

(UUU1 − VVV0 )

(
�t
2

+ a
)

+ (2UUU2 − VVV1)

(
�t
3

+ a
2

)
�t

+ (3UUU3 − VVV2)

(
�t
4

+ a
3

)
�t2

−VVV3

(
�t
5

+ a
4

)
�t3 = 000, (36)

(UUU1 − VVV0 )

(
�t
3

+ a
)

+ (2UUU2 − VVV1)

(
�t
4

+ 2a
3

)
�t

+(3UUU3 − VVV2)

(
�t
5

+ a
2

)
�t2

−VVV3

(
�t
6

+ 2a
5

)
�t3 = 000, (37)

(UUU1 − VVV0)

(
�t
4

+ a
)

+ (2UUU2 − VVV1)

(
�t
5

+ 3a
4

)
�t

+(3UUU3 − VVV2)

(
�t
6

+ 3a
5

)
�t2

−VVV3

(
�t
7

+ a
2

)
�t3 = 000. (38)

Solving Eqs. (36)–(38), we get

VVV1 = 2UUU2 + a1UUU1 − a1VVV0 , (39)

VVV2 = 3UUU3 + a2UUU1 − a2VVV0 , (40)

VVV3 = a3UUU1 − a3VVV0 , (41)

where

a1 = 15(84a3 + 45a2�t + 10a�t2 + �t3)
�t(105a3 + 60a2�t + 15a�t2 + 2�t3)

,

a2 = − 15(420a3 + 216a2�t + 45a�t2 + 4�t3)
2�t2(105a3 + 60a2�t + 15a�t2 + 2�t3)

,

a3 = 35(120a3 + 60a2�t + 12a�t2 + 4�t3)
2�t3(105a3 + 60a2�t + 15a�t2 + 2�t3)

. (42)

At n = 3 and k = 1, 2, 3, Eq. (5) reduces to the following
three equations:

(MMM VVV1 + CCC VVV0 + KKK UUU0 )
�t + 2a

2

+( 2MMM VVV2 + CCC VVV1 + KKK UUU1 )
2�t + 3a

6
�t

+( 3MMM VVV3 + CCC VVV2 + KKK UUU2 )
3�t + 4a

12
�t2

+(CCC VVV3 + KKK UUU3 )
4�t + 5a

20
�t3 = RRR1 , (43)

(MMM VVV1 + CCC VVV0 + KKK UUU0 )
2�t + 6a

6

+( 2MMM VVV2 + CCC VVV1 + KKK UUU1 )
3�t + 8a

12
�t

+( 3MMM VVV3 + CCC VVV2 + KKK UUU2 )
4�t + 10a

20
�t2

+(CCC VVV3 + KKK UUU3 )
5�t + 12a

30
�t3 = RRR2, (44)

(MMM VVV1 + CCC VVV0 + KKK UUU0 )
3�t + 12a

12

+ ( 2MMM VVV2 + CCC VVV1 + KKK UUU1 )
4�t + 15a

20
�t

+( 3MMM VVV3 + CCC VVV2 + KKK UUU2 )
5�t + 18a

30
�t2

+(CCC VVV3 + KKK UUU3 )
6�t + 21a

42
�t3 = RRR3 . (45)

By the insertion of Eqs. (39)–(41) into Eqs. (43)–(45),
the following system can be obtained (a matrix form will
be used):

BBB

⎧⎨
⎩

MMM UUU1
MMM UUU2
MMM UUU3

⎫⎬
⎭ + DDD

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CCC UUU1
CCC UUU2
CCC UUU3
KKK UUU1
KKK UUU2
KKK UUU3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= FFF

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

MMM UUU0
MMM VVV0
CCC UUU0
CCC VVV0
KKK UUU0
KKK VVV0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+
⎧⎨
⎩

RRR1
RRR2
RRR3

⎫⎬
⎭ ,

(46)

where

BBB =
⎡
⎣ b11III3 b12III3 b13III3

b21III3 b22III3 b23III3
b31III3 b32III3 b33III3

⎤
⎦ , (47)

DDD =
⎡
⎣ d11III3 d12III3 d13III3 d14III3 d15III3 d16III3

d21III3 d22III3 d23III3 d24III3 d25III3 d26III3
d31III3 d32III3 d33III3 d34III3 d35III3 d36III3

⎤
⎦ ,
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FFF =
⎡
⎣ f11III3 f12III3 f13III3 f14III3 f15III3 f16III3

f21III3 f22III3 f23III3 f24III3 f25III3 f26III3
f31III3 f32III3 f33III3 f34III3 f35III3 f36III3

⎤
⎦ ,

III3 =
⎡
⎣ III 000 000

000 III 000
000 000 III

⎤
⎦ ,

RRR1 = 1
�t

�t∫

0

RRR(t)(t + a) dt,

RRR2 = 1
�t2

�t∫

0

RRR(t)(t2 + 2at) dt, (48)

RRR3 = 1
�t3

�t∫

0

RRR(t)(t3 + 3at2) dt.

The coefficients bij, dij and fij can be expressed in terms
of a and �t, and are given in the Appendix. The vectors
UUU1,UUU2, andUUU3 can be calculated from Eq. (46) by means
of a direct solver. Then the vectors VVV1, VVV2 and VVV3 can
be calculated from Eqs. (39)–(41). It is necessary to note
that the dimension of system (46) is three times as large
as the dimension of the system of standard methods of
the second order of accuracy.

Alternatively, system (46) can be iteratively solved
by means of a predictor/multi-corrector algorithm simi-
larly as it was solved with quadratic time approximations
(n = 2). Let us multiply both sides of equation (46) by
BBB−1. Then it follows that

⎧⎨
⎩

MMM UUU1
MMM UUU2
MMM UUU3

⎫⎬
⎭ + BBB−1 DDD

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CCC UUU1
CCC UUU2
CCC UUU3
KKK UUU1
KKK UUU2
KKK UUU3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= BBB−1 FFF

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

MMM UUU0
MMM VVV0
CCC UUU0
CCC VVV0
KKK UUU0
KKK VVV0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+BBB−1

⎧⎨
⎩

RRR1
RRR2
RRR3

⎫⎬
⎭ , (49)

or

MMM UUUi + b̄imdmpCCC UUUp + b̄imdm(p+3)KKK UUUp

= R̄RRi , i = 1, 2, 3 (50)

with

R̄RRi = b̄imfm1MMM UUU0 + b̄imfm2MMM VVV0

+ b̄imfm3CCC UUU0 + b̄imfm4CCC VVV0

+ b̄imfm5KKK UUU0 + b̄imfm6KKK VVV0

+ b̄imRRRm, i = 1, 2, 3. (51)

In Eqs. (50), (51) the summation over the repeated indi-
ces m and p is meant (m = 1, 2, 3 and p = 1, 2, 3), and the

coefficients b̄ij can be found as elements of the inverse
matrix formed by coefficients bij; i.e.,
⎡
⎣ b̄11 b̄12 b̄13

b̄21 b̄22 b̄23

b̄31 b̄32 b̄33

⎤
⎦ =

⎡
⎣ b11 b12 b13

b21 b22 b23
b31 b32 b33

⎤
⎦

−1

. (52)

Remark For the third-order time approximations the
matrix in Eq. (52) formed by the coefficients bij is sin-
gular if the following condition is met

120a3 + 60a2�t + 12a�t2 + �t3 = 0. (53)

That is, at a given �t, the values of a that satisfy (53) must
be avoided for the calculation of the inverse matrix.

Now the following recurrence relations can be sug-
gested for the iterative solutions of Eq. (50)

M̄MM UUU1
k = γ1CCC UUU1

k−1 + γ2KKK UUU1
k−1

− b̄1mdm1CCC UUU1
k−1 − b̄1mdm2CCC UUU2

k−1

− b̄1mdm3CCC UUU3
k−1 − b̄1mdm4KKK UUU1

k−1

− b̄1mdm5KKK UUU2
k−1 − b̄1mdm6KKK UUU3

k−1 + R̄RR1,

(54)

M̄MM UUU2
k = γ1CCC UUU2

k−1 + γ2KKK UUU2
k−1

− b̄2mdm1CCC UUU1
k − b̄2mdm2CCC UUU2

k−1

− b̄2mdm3CCC UUU3
k−1 − b̄2mdm4KKK UUU1

k

− b̄2mdm5KKK UUU2
k−1 − b̄2mdm6KKK UUU3

k−1 + R̄RR2,

(55)

and

M̄MM UUU3
k̄ = γ1CCC UUU3

k−1 + γ2KKK UUU3
k−1

−b̄3mdm1CCC UUU1
k − b̄3mdm2CCC UUU2

k

−b̄3mdm3CCC UUU3
k−1 − b̄3mdm4KKK UUU1

k

−b̄3mdm5KKK UUU2
k − b̄3mdm6KKK UUU3

k−1 + R̄RR3,

(56)

M̄MM UUU3
k = γ1CCC UUU3

k̄ + γ2KKK UUU3
k̄

−b̄3mdm1CCC UUU1
k − b̄3mdm2CCC UUU2

k

−b̄3mdm3CCC UUU3
k̄ − b̄3mdm4KKK UUU1

k

−b̄3mdm5KKK UUU2
k − b̄3mdm6KKK UUU3

k̄ + R̄RR3,

(57)

where

M̄MM = MMM + γ1CCC + γ2KKK. (58)

Here, the parameters γ1 and γ2 in Eqs. (54)–(58) can be
selected by means of accuracy and stability analysis of
the iterative solver (see below); k is the number of the
current iteration (k = 1, 2, . . . , l); zero initial values are
taken for UUU1

0,UUU2
0 and UUU3

0; i.e., UUU1
0 = UUU2

0 = UUU3
0 =

000. It is necessary to note that for each iteration one cor-
rection for the vectors UUU1 and UUU2, and two corrections



268 A. V. Idesman

for the vector UUU3 are used. In the case of zero damping
(CCC = 000) just one correction for the UUU3 should be used;
i.e., instead of being expressed as two equations (56) and
(57), the following equation should be written

M̄MM UUU3
k = γ2KKK UUU3

k−1 − b̄3mdm4KKK UUU1
k

−b̄3mdm5KKK UUU2
k − b̄3mdm6KKK UUU3

k−1 + R̄RR3.

(59)

The accuracy analysis (see below) shows that only three
iterations (k = 1, 2, 3) are necessary in order to reach
the same order of accuracy that a direct solver yields;
i.e., when Eqs. (50) are solved simultaneously.

2.5 Accuracy analysis

It can be shown (e.g., see [3,10]; A. V. Idesman, submit-
ted) that the analysis of a numerical method for linear
dynamics problems Eqs. (1) can be replaced (with the
modal decomposition method) by the analysis of the
method applied to a system with a single degree of free-
dom u(t); i.e., the solution of the exact following simple
equations is considered

v̇(t) + 2ξ v(t) + ω2 u(t) = f (t) , (60)

u̇(t) − v(t) = 0 , (61)

where ω and f are the natural frequency and forcing exci-
tation, respectively, v(t) is the velocity, ξ is the damping
ratio. For the analysis of accuracy and stability of numer-
ical methods, the interval Jn from 0 to �t is considered.

The values of un and vn at time t = tn can be expressed
in terms of initial values u0 and v0 in the beginning of
the interval Jn as

{
un

vn

}
= [A]

{
u0
v0

}
+ [L]f , (62)

where [A] is the amplification matrix, [L] is the load
matrix. Without loss of generality we can assume that
tn−1 = 0 and tn − tn−1 = �t.

The analytical expression of the matrix [A] in Eq.
(62) for direct and predictor/multi-corrector solvers can
be calculated from the application of the corresponding
method to the system with a single degree of freedom,
Eqs. (60)–(61), at the condition f (t) = 0. The expansion
of the analytical expressions of the elements of the exact
matrix [A] into the Taylor series is given below:

A11 = 1 − ω2�t2

2
+ ξω3�t3

3
+ (1 − 4ξ2)ω4�t4

24

+ξ(−1 + 2ξ2)ω5�t5

30
− (1 − 12ξ2 + 16ξ4)ω6�t6

720

+ξ(3 − 16ξ2 + 16ξ4)ω7�t7

2520

+ (1−24ξ2+80ξ4−64ξ6)ω8�t8

40320
+ O[�t]9, (63)

A22 = 1 − 2ξω�t + (−1 + 4ξ2)ω2�t2

2

+2ξ(1 − 2ξ2)ω3�t3

3
+ (1 − 12ξ2 + 16ξ4)ω4�t4

24

−ξ(3 − 16ξ2 + 16ξ4)ω5�t5

60

− (1 − 24ξ2 + 80ξ4 − 64ξ6)ω6�t6

720

+ξ(1 − 10ξ2 + 24ξ4 − 16ξ6)ω7�t7

630

+ (1 − 40ξ2 + 240ξ4 − 448ξ6 + 256ξ8)ω8�t8

40320
+O[�t]9, (64)

A12 = −A21/ω
2 = �t − ξω�t2 + (−1 + 4ξ2)ω2�t3

6

−ξ(−1 + 2ξ2)ω3�t4

6
+ (1 − 12ξ2 + 16ξ4)ω4�t5

120

−ξ(3 − 16ξ2 + 16ξ4)ω5�t6

360

− (1 − 24ξ2 + 80ξ4 − 64ξ6)ω6�t7

5040

+ξ(1−10ξ2+24ξ4−16ξ6)ω7�t8

5040
+O[�t]9. (65)

The accuracy of the new TCG method can be
estimated by the application of this method to system
(60)-(61) and by the comparison of the numerical and
exact (Eqs. (63)–(65)) amplification matrices (see [10];
A.V. Idesman, submitted).

The stability of an algorithm can be observed from the
spectral radius defined by r(AAA) = max |ρ1, ρ2|, where
ρ1 and ρ2 denote the eigenvalues of the amplification
matrix [A] (see [10]). An algorithm that satisfies the
condition r(AAA) ≤ 1 is said to be unconditionally stable.
It is known that the higher modes of semidiscrete struc-
tural equations do not represent the behavior of the gov-
erning partial differential equations. Therefore, some
form of algorithmic damping (dissipation) is necessary in
order to remove the participation of the high-frequency
modal components. The numerical dissipation of the
algorithm over the entire frequency domain can be
observed from the spectral radius. The condition r(AAA)=1
for some frequencies corresponds to non-dissipative
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behavior, and r(AAA) < 1 for some frequencies corre-
sponds to the introduction of the numerical dissipation.
It is desirable to design a numerical algorithm with non-
dissipative properties at low frequencies and with large
numerical dissipation at high frequencies.

2.6 Linear time approximations (n = 1)

Let us consider the numerical amplification matrix [A].
The highest-order terms in the expansion of the ele-
ments of the matrix [A] into the Taylor series, which
differ from Eqs. (63)–(65), are given below:

A11 = · · · + ω2(−1 + 6aξω)�t3

12a
+ O[�t]4, (66)

A22 = · · · + ω2(−1 + 4ξ2 + 12aξω − 24aξ3ω)�t3

12a
+ O[�t]4, (67)

A12 = −A21/ω
2

= · · · + ω(−2ξ+3(−1+4ξ2)aω)�t3

12a
+O[�t]4.

(68)

The spectral radius of the numerical amplification matrix
[A], which depends on ω, �t, a and ξ , can be represented
as a function of the three parameters 	 = ω�t, α = �t/a
and ξ ; i.e., r = r(	, α, ξ). The spectral radii of the numer-
ical matrix [A] are given in Fig. 1.

2.7 Quadratic time approximations (n = 2)

Let us separately consider the TCG method with a
direct solver and the suggested predictor/multi-correc-
tor solver without damping and with damping.

2.7.1 A direct solver

The highest-order terms in the expansion of the
elements of the matrix [A] into the Taylor series, which
differ from Eqs. (63)–(65), are given below:

A11 = · · · + [ω3(−aω + 4aξ2ω + 40a2ξ3ω2

− 2ξ(1 + 10a2ω2))�t5]/720a2

+O[�t]6, (69)

A22 = · · · − [ω3(aω − 12aξ2ω + 16aξ4ω

+160a2ξ5ω2 − 8ξ3(1 + 20a2ω2)

+ξ(4 + 30a2ω2))�t5]/720a2 + O[�t]6, (70)

A12 = −A21/ω
2 = · · · + [ω2(1 − 4aξω + 8aξ3ω + 5a2ω2

+ 80a2ξ4ω2 − 4ξ2(1 + 15a2ω2))�t5]/720a2

+O[�t]6. (71)

The spectral radii r = r(	, α, ξ) of the numerical matrix
[A] are given in Fig. 2.

2.7.2 The predictor/multi-corrector solver (without
damping)

We will analyze the amplification matrix [A] after two
iterations with only one correction of the vector UUU2 (see
Eqs. (30) and (34)). The following representations of
the parameters γ1 = 0 and γ2 = γ3�t2 in Eq. (33) are
used for the analysis ( γ3 is a new parameter). The high-
est-order terms in the expansion of the elements of the
matrix [A] into the Taylor series, which differ from Eqs.
(63)–(65), are given below:

A11 = · · · − ω4�t5

720a
+ O[�t]6, (72)

A22 = · · · − ((1 + 12γ3 + 72γ 2
3 )ω4)�t5

360a

+ O[�t]6, (73)

A12 = · · · + (ω2 − 120a2γ3(1 + 6γ3)ω
4)�t5

720a2

+ O[�t]6, (74)

A21 = · · · + ω4(−1 + 15a2(1 − 16γ3 + 48γ 2
3 )ω2)�t5

720a2

+ O[�t]6. (75)

For the predictor/multi-corrector solver the spectral radius
is a function of ω, �t, a and ξ and can not be simplified
as for a direct solver. The spectral radii of the numerical
matrix [A] are given in Fig. 3.

2.7.3 The predictor/multi-corrector solver (with
damping)

We will analyze the amplification matrix [A] after two
iterations (see Eqs. (30)–(32)). The following represen-
tations of the parameters γ1 = 0 and γ2 = γ3�t2 in Eq.
(33) are used for the analysis (γ3 is a new parameter).The
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Fig. 1 Spectral radii r for the TCG method with linear approximations in time for ξ = 0 (a) and ξ = 0.3 (b)

Fig. 2 Spectral radii r for the TCG method with quadratic approximations in time and a direct solver for ξ = 0 (a) and ξ = 0.3 (b)

highest-order terms in the expansion of the elements of
the matrix [A] into the Taylor series, which differ from
Eqs. (63)–(65), are given below:

A11 = · · · + [ω3(−aω + 4aξ2ω + 120a2ξ3ω2

+ 2ξ(−1 + 5a2(−1 + 12γ3)ω
2)�t5]/720a2 + O[�t]6, (76)

A22 = · · · + ω3(−a(1 + 12γ3 + 72γ 2
3 )ω + 2a(5 + 24γ3)ξ

2ω

+ 8aξ4ω + 240a2ξ5ω2 + 4ξ3(1 + 5a2(5 + 12γ3)ω
2)

+ 2ξ(−1 + 5a2(−1 + 12γ3 + 72γ 2
3 )ω2))�t5]/360a2

+ O[�t]6, (77)

A12 = · · · + [ω2(1 − 4aξω + 8aξ3ω − 120a2γ3(1 + 6γ3)ω
2

+ 240a2ξ4ω2 + 4ξ2(−1 + 5a2(−1 + 24γ3)ω
2))�t5]/720a2

+ O[�t]6, (78)

A21 = · · · + [ω4(−1 + 6a(1 + 4γ3)ξω + 8aξ3ω − 5a2ω2

+ 240a2ξ4ω2 + ξ2(4 − 40a2(−1 + 6γ3)ω
2))�t5]/720a2

+ O[�t]6. (79)

Because the eigenvalues of the numerical amplification
matrix [A] are not always complex conjugate, we will
present absolute values of two eigenvectors ρ1 and ρ2
(see Fig. 3).

2.8 Third-order time approximations (n = 3)

Let us separately consider the TCG method with a
direct solver and the suggested predictor/multi-correc-
tor solver without damping and with damping.

2.8.1 A direct solver

The highest-order terms in the expansion of the ele-
ments of the matrix [A] into the Taylor series, which
differ from Eqs. (63)–(65), are given below:

A11 = · · · + [ω4(1 − a2ω2 − 16a2ξ4ω2 + 672a3ξ5ω3

+ 4ξ2(−1 + 3a2ω2) + 2aξω(−2 + 63a2ω2)

+ ξ3(8aω−672a3ω3))�t7]/100800a3+O[�t]8,

(80)

A22 = · · · + [ω4(1 − a2ω2 + 64a2ξ6ω2

− 2688a3ξ7ω3 + ξ4(16 − 80a2ω2)

+ 12ξ2(−1 + 2a2ω2)

+ 6aξω(−1 + 28a2ω2) + 32aξ5ω(−1 + 126a2ω2)

+ ξ3(32aω − 1680a3ω3))�t7]/100800a3 + O[�t]8,

(81)
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Fig. 3 Spectral radii r and absolute values of two eigenvectors ρ1
and ρ2 of the numerical amplification matrix for the TCG method
with quadratic approximations in time and the predictor/multi-
corrector solver with two iterations. (a) r at a = 0.001, γ3 = 2

and ξ = 0; (b) r at a = 1, 000, γ3 = 20, 000 and ξ = 0; (c) r at
a = 0.001, γ3 = 2 and ξ = 0.3; (d, e) ρ1 and ρ2 at a = 1, 000, γ3 = 2
and ξ = 0.3

A12 = −A21/ω
2 = · · · + [ω3(aω − 32a2ξ5ω2

− 21a3ω3 + 1344a3ξ6ω3 + ξ(4 − 6a2ω2)

+ 8ξ3(−1 + 4a2ω2) + 12aξ2ω(−1 + 42a2ω2)

+ ξ4(16aω − 1680a3ω3))�t7]/100800a3 + O[�t]8.

(82)

The spectral radii r = r(	, α, ξ) of the numerical matrix
[A] are given in Fig. 4. It is necessary to mention that
at ξ = 0 and α �= 0 the spectral radius r is greater than
unity at small values of 	. We can not see this fact from
Fig. 4 because this value (r > 1) is close to unity for a
very narrow range of the parameter 	. However, the
spectral radius r is smaller or equal to unity if α = 0 (at
very large values of the parameter a) or if small physical

damping is introduced, e.g., r ≤ 1 at ξ = 0.001 and
0 ≤ α ≤ 10 or at ξ = 0.005 and 0 ≤ α ≤ 1000. The
modification of the method with α = 0 and λ1,2(t) �= 1
and without the introduction of the physical damping
ξ , considered in our paper (A.V. Idesman, submitted),
allows for the unconditionally stable method of the sixth
order of accuracy with numerical dissipation at high fre-
quencies (we do not consider the case λ1,2(t) �= 1 in this
paper).

2.8.2 The predictor/multi-corrector solver (without
damping)

We will analyze the amplification matrix [A] after three
iterations with only one correction of the vector UUU2 [see
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Fig. 4 Spectral radii r for the TCG method with third-order approximations in time and a direct solver for ξ = 0 (a) and ξ = 0.3 (b)

Eqs. (54), (55) and (59)]. The following representations
of the parameters γ1 = 0 and γ2 = γ3�t3 in Eq. (58)
are used for the analysis ( γ3 is a new parameter). The
highest-order terms in the expansion of the elements of
the matrix [A] into the Taylor series, which differ from
Eqs. (63)–(65), are given below:

A11 = · · · + (ω4 − a2ω6)�t7

100800a3 + O[�t]8, (83)

A22 = · · · + (ω4 − a2ω6)�t7

100800a3 + O[�t]8, (84)

A12 = (ω4 − 21a2ω6)�t7

100800a2 + O[�t]8, (85)

A21 = − (ω6 − 105a2ω8)�t7

100800a2 + O[�t]8. (86)

Because the eigenvalues of the numerical amplification
matrix [A] are not always complex conjugate, we will
present absolute values of two eigenvectors ρ1 and ρ2
(see Fig. 5).

2.8.3 The predictor/multi-corrector solver (with
damping)

We will analyze the amplification matrix [A] after three
iterations [see Eqs. (54) -(57)]. The following represen-
tations of the parameters γ1 = 0 and γ2 = γ3�t3 in
Eq. (58) are used for the analysis ( γ3 is a new param-
eter). The highest-order terms in the expansion of the
elements of the matrix [A] into the Taylor series, which
differ from Eqs. (63)–(65), are given below:

A11 = · · · + [ω4(1 − a2ω2 − 16a2ξ4ω2 + 672a3ξ5ω3

+ 4ξ2(−1 + 3a2ω2) + 2aξω(−2 + 63a2ω2)

+ ξ3(8aω − 672a3ω3))�t7]/100800a3 + O[�t]8,

(87)

A22 = · · · + [(ω4(1 − a2ω2 + 64a2ξ6ω2 − 26880a3ξ7ω3

+ ξ4(16 − 80a2ω2) + 12ξ2(−1 + 2a2ω2)

+ 6aξω(−1 + 84a2ω2) + 32aξ5ω(−1+147a2ω2)

+ ξ3(32aω − 3360a3ω3))�t7)]/100800a3+O[�t]8

(88)

A12 = · · · + [(ω3(aω − 32a2ξ5ω2 − 21a3ω3

+ 1344a3ξ6ω3 + ξ(4 − 6a2ω2) + 8ξ3(−1 + 4a2ω2)

+ 12aξ2ω(−1 + 42a2ω2)

+ ξ4(16aω−1680a3ω3))�t7)]/100800a3+O[�t]8,

(89)

A21 = · · · + [(ω5(aω − 32a2ξ5ω2 − 105a3ω3

+ 13440a3ξ6ω3+ξ(4−6a2ω2) + 8ξ3(−1+4a2ω2)

+ 12aξ2ω(−1 + 126a2ω2)

+ 16ξ4(aω + 63a3ω3))�t7)]/100800a3 + O[�t]8.

(90)

Because the eigenvalues of the numerical amplification
matrix [A] are not always complex conjugate, we will
present absolute values of two eigenvectors ρ1 and ρ2
(see Fig. 6).

From the analysis of the amplification matrix [A] pre-
sented above, it follows that at linear, quadratic and
third-order time approximations for displacements and
velocities, the new TCG method has the second, fourth
and sixth order of accuracy, respectively. It means that
the accuracy of the new implicit TCG method is increased
by a factor of two in comparison to that of the standard
TCG method [3] and is one order higher than the accu-
racy of the standard TDG method [12–15,17,18] (and
the high-order accurate methods suggested in [6,21]) at
the same number of degrees of freedom (see Table 1).
The new method is unconditionally stable (spectral radii
are r ≤ 1 for both the direct solver and the predic-
tor/multi-corrector solvers) and has controllable numer-
ical dissipation.
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Fig. 5 Absolute values of two eigenvectors ρ1 and ρ2 of the
numerical amplification matrix for the TCG method with third-
order approximations in time and the predictor/multi-corrector

solver with three iterations (without damping, ξ = 0 ). (a, b)
a = 0.001 and γ3 = 10 ; (c, d) a = 1, 000 and γ3 = 2 · 106

Fig. 6 Absolute values of two eigenvectors ρ1 and ρ2 of the
numerical amplification matrix for the TCG method with third-
order approximations in time and the predictor/multi-corrector

solver with three iterations (with damping, ξ = 0.3 ). (a, b)
a = 0.001 and γ3 = 20 ; (c, d) a = 1, 000 and γ3 = 2 · 105
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Table 1 Accuracy of TCG and TDG methods for elastodynamics (the number of unknowns for TCG and TDG methods is reduced by
a factor of two due to analytical transformations)

Number of New TCG Standard TCG Standard TDG
degress of (with control (no control (no control
freedom of high frequencies) of high frequencies) of high frequencies)

Order of Time Order of Time Order of Time
accuracy in time approximations accuracy in time approximations accuracy in time approximations

m 2 Linear (n = 1) 1 Linear
2m 4 Quadratic (n = 2) 2 Quadratic 3 Linear
3m 6 Third order (n = 3) 3 Third order 5 Quadratic

m is the number of unknowns for known second-order accurate methods

For direct solvers and the case without physical damp-
ing ξ = 0, the decrease in the parameter a (or the
increase in the parameter α) leads to the decrease in the
spectral radii at high frequencies for all time approxi-
mations of displacements and velocities; for α → 0 (or
very large values of the parameter a) the spectral radius
tends to one at all frequencies (no numerical dissipation)
(see Figs. 1, 2 and 4). It means that numerical dissipa-
tion at high frequencies increases with the decrease in a.
For the predictor/multi-corrector solver the eigenvalues
of the amplification matrix [A] are not always complex
conjugate; i.e., two different eigenvectors ρ1 and ρ2 of
the matrix [A] can exist at the same �t and ω (see Figs. 3,
5 and 6). From the analysis presented it can be seen that
the effective mass matrix does not necessarily need to
include the damping matrix CCC [see Eqs. (33) and (58)].
In this case, small values of the parameter γ3 lead to
the increase in numerical dissipation; large values of the
parameter γ3 lead to the decrease in numerical dissipa-
tion (see Figs. 3, 5 and 6). In contrast to the standard
TDG method, which does not have parameters chang-
ing numerical dissipation, the new TCG method allows
the variation of the numerical dissipation. The impor-
tance of this property can be seen from the numerical
examples considered below.

3 A new strategy to solution of elastodynamics
problems

In [10] several important attributes of competitive numer-
ical methods for elastodynamics are discussed. It is
known that due to spatial finite element discretization
the exact solution of a discrete problem differs from the
exact solution of the continuous problem by the inclu-
sion of spurious high-frequency oscillations. Therefore,
controllable algorithmic dissipation in higher modes is
an important property of any numerical method for el-
astodynamics [10]. This numerical dissipation damps out
spurious high-frequency oscillations. Numerical methods

that do not possess this property are not considered as
competitive ones. Here, we are going to present a new
strategy that will allow the effective use of high-order
accurate methods with zero or very small numerical dis-
sipation.

As it was indicated above, the integration of a system
of semi-discrete elastodynamics Eqs. (2) can be reduced
to the time integration of n independent ordinary differ-
ential equations of the form of Eqs. (60)–(61) where n
is the number of modes (see [10]). Usually, the accu-
rate time integration of equations with low modes and
the damping out of equations containing high modes
are required. This result can be achieved by a method
with controllable numerical dissipation. The idea of the
new strategy is very simple. The basic computations,
especially for a long-term integration, can be done by
a high-order method with zero or very small numerical
dissipation. It means that all modes are integrated very
accurately. Then, for the damping out of high modes, a
method with large numerical dissipation can be used for
a number of last time increments or as a post-processor.
This method can be considered as a filter of high modes.
It should be mentioned that the use of a method with
large numerical dissipation at high modes for all time
increments leads to accumulation of a numerical error
for low-mode terms as well, especially at the long-term
integration. Therefore, a new strategy will be much more
effective and accurate for a long-term solution. The pro-
posed high-order accurate TCG methods with zero or
small dissipation for basic computations and the sec-
ond-oder TCG method with large numerical dissipation
for the final time increments can be used for the new
approach. In the case of monitoring a numerical solu-
tion at different time moments, the new strategy can
be applied repeatedly; i.e., basic computations can be
made with a high-order method with zero or very small
numerical dissipation, and a number of time increments
before specific time moments can be computed by a
method with large numerical dissipation. An example
of the application of the new strategy to linear problems
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is considered below. The application of the new compu-
tational strategy to non-linear elastodynamics problems
will be considered elsewhere.

4 Numerical examples

The new technique is implemented into the finite ele-
ment code FEAP [27] by the use of a direct solver. The
implementation of the technique by the use of the pre-
dictor/multi-corrector iterative procedure will be con-
sidered elsewhere.

4.1 Harmonic response of an elastic rod

An elastic rod of the length L = 1 is considered. Both
ends of the rod are fixed (u(0, t) = v(0, t) = u(1, t) =
v(1, t) = 0), no external loads are applied, the initial
velocity is zero ( v(x, 0) = 0), and the initial displace-
ment is proportional to the first harmonic (u0(x, 0) =
sin(πx)) (see Fig. 7a). Zero damping is assumed (CCC = 000).
The observation time is assumed to be T = 2; the
Young’s modulus is E = 1, and the density is ρ = 1.
It is usually impossible to use a uniform mesh for a com-
plicated geometry in the multi-dimensional case. There-
fore, to study the effectiveness of the new method, a
non-uniform mesh with 100 quadratic finite elements
along the bar is used (see Fig. 7b). The element Courant
number Co = c �t/�x varies along the bar with Comax/

Comin = �xmax/�xmin = 7.2 for any time increment �t,
where c = 1 is the wave velocity, and Comax and Comin

are the maximum and minimum element Courant num-
bers, respectively. The problem was solved using the
linear (n = 1), quadratic (n = 2) and third order (n = 3)
time approximations for displacements and velocities,
and uniform time increments. The scalar parameter a =
1, 000 was chosen, and therefore, spectral radii of the
amplification matrix were close to unity for all meth-
ods with n = 1, 2, 3. To study the convergence of the
method, different numbers of time increments (from 2
to 360) were used for the time interval 0 ≤ t ≤ 2. The
problem has the continuous analytical solution ua(x, t) =
sin(πx) cos(π t). For the comparison of the accuracy of
numerical results, the following error e in the L2 norm
for displacements and velocities at time t = T = 2 was
calculated:

e =
{ L∫

0

{[ua(x, T) − un(x, T)]2

+ [va(x, T) − vn(x, T)]2} dx
}1/2

, (91)

where un(x, T) and vn(x, T) are numerical solutions for
displacements and velocities at time T = 2 ( ua(x, T =
2) = sin(πx), va(x, T = 2) = 0.

The accuracy of the numerical solution of the prob-
lem using the new TCG method is given in Fig. 7c. The
problem was solved on the non-uniform mesh shown in
Fig. 7b. with the linear, quadratic and third-order time
approximations for displacements and velocities, and a
different number N of time increments. The computa-
tion time is proportional to N. It is also necessary to
note that the numerical solution with the classical trape-
zoidal rule (the second-order method with no numerical
dissipation) coincides with curve 1 in Fig. 7c. From these
results it follows that at the same accuracy, the method
with the second order of accuracy requires from 20 (at
accuracy log e = −3) to 100 (at accuracy log e = −6)
times more time increments than, for example, the new
TCG method with the fourth order of accuracy does
(see curves 1 and 2 in Fig. 7c). It means that the use
of the new fourth-order accurate TCG method for this
simple problem reduces the computation time by a fac-
tor 5–25 or more in comparison to that for the second-
order method (here we took into account that for one
time increment the fourth-order TCG method requires
four times as much computation time as the second-
order method). To compare the new TCG method and
the standard TDG method, we solved the problem by
the TDG method with quadratic time approximations
for displacements and velocities (curve 4). The numbers
of degrees of freedom for the TDG method (curve 4)
and the new TCG method with the third order of time
approximations (curve 3) are the same. However, com-
paring curves 3 and 4 at the same accuracy (log e =
−2/ − 5), we can conclude that for the problem under
consideration, the new TCG method is much faster than
the standard TDG method. No numerical dissipation
is necessary for this problem. The new TCG method
with a = 1000 has almost zero dissipation (see Figs. 1,
2 and 4). Numerical dissipation of the TDG method
diminishes the accuracy of the numerical solution (the
standard TDG method does not have a parameter that
can change the numerical dissipation). The reduction in
the computation cost with the new TCG method will be
more essential for 2-D and 3-D problems with a large
number of degrees of freedom.

4.2 Impact of an elastic bar against a rigid wall

The second example is related to impact against a rigid
wall of an elastic bar of the length L = 4 (see Fig. 8a).
The right end of the rod is fixed (u(4, t) = v(4, t) = 0),
the velocity v = 1 is instantly applied at the left end
(u(0, t) = t, v(0, t) = 1), and the initial displacements and
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Fig. 7 Harmonic response of
an elastic rod (a). The mesh
for each time increment
consists of 100 non-uniform
quadratic elements along the
x-axis (b). A numerical error
e at time T = 2 for the new
TCG method with the linear
(curve 1), quadratic (curve 2)
and third-order (curve 3) time
approximations, and for the
standard TDG method with
quadratic time
approximations (curve 4) (c)

velocities are zero. Zero damping is assumed (CCC = 000).
The observation time T is chosen to be T = 2.8; the
Young’s modulus is E = 1, and the density is ρ = 1.
The problem was solved with 100 non-uniform linear
finite elements shown in Fig. 7b (with AD = L = 4).
The problem has the continuous solution for displace-
ments ua(x, t) = t − x for t ≥ x and ua(x, t) = 0 for
t ≤ x, and the discontinuous solution for velocities and
stresses va(x, t) = −σ a(x, t) = 1 for t ≥ x and va(x, t) =
σ a(x, t) = 0 for t ≤ x (at the interface x = t jumps in
stresses and velocities occur).

It is known that the application of the traditional
semi-discrete methods to this problem leads to oscilla-
tions in velocities and stresses due to the spurious high-
frequency response (see [12,15]). The standard TDG
method (e.g., see [4,15,20,24]) also yields spurious oscil-
lations for this problem, especially on non-uniform
meshes in space (see our results in Fig. 8b). In [12,15]
the special non-linear formulations, with the disconti-
nuity-capturing operators based on the TDG method,
were developed to exclude the spurious response. How-
ever, numerical results show that for the new TCG
method with linear elements (which has the second
order of accuracy in time), the spurious oscillations can

be excluded. As can be seen from Fig. 1, spectral mod-
uli at high frequencies decrease with the increase in
the parameter α (the decrease in the absolute value of
the scalar a in Eqs. (5)–(7)) and with the increase in the
parameter 	. The decrease in the spectral moduli leads
to the increase in the numerical dissipation of the new
TCG method and the suppression of spurious oscilla-
tions. The solution with the new TCG at time T = 2.8
(linear approximations of displacements and velocities
in time, and 160 uniform time increments �t = 0.0175
were used) corresponds to the smooth curve 1 in Fig. 8c
with no spurious oscillations. The numerical results show
that the use of higher-order time approximations for dis-
placements and velocities yields a few oscillations for
velocities at any value of a and �t (or the Courant num-
ber). However, the new strategy combining high-order
accurate methods with zero or small dissipation for basic
computations and a method with large numerical dissi-
pation for last time increments yields an accurate solu-
tion with no spurious high-frequency oscillations. For
example, curve 2 in Fig. 8c corresponds to the solution
at time T = 2.8 for the first 30 uniform time increments
�t = 0.07 with quadratic approximations of displace-
ments and velocities in time, and a = 100; and the last
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Fig. 8 Impact of an elastic bar against a rigid wall (a).
Velocity distribution along the bar at time T = 2.8 com-
puted on the non-uniform mesh containing 100 linear ele-
ments (see Fig. 7b) using the standard TDG method (b)
and the new TCG method (c). For the TCG method
(c) curves 1, 2, 3, and 4 correspond to: the solution with linear time
approximations, 160 uniform time increments �t = 0.0175 and
a = 0.001; the solution obtained after the first 30 uniform time
increments �t = 0.07 with quadratic time approximations and
a = 1000 (see curve 4), and the last 40 uniform time increments
�t = 0.0175 with linear time approximations and a = 0.001; the
analytical solution; and the solution with quadratic time approx-
imations, 30 uniform time increments �t = 0.07 (T = 2.1) and
a = 1000, respectively

40 uniform time increments �t = 0.0175 with linear
approximations of displacements and velocities in time,
a = 0.001 and λ1 = λ2 = 1 + 1010t4 [see Eq. (3)]. The
introduction of weighting functions λ1 and λ2 allows
the addition of numerical dissipation without an effect
on the accuracy of the method (A.V. Idesman, submit-
ted). It can be seen from Fig. 8c that the last 40 time
increments allow the suppression of spurious oscilla-
tions after the first 30 time increments, curve 4. Despite
the fact that the first 30 time increments are larger than

the last 40 time increments, the solution combining high-
order accurate non-dissipative and dissipative methods
(curve 2) yields a steeper curve than the solution by
the TCG method with linear time approximations, 160
uniform time increments, and a = 0.001 (see curve 1).

Remark It is interesting to note that the modified TDG
method with the new weighting functions λ1 and λ2 sug-
gested in (A.V. Idesman, submitted) allows the solution
of the considered problem with no spurious oscillations
for linear approximations of displacements and veloci-
ties in time.

5 Concluding remarks

A new high-order accurate TCG method for elastody-
namics is suggested. The new method is uncondition-
ally stable and has controllable numerical dissipation
at high frequencies. The main advantages of the new
method are the higher order of accuracy in comparison
to that of known high-order accurate methods (if the
same number of degrees of freedom is used) and con-
trollable numerical dissipation. However, even meth-
ods with zero or small numerical dissipation can be very
effectively used for wave propagation problems with the
application of the new suggested strategy for the solu-
tion of elastodynamics problems. This strategy consists
in the combination of numerical methods with small and
large numerical dissipation where the latter can be used
for a number of last time increments or as a post-pro-
cessor. Simple 1-D numerical tests show a significant
reduction in the computation time (by 5–25 times) for
the new method with a direct solver in comparison to
that for second-order methods, and the suppression of
spurious high-frequency oscillations. The reduction in
the computation time will be more essential for 2-D
and 3-D problems with the suggested predictor/multi-
corrector solver that requires few iterations in order to
reach the accuracy of direct solvers. This study as well as
the application of the new TCG method and new numer-
ical strategy to non-linear problems will be considered
in the future.

Acknowledgements The author gratefully acknowledges the sup-
port of Texas Tech University.

Appendix: Explicit expressions for the coefficients bij,
dij and fij

(a) Quadratic time approximations of displacements
and velocities.
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[
b11 b12
b21 b22

]
=

⎡
⎢⎢⎣

− 2(24a2 + 9a�t + �t2)
3(20a2 + 12a�t + 3�t2)

2a + �t

− (40a3 + 36a2�t + 10a�t2 + �t3)
�t(20a2 + 12a�t + 3�t2)

2(3a+�t)
3

⎤
⎥⎥⎦ ;

[
d11 d12 d13 d14
d21 d22 d23 d24

]

=
[

a + �t
2

1
3�t(3a + 2�t) 1

6�t(3a + 2�t) 1
12�t2(4a + 3�t)

a + �t
3

1
6�t(8a + 3�t) 1

12�t(8a + 3�t) 1
10�t2(5a + 2�t)

]
;

[
f11 f12 f13 f14 f15 f16
f21 f22 f23 f24 f25 f26

]

=

⎡
⎢⎢⎣

0
2(24a2 + 9a�t + �t2)

3(20a2 + 12a�t + 3�t2)
0 0 a + �t

2 0

0
40a3 + 36a2�t + 10a�t2 + �t3

�t(20a2 + 12a�t + 3�t2)
0 0 a + �t

3 0

⎤
⎥⎥⎦ .

(b) Third-order time approximations of displacements
and velocities.

⎡
⎣ b11 b12 b13

b21 b22 b23
b31 b32 b33

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

5(336a4 + 336a3�t + 108a2�t2 + 16a�t3 + �t4)
8�t(105a3 + 60a2�t + 15a�t2 + 2�t3)

2a + �t �t(3a + 2�t)

420a4 + 390a3�t + 120a2�t2 + 17a�t3 + �t4

2�t(105a3 + 60a2�t + 15a�t2 + 2�t3)
2
3 (3a + �t) 1

2�t(8a + 3�t)

630a4 + 480a3�t + 135a2�t2 + 18a�t3 + �t4

2�t(105a3 + 60a2�t + 15a�t2 + 2�t3)
1
2
(4a + �t) 3

10�t(15a + 4�t)

⎤
⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎣ d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

⎤
⎦

=
⎡
⎣ a + �t

2
1
3�t(3a + 2�t) 1

4�t2(4a + 3�t) 1
6�t(3a + 2�t) 1

12�t2(4a + 3�t) 1
20�t3(5a + 4�t)

a + �t
3

1
6�t(8a + 3�t) 3

10�t2(5a + 2�t) 1
12�t(8a + 3�t) 1

10�t2(5a + 2�t) 1
30�t3(12a + 5�t)

a + �t
4

1
10�t(15a + 4�t) 1

10�t2(18a + 5�t) 1
20�t(15a + 4�t) 1

30�t2(18a + 5�t) 1
14�t3(7a + 2�t)

⎤
⎦ ;

⎡
⎣ f11 f12 f13 f14 f15 f16

f21 f22 f23 f24 f25 f26
f31 f32 f33 f34 f35 f36

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − 5(336a4 + 336a3�t + 108a2�t2 + 16a�t3 + �t4)
8�t(105a3 + 60a2�t + 15a�t2 + 2�t3)

0 0 a + �t
2

0

0 − 420a4 + 390a3�t + 120a2�t2 + 17a�t3 + �t4

2�t(105a3 + 60a2�t + 15a�t2 + 2�t3)
0 0 a + �t

3
0

0 − 630a4 + 480a3�t + 135a2�t2 + 18�t3 + �t4

2�t(105a3 + 60a2�t + 15a�t2 + 2�t3)
0 0 a + �t

4 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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