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Abstract Trabecular bone is a highly porous orthotropic
cellular solid material present inside human bones such as the
femur (hip bone) and vertebra (spine). In this study, an infin-
itesimal plasticity-like model with isotropic/kinematic hard-
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ening is developed to describe yielding of trabecular bone
at the continuum level. One of the unique features of this
formulation is the development of the plasticity-like model
in strain space for a yield envelope expressed in terms of
principal strains having asymmetric yield behavior. An
implicit return-mapping approach is adopted to obtain a sym-
metric algorithmic tangent modulus and a step-by-step
procedure of algorithmic implementation is derived. To inves-
tigate the performance of this approach in a full-scale finite
element simulation, the model is implemented in a non-linear
finite element analysis program and several test problems
including the simulation of loading of the human femur struc-
tures are analyzed. The results show good agreement with the
experimental data.

Keywords Strain-space plasticity · Finite element
analysis · Multiaxial yield envelope · Proximal femur ·
Bone mechanics

1 Introduction

Osteoporotic hip fractures are the most common serious
injury for the elderly [1, 2], associated with substantial socio-
economic consequences. According to the American Acad-
emy of Orthopaedic Surgeons, over 350,000 hip fractures
occur every year with an estimated cost of over $10 billion;
almost one in four hip fracture patients die within one year,
and this problem is expected to worsen as the size of the el-
derly population increases. The finite element technique has
been widely used to elucidate the mechanisms of these frac-
tures through the study of the mechanical behavior of the
proximal femur under non-habitual (i.e., traumatic) loading
conditions, such as those caused by sideways falls [3–5].

Trabecular bone (Fig. 1), a highly porous biological tis-
sue with an open-celled cellular structure, is a major load-
carrying component in the femur as well as in other whole
bones. It is essentially an orthotropic material which exhibits
tension-compression asymmetry in the yield strength [6]. It
has been experimentally established that the yield stress of
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Fig. 1 Three-dimensional rendering of a human proximal femur. The through section cut shows the variation in the density and the orientation of
trabecular bone inside the femur. This image is obtained using micro-computed tomography (micro-CT) at 89 × 89 × 93µ resolution (SCANCO,
Bassersdorf, Switzerland). The inset shows a representative 5 mm cubic trabecular bone specimen from the femoral head

trabecular bone is highly heterogeneous within and across
different anatomic sites, while the yield strain is uniform
within any given anatomic site [7, 8]. To properly predict
the failure behavior of the femur and other whole bones using
continuum finite element models, it is necessary to accurately
capture the nonlinear mechanical behavior of trabecular bone
at the continuum level [5, 9–12]. Such modeling may also be
helpful in orthopaedic implant design, because implant loos-
ening is associated with multiaxial interface stresses on the
trabecular bone [13].

In the biomechanics literature, it is common to use a plas-
ticity-like yield function to model the envelope of bone fail-
ure, although it is clear that the relevant inelastic process is
different from that of the classical metal plasticity. While a
number of approaches have been adopted for the constitutive
modeling of the trabecular bone within the whole bone finite
element models [3, 5, 14], to date no multiaxial constitutive
model has been implemented that captures the anisotropy,
asymmetry, and heterogeneity of trabecular bone strength.
Several studies conducted on failure load prediction of the
femur using nonlinear models have employed stress-based
failure theories assuming isotropic behavior for the trabecu-
lar bone [3, 5, 14], whereas trabecular bone is an orthotropic
material [15–17]. Although trabecular bone is stronger in
compression than in tension [18, 19], some of these studies
have used the von Mises failure criterion that assumes equal
compressive and tensile strength [14, 20]. Further, it has been
demonstrated that the use of the von Mises criterion for the
trabecular bone yielding results in overestimation of stresses
when high shear stresses are present [10, 21]. Recently, a

multiaxial yield criterion (Fig. 2) has been developed for the
femoral neck trabecular bone [22]. This “Modified Super-
Ellipsoid” (MSE) criterion is formulated in terms of principal
strains because it is found experimentally that the strain-space
formulation eliminates the heterogeneity effect from the fail-
ure behavior of trabecular bone within an anatomic site [7,
8], thus can be applied to specimens of different porosity. The
criterion also exploits the fact that the trabecular bone yield
strains are uniform in all three principal material directions.
While this yield envelope can be used in a plasticity-like for-
mulation of trabecular bone at the continuum level, limited
work has been done in the area of strain-based plasticity-like
formulations for a yield envelope expressed in the principal
space. Furthermore, trabecular bone is known to fail in an
uncoupled fashion under multiaxial loads, i.e., despite yield-
ing in one direction, near intact properties are preserved in
other directions [22, 23].

The overall goal of this study is to develop a rate-
independent infinitesimal plasticity-like model for the
yielding of trabecular bone in strain space incorporating
anisotropy and the MSE multiaxial yield criterion. Specifi-
cally, the objectives are to: (1) formulate a rate-independent
plasticity-like model in strain space using the MSE multiaxi-
al yield envelope with general parameters and including both
kinematic and isotropic hardening; (2) implement an inte-
gration algorithm using an implicit return mapping scheme
in a finite element analysis program; and (3) use the plastic-
ity-like material model for whole bone analyses of the prox-
imal femur and evaluate its performance with respect to the
experimental results. The proposed constitutive model is novel
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Fig. 2 a Complete 3D modified super-ellipsoid yield surface for the femoral trabecular bone based on Eq. (1) and its cross-section in three
mutually perpendicular strain planes: b εxx–εyy, c εyy–εzz , and d εxx–εzz. In (b), (c) and (d) circles indicate the FE computed yield data; solid
symbols indicate yielding along the vertical axis; empty symbols indicate yielding along the horizontal axis. Dashed lines shown are quadratic
fits to the yield points along each axis. This figure is based on a combination of figures from [22], with permission from ASME

in its formulation of infinitesimal strain-based plasticity for a
yield envelope expressed in terms of principal strains that de-
parts from the conventional von Mises model (J2-plasticity).

2 Theory

Trabecular bone (Fig. 1) is a heterogeneous material that has a
plate and rod-like cellular solid-type structure with a tensile
strength lower than its compressive strength. In a previous
study [22], a yield envelope (Fig. 2) was obtained in strain
space for 5 mm cube specimens of human femoral trabecular
bone using high-resolution finite element analyses as a sur-
rogate for experiments. Further, a super-ellipsoid equation
[24] was modified and fit to this yield envelope to mathemat-
ically express it in terms of certain experimentally measured
parameters in the following form [22]

g(ε1, ε2, ε3) =
3∑

i=1

∣∣∣∣
εi − c

r

∣∣∣∣
2/n

+
∣∣∣∣t

tr(ε)

3r

∣∣∣∣
2/n

− 1. (1)

Here, εi (i = 1, 2, 3) are the principal values of the com-
plete strain tensor ε, r is the radius of the super-ellipsoid,
c is the shift in the center coordinates with respect to the
origin, n is a “squareness” parameter, and t is a “flattening”
parameter. In this model, the radius and shift in center directly
correspond to the yield strains and their asymmetry in ten-
sion and compression (Fig. 2). This yield envelope captures
the micromechanics of trabecular bone at the tissue-level
and departs from the Mises-like ellipsoidal form. Further,
it exhibits squareness at the corner of tension-shear quadrant
(Fig. 2). It is observed from this envelope that the yield behav-
ior of trabecular bone is isotropic when expressed in terms
of principal strains with tension-compression yield asymme-
try. This observation is supported by various experimental
and computational studies [6, 22, 25, 26], which included the
detailed tissue-level properties and trabeculae architecture to
capture the exact mechanical behavior of trabecular bone at
the microstructural level.

In this work, the infinitesimal plasticity-like model in
strain space is first developed for a generalized yield envelope.
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Fig. 3 A flowchart of the finite element modeling of the proximal femur: a trabecular bone cylindrical cores (8 mm diameter) obtained from
the proximal femur and scanned using micro-CT (µCT) scanner (spatial resolution: 22µm), b 5 mm cube finite element models generated from
these cylinders (element size: 66 × 66 × 66µm), c yield envelope obtained from a series of finite element analyses and optimization using these
trabecular bone cube specimens and, d continuum-level models of the whole bone (element size: 1.9335 × 1.9335 × 2.0 mm) developed and FE
analyses performed in which the yield envelope of trabecular bone is included in the material constitutive model. A frontal cross-section of femur
with primary elastic modulus distribution is shown here

Subsequently, a specific form of this model is derived for the
yield envelope formulated in principal strain space based on
Eq. (1), which may be used for whole bone analyses at the
continuum level (Fig. 3). It is assumed that the yield envelope
specified in Eq. (1) contains all the microstructural informa-
tion of trabecular bone and the continuum-level model devel-
oped here would be employed for the purpose of nonlinear

analyses at the whole-bone-level. Since this is the first step
toward the development of a complete constitutive model
for the trabecular bone, damage in bone and effects of bone
remodeling at the tissue-level are not included. In addition,
post-yield behavior is modeled using hardening. While the
latter does not capture the stress reduction that can occur in
trabecular bone after the ultimate yield point, it is a commonly
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used strategy in whole bone mechanics and is considered
acceptable at this phase of the constitutive model develop-
ment. Further, this study is motivated towards capturing the
yield behavior and not the post-ultimate fracture behavior of
trabecular bone.

In what follows, the notation that all the boldface lower-
case letters represent second-order tensors and boldface
upper-case letters represent fourth-order tensors is used.

It is observed in the experiments that the trabecular bone
behaves nonlinearly under tensile/compressive loading [27]
exhibiting minor increase in load carrying capacity after yield
and then reduction in stress beyond the ultimate point. After
the slight stress reduction trabecular bone continues to sustain
appreciable load due to its cellular solid nature. To capture
the negligible increase in load carrying capacity and to ensure
completeness, hardening has been included in this model.
Softening behavior has not been included at this juncture
due to lack of detailed post-failure three-dimensional stress
response of trabecular bone. Therefore, accounting for hard-
ening effects a generalized yield surface in strain space can
be written as

g = g(εe,α, β), (2)

where εe is the elastic strain tensor, and α andβ are strain-like
kinematic and isotropic hardening variables, respectively.
The constitutive equation for stress (σ ) assuming additive
decomposition of strains into elastic and plastic (inelastic)
parts, can be written using the Hooke’s law as

σ = Ce : (ε − ε p) = Ce : εe, (3)

where Ce is the fourth-order elasticity tensor and εe, ε p are
the elastic and plastic strain tensors, respectively. Due to lack
of any experimental evidence, the flow rule is assumed to be
associative owing to its inherent mathematical simplicity and
ease of implementation. Its general form in stress and strain
space is written as

ε̇ p = µ
∂ f

∂σ
= µDe : ∂g

∂εe
, (4)

where ε̇ p is the plastic strain rate, De = (Ce)−1, f is the
yield surface in stress space, and µ is the plastic consistency
parameter.

Similarly, the hardening rules can be written in the fol-
lowing form

α̇ = µHkinDe : ∂g

∂α
,

β̇ = µHiso De
norm

∂g

∂β
.

(5)

Here, Hkin and Hiso are the kinematic and isotropic hardening
parameters, respectively, and De

norm is a scalar multiplication
factor introduced to maintain consistency with the units ofµ.
The associativity of the hardening rules ensures symmetry of
the algorithmic tangent moduli [28].

3 Return-mapping algorithm

The return-mapping algorithm is widely used to numerically
integrate the differential equations in rate independent plas-
ticity. This approach is well-established and, under certain
conditions, ensures a stable and accurate integration of the
constitutive equation [28]. An implicit return-mapping ap-
proach is adopted which preserves the symmetry of the algo-
rithmic tangent moduli (Appendix A). In the return-mapping
algorithm, the state variable values (ε p,α, β) from the previ-
ous converged step are used in determining those values for
the current iteration. A step-by-step procedure is derived as
shown below for the proposed plasticity-like model.

The yield envelope for the step n + 1 can be written as

gn+1 = g(εe
n+1,αn+1, βn+1). (6)

Equations (4) and (5) can be cast in residual form as

Rn+1 = −ε
p
n+1 + ε

p
n +�µn+1De : ∂εe g(εe

n+1,αn+1, βn+1)

= 0,
Sn+1 = −αn+1 + αn +�µn+1 HkinDe : ∂αg(εe

n+1,αn+1, βn+1)

= 0,
Tn+1 = −βn+1 + βn +�µn+1 Hiso De

norm∂βg(εe
n+1,αn+1, βn+1)

= 0,

(7)

where Rn+1,Sn+1 and Tn+1 are residuals of plastic strain,
kinematic hardening and isotropic hardening variables, re-
spectively, at the step n +1. Also, during the plastic corrector
phase the total strain is fixed therefore,

�εe
n+1 = −�ε

p
n+1. (8)

Upon linearizing and combining Eqs. (6) to (8) for kth itera-
tion, it is readily found that

R(k)−�ε p(k)+�µ(k)De : (−∂εeεe g(k) :�ε p(k)+∂εeαg(k) :
�α(k) + ∂εeβg(k)�β(k))+ δµ(k)De : ∂εe g(k) = 0,

S(k)−�α(k)+�µ(k)HkinDe : (−∂αεe g(k) :�ε p(k)+∂ααg(k) :
�α(k) + ∂αβg(k)�β(k))+ δµ(k)HkinDe : ∂αg(k) = 0,

T (k)−�β(k)+�µ(k)Hiso De
norm(−∂βεe g(k) :�ε p(k)+∂βαg(k) :

�α(k) + ∂ββg(k)�β(k))+ δµ(k)Hiso De
norm∂βg(k) = 0,

g(k)−∂εe g(k) :�ε p(k)+∂αg(k) :
�α(k) + ∂βg(k)�β(k) = 0,

(9)

where, for notational simplicity, the subscripts n + 1 are
dropped. Solving for the unknowns, δµ(k),�ε p(k) ,�α(k) and
�β(k) leads to

δµ(k) = −g(k) − {∂g}(k)A(k){ã}(k)
{∂g}(k)A(k){r̃}(k) ,

⎛

⎝
�ε p(k)

�α(k)

�β(k)

⎞

⎠ = A(k){ã}(k) + δµ(k)A(k){r̃}(k),
(10)
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Box. 1 Steps of the implicit return-mapping algorithm

where
[
A(k)

]−1

=
⎡

⎣
I +�µ(k)De∂εeεe g(k) −�µ(k)De∂εeαg(k) −�µ(k)De∂εeβg(k)

�µ(k)HkinDe∂αεe g(k) I −�µ(k)HkinDe∂ααg(k) −�µ(k)HkinDe∂αβg(k)

�µ(k)Hiso De
norm∂βεe g(k) −�µ(k)Hiso De

norm∂βαg(k) 1 −�µ(k)Hiso De
norm∂ββg(k)

⎤

⎦

and

{ã}(k) =
⎛

⎝
R(k)

S(k)

T (k)

⎞

⎠, {r̃}(k) =
⎛

⎝
De : ∂εe g(k)

HkinDe : ∂αg(k)

Hiso De
norm∂βg(k)

⎞

⎠,

{∂g}(k) = [−∂εe g(k) ∂αg(k) ∂βg(k)
]
.

Using these expressions the state variables in incremental
form are updated as

ε p(k+1) = ε p(k) +�ε p(k) ,

α(k+1) = α(k) +�α(k),

β(k+1) = β(k) +�β(k),

�µ(k+1) = �µ(k) + δµ(k).

(11)

The detailed steps of the return-mapping algorithm are pre-
sented in Box 1.

4 Application to trabecular bone modeling

The yield Eq. (1) including hardening parameters can be
rewritten as

g =
3∑

i=1

n
√
(γi − c)2 + n

√(
t
tr(γ )

3

)2

− n
√
(r + β)2, (12)

where γ = εe −α and γi are the principal values of γ . Using
the above relations and the chain rule leads to
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∂εeεe g = ∂γ γ g,
∂εeαg = ∂αεe g = −∂γ γ g,
∂εeβg = ∂βεe g = 0,
∂ααg = ∂γ γ g,
∂αβg = ∂βαg = 0.

(13)

Taking into account Eqs. (10) and (13), A−1 may be rewritten
as
A−1

=
[

I+�µDe∂γ γ g �µDe∂γ γ g 0
−�µHkinDe∂γ γ g I−�µHkinDe∂γ γ g 0

0 0 1−�µHisoDe
norm∂ββg

]
, (14)

where the superscript (k) is omitted for brevity. Therefore, A
can be deduced from the above equation as

A =

⎡

⎢⎢⎣

A2A1 −A3A1 0

A4A1 A5A1 0

0 0 A6

⎤

⎥⎥⎦, (15)

where A1 = [
De +�µ(1−Hkin)De∂γ γ gDe

]−1
,A2 = De−

�µHkinDe∂γ γ gDe,A3 = �µDe∂γ γ gDe,A4 = �µHkin

De∂γ γ gDe,A5 = De +�µDe∂γ γ gDe, A6 = (1 −�µHiso

De
norm∂ββg)−1. The algorithmic tangent modulus for this

model is derived in Appendix A.
This derivation also involves the calculation of the first

and second derivatives of the yield function g with respect to
the strain-like tensor γ , where g is an isotropic function of
the principal values of γ . The first derivative can be written
as

∂g

∂γ
=

3∑

A=1

∂g

∂γA
m(A), (16)

see [29], where γA are the principal values and m(A) are
the eigenbases of the tensor γ . The second derivatives are
computed for distinct and non-zero principal values of γ as

∂2g

∂γ 2 =
3∑

A=1

3∑

B=1

∂γA g

∂γB
m(A) ⊗ m(B)+

3∑

A=1

∂g

∂γA

∂m(A)

∂γ
, (17)

see [29–31], where an explicit expression for ∂m(A)/∂γ is
obtained as
∂m(A)

∂γ
=
[
Ie − (I1 − γA)I − γ ⊗ 1 + γ ⊗ m(A) + I3γ

−1
A 1 ⊗ γ −1

−I3γ
−2
A 1 ⊗ m(A) + γAm(A) ⊗ 1 − I3γ

−1
A m(A) ⊗ γ−1

+ψm(A) ⊗ m(A)
]/

DA, (18)

in terms of the three invariants I1, I2, I3 of γ , the second-
order identity 1 and the fourth-order identity I. In addition,
Eq. (18) makes use of the following quantities

DA = 2γ 2
A − I1γA + I3γ

−1
A �= 0,

I(e)i jkl = 1

2

(
δikγ jl + δilγ jk

)+ 1

2

(
γikδ jl + γilδ jk

)
,

ψ = I1 + I3γ
−2
A − 4γA.

This equation becomes indeterminate for equal or zero princi-
pal values and special forms of it for these cases are discussed
in Appendix B.

5 Algorithmic implementation

The plasticity-like model derived in the previous section was
implemented in FEAP, a fully nonlinear finite element code
documented in [32]. To include material strength anisotropy,
the fourth-order elasticity tensor Ce in the principal material
coordinate system was rotated to the global mesh coordi-
nate system using known material orientations and then used
in the plasticity algorithm to update state variables for each
integration point. Representative simulations were conducted
to test the accuracy and behavior of the model and to ensure
numerical convergence and applicability to the finite element
modeling of human proximal femur. Eight-node hexahedral
elements were used for all the simulations. The Newton–
Raphson scheme was employed to solve the nonlinear system
emanating from the weak form of the equilibrium equations.

5.1 Homogeneous strain cycle

This problem consisted of a single brick element subjected
to cyclic pure tension–compression displacement boundary
conditions. Generic elastic material properties were assigned
to this element, in which the material was assumed to be iso-
tropic with Young’s modulus E = 1000 MPa and Poisson’s
ratio ν = 0.3. The parameters r, c, n and t of the yield enve-
lope (Table 1) were assumed to be the same as that for the tra-
becular bone previously determined by Bayraktar et al. [22].
Four test cases were considered assuming: (1) the elastic per-
fectly plastic material behavior; (2) the kinematic hardening
0.1 times the elastic modulus (Hkin = 0.1); (3) the isotropic
hardening 0.1 times the elastic modulus (Hiso = 0.1); and
(4) both kinematic and isotropic hardening (Hkin = 0.05,
Hiso = 0.05). The material behavior (stresses and strains) at
one of the integration points is shown in Fig. 4.

This plasticity-like model under cyclic loading captured
the expected behavior with the kinematic and isotropic
hardening, as well as the tension-compression yield strength
asymmetry (Fig. 4). The yield envelope was stationary in the
elastic perfectly plastic case. A shift was observed in the yield
envelope in the pure kinematic hardening case. The size of
the yield envelope increased under pure isotropic hardening.
The yield values were also in agreement with the analytical
predictions.

Table 1 Coefficients of the modified super-ellipsoid yield surface given
in Eq. (1) for femoral trabecular bone

Coefficient list

r 0.738
c −0.157
n 0.414
t 1.417

The radius and center has units of % strain; n and t are dimensionless
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Fig. 4 The stress–strain behavior at one of the integration points of an eight-node brick subjected to cyclic loading. Four test cases were considered
assuming material behavior as a elastic perfectly plastic; b kinematic hardening 0.1 times the elastic modulus; c isotropic hardening 0.1 times the
elastic modulus; and d both kinematic and isotropic hardening

5.2 Solid cube under triaxial strain

In this problem, a 4 × 4 × 4 mm solid cube with 1×1×1 mm
brick elements was subjected to uniform triaxial compres-
sion displacement boundary condition. Orthotropic material
properties: E1 = 2, 376 MPa, E2 = 1, 377 MPa, E3 =
3, 645 MPa, ν12 = 0.28, ν23 = 0.14, ν13 = 0.15, G12 =
616 MPa, G23 = 784 MPa, and G13 = 1, 193 MPa, simi-
lar to trabecular bone were assigned to each element and the
parameters r, c, n and t were taken from Table 1. This problem
was solved in FEAP with Hkin = 0.05 and Hiso = 0.05.

The stress–strain curves obtained in the three directions
are shown in Fig. 5. In all three directions, the model failed at
the same strain because of the isotropy of the yield envelope
in strain space but at different stresses due to material ortho-
tropy (Fig. 5). This result is in agreement with the behavior
of the plasticity-like model presented here.

5.3 Nonlinear analysis of a human proximal femur

A proximal femur obtained from an 86-year-old female
human cadaver was scanned with quantitative computed
tomography (QCT, Somatom Plus 4, Siemens Medical,

Fig. 5 Stress–strain curves for a 4 × 4 × 4 mm cube model subjected
to triaxial compression boundary condition. The model yielded at the
same strain in three directions but at different stresses

Erlangen, Germany) at 120 kVp, 240 mA, (0.2 mm in-plane
and 1 mm out-of-plane voxel size), and again with micro-
Computed Tomography (micro-CT) using a cubic voxel size
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Fig. 6 Finite element models of a human femur generated from the QCT scans of 86-year-old female human cadaver with element sizes a
1.9335 × 1.9335 × 2.0 mm, b 3.094 × 3.094 × 3.0 mm, c 4.0604 × 4.0604 × 4.0 mm and, d 5.0271 × 5.0271 × 5.0 mm having 17,516, 4,540,
1,962, and 1,028 elements, respectively. Stance type loading condition, similar to loading of femur in the experiments, is shown for the 2 mm
model in which a uniform displacement was applied at the femoral head and the distal end was fixed

of approximately 90µm (Radios, SCANCO Medical AG,
Bassersdorf, Switzerland) (Fig. 1). Three-dimensional voxel-
based finite element models (Fig. 6) were generated from the
QCT scans by coarsening these images, i.e., collapsing the
image voxels in all directions, and converting these coarsened
voxels directly into 8-noded brick elements with element size
ranging from 5.0271 × 5.0271 × 5.0 to 1.9335 × 1.9335 ×
2.0 mm having 1,028 to 17,516 elements.

The bone apparent density, ρ (in g/cm3) of each element
was determined from the QCT scans using a regression be-
tween the known apparent density values and the correspond-
ing pixel intensities in hounsfield units (HU). The regression
was created by linearly correlating mean HU values in the tro-
chanteric and femoral neck regions of the proximal femur to
the mean apparent density values for these regions, as calcu-
lated in a large cross-sectional study [7]. The primary elastic
modulus (E1, in MPa) was assigned to each element using
apparent density-modulus relationship determined from the
on-axis mechanical tests of trabecular bone cores from the
greater trochanter and femoral neck [7, 26] as

E1 =
{

c1ρ
α1, for ρ ≤ 0.32g/cm3,

c2ρ
α2 , for ρ > 0.32g/cm3.

Here α1 = 2.18 and α2 = 1.49 are dimensionless con-
stants, while c1 = 15, 010 and c2 = 6, 850 have the units
necessary to render the preceding relations dimensionally
consistent. The principal values and directions that charac-
terize the microstructural anisotropic orientation of trabec-
ular bone as well as the volume fraction were determined
uniquely for each element in the finite element mesh us-
ing the mean intercept length tensor [33] measured from the
micro-CT scans in 4 mm cube regions throughout the prox-
imal femur [34]. Element-specific orthotropic elastic con-
stants were then assigned to each element using published
relations between volume fraction and the elastic modulus in
the principal material direction [35].

A stance-type displacement boundary condition (Fig. 6)
was applied to these models by fixing the distal end and apply-
ing a distributed compressive load at an angle of 20◦ to nodes
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Fig. 7 a Force-deformation curve for 2 mm element size femur model.
Yield force was calculated from the force–deformation curve using
90% secant method. b Convergence behavior of the yield force ob-
tained from FE analyses of femur models where FE results approach
actual solution as the mesh resolution was increased from 5 mm to
2 mm. For comparison experimental yield value is also shown in
this figure, which was obtained from the destructive testing of this
femur

on the superior aspect of the femoral head [36]. Muscle forces
were avoided to match the FE simulations with the simpli-
fied boundary conditions used in the experiments. Nonlin-
ear analyses were performed on these models using FEAP
with both isotropic and kinematic hardening (Hkin = 0.005,
Hiso = 0.005).

The yield force values of the femur were calculated from
the force–deformation curve using a 90% secant method.
This method displayed convergence, as the mesh was re-
fined (Fig. 7). The yield force for the finest mesh was in
close agreement with the experimental result obtained from
the destructive testing of this femur. The convergence of the
residual norm for this problem was quadratic and the force–
deformation curve (Fig. 7) showed that the solution at each
step was stable.

6 Conclusions

This article presents a constitutive and computational frame-
work for the analysis of a cellular solid-type material with
a yield envelope expressed in terms of principal strains. The
material anisotropy in stress space is also incorporated in
our model by rotation of the anisotropic fourth-order elas-
ticity tensor from the principal material coordinate system
to the global mesh coordinate system. A detailed procedure
is derived for this plasticity-like model to facilitate algo-
rithmic implementation. From a computational standpoint,
the method developed here preserves the structure of return-
mapping algorithm used widely for the stress- and strain-
based plasticity formulations. A numerically stable implicit
approach resulted in a robust formulation ensuring quadratic
convergence for the Newton–Raphson iterative solution strat-
egy. In future studies, the present formulation can be extended
to include geometric nonlinearities that might have an ef-
fect on lower density trabecular bone found in many sites,
and to other applications involving cellular solid materials
with different yield envelope and hardening rules. The model
could be further refined to include bone remodeling based on
mechanical stimuli and damage behavior, which might play
a significant role in the post-yield and reloading behavior of
trabecular bone.
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Appendix A: algorithmic tangent moduli

In nonlinear finite element analysis, a consistent tangent
operator is used for the algorithmic implementation of the
solution procedure with iterative strategies such as the New-
ton–Raphson method. Assuming iterative solution procedure
the algorithmic modulus can be defined for the step n + 1 as

C(alg) =
(

dσ

dε

)

n+1
. (19)

Writing Eqs. (3), (4) and (5) in differential form and substi-
tuting dεe = De : dσ leads to

dσ = Ce : (dε − dε p) ⇒ dε p = −De : dσ + dε,

dε p = d(�µ)De : ∂εe g +�µDe :
(∂εeεe g : De : dσ + ∂εeαg : dα + ∂εeβgdβ),

dα = d(�µ)HkinDe : ∂αg +�µHkinDe :
(∂αεe g : De : dσ + ∂ααg : dα + ∂αβgdβ),

dβ = d(�µ)Hiso De
norm∂βg +�µHiso De

norm

(∂βεe g : De : dσ + ∂βαg : dα + ∂ββgdβ).

(20)

Also, from Eq. (2) it follows that

dg = De : ∂εe g : dσ + ∂αg : dα + ∂βgdβ = 0, (21)
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or, in matrix form,

dg = [
De : ∂εe g ∂αg ∂βg

]
︸ ︷︷ ︸

{∂g}

⎛

⎝
dσ
dα
dβ

⎞

⎠ = 0. (22)

Likewise, Eq. (20) can be written in the matrix form as
(

dε
0
0

)
− d(�µ)

(
De : ∂εe g
∂αg
∂βg

)

︸ ︷︷ ︸
{r̃}

=
⎡

⎣
De +�µDe∂εeεe gDe �µDe∂εeαg �µDe∂εeβg

�µ∂αεe gDe − Ce

Hkin
+�µ∂ααg �µ∂αβg

�µ∂βεe gDe �µ∂βαg − 1
Hiso De

norm
+�µ∂ββg

⎤

⎦

︸ ︷︷ ︸
B−1

×
(

dσ
dα
dβ

)
, (23)

or
⎛

⎝
dσ
dα
dβ

⎞

⎠ = B :
⎛

⎝
dε
0
0

⎞

⎠− d(�µ)B : {r̃}. (24)

Combining Eqs. (22) and (24) to solve for the unknown
d(�µ) results in

d(�µ) =
{∂g} : B :

⎛

⎝
dε
0
0

⎞

⎠

{∂g} : B : {r̃} . (25)

Substitution of the value of d(�µ) in Eq. (24) results in
⎛

⎝
dσ
dα
dβ

⎞

⎠ =
[

B − (B : {r̃})⊗ ({∂g} : B)
{∂g} : B : {r̃}

]⎛

⎝
dε
0
0

⎞

⎠. (26)

From the above derivation, the algorithmic modulus (consis-
tent tangent operator) can be written as

C(alg) =
[

B − (B : {r̃})⊗ ({∂g} : B)
{∂g} : B : {r̃}

]

upper 6×6 part
. (27)

Using Eq. (13), B−1 from Eq. (23) can be simplified as

B−1=
⎡

⎣
De+�µDe∂γ γ gDe −�µDe∂γ γ g 0

−�µ∂γ γ gDe − Ce

Hkin
+�µ∂γ γ g 0

0 0 − 1
Hiso De

norm
+�µ∂ββg

⎤

⎦. (28)

After inverting, B is obtained as

B =
⎡

⎣
B1 − B1B2 −B1B3 0

−B3B1 −DeB1B4 0
0 0 B5

⎤

⎦, (29)

where B1 = [
De +�µ(1 − Hkin)De∂γ γ gDe

]−1
,B2 =

�µHkinDe∂γ γ g,B3 = �µHkinDe∂γ γ gDe,B4 = HkinDe +
�µHkinDe∂γ γ gDe, B5 = Hiso De

norm(�µHiso De
norm∂ββg −

1)−1.

Appendix B: second derivatives

The second derivative of the yield envelope g with respect
to γ [Eq. (17)] becomes indeterminate for the case of equal
or zero roots of tensor γ . To avoid the indeterminacy, par-
ticular expressions of these derivatives are deduced. In what
follows, γA are the principal values, n(A) are the eigenvectors
and m(A) are the eigenbases of tensor γ .

1. If γ1 = γ2 �= γ3,

∂2g

∂γ 2 = ∂γ1 g

∂γ1
1 ⊗ 1 +

(
∂γ1 g

∂γ3
− ∂γ1 g

∂γ1

)
1 ⊗ m(3)

+
(
∂γ3 g

∂γ1
− ∂γ1 g

∂γ1

)
m(3) ⊗ 1

+
(
∂γ3 g

∂γ3
− ∂γ1 g

∂γ3
− ∂γ3 g

∂γ1
+ ∂γ1 g

∂γ1

)
m(3) ⊗ m(3)

+
(
∂g

∂γ3
− ∂g

∂γ1

)
∂m(3)

∂γ
, (30)

where ∂m(3)/∂γ can be calculated based on Eq. (18).
2. If γ1 = γ2 = γ3,

∂2g

∂γ 2 = ∂γ1 g

∂γ1
1 ⊗ 1. (31)

3. If γ1 �= γ2 and γ3 = 0,

∂2g

∂γ 2 =
3∑

A=1

3∑

B=1

∂γA g

∂γB
m(A) ⊗ m(B)

+1

2

3∑

A=1

∑

B �=A

(∂g/∂γB)− (∂g/∂γA)

γB − γA

×
(

m(AB) ⊗ m(AB) + m(AB) ⊗ m(B A)
)
, (32)

where m(A) = n(A)⊗n(A),m(AB) = n(A)⊗n(B), A �= B.
4. If γ1 = γ2 = 0 and γ3 �= 0,

∂2g

∂γ 2 = ∂γ1 g

∂γ1
1 ⊗ 1

+
(
∂γ1 g

∂γ3
− ∂γ1 g

∂γ1

)
1 ⊗ m(3)

+
(
∂γ3 g

∂γ1
− ∂γ1 g

∂γ1

)
m(3) ⊗ 1

+
(
∂γ3 g

∂γ3
− ∂γ1 g

∂γ3
− ∂γ3 g

∂γ1
+ ∂γ1 g

∂γ1

)
m(3) ⊗ m(3)

+
(
∂g

∂γ3
− ∂g

∂γ1

)
∂m(3)

∂γ
, (33)

where (∂m(3)/∂γ ) = (1/γ3)
(
I − m(3) ⊗ m(3)

)
.
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5. If γ1 = γ2 and γ3 = 0,

∂2g

∂γ 2 = ∂γ3 g

∂γ3
1 ⊗ 1

+
(
∂γ3 g

∂γ1
− ∂γ3 g

∂γ3

)
1 ⊗

(
m(1) + m(2)

)

+
(
∂γ1 g

∂γ3
− ∂γ3 g

∂γ3

)(
m(1) + m(2)

)
⊗ 1

+
(
∂γ1 g

∂γ1
− ∂γ3 g

∂γ1
− ∂γ1 g

∂γ3
+ ∂γ3 g

∂γ3

)

×
(

m(1) + m(2)
)

⊗
(

m(1) + m(2)
)

+
(
∂g

∂γ1
− ∂g

∂γ3

)
∂
(
m(1) + m(2)

)

∂γ
, (34)

where (∂
(
m(1)+m(2)

)
/∂γ ) = (1/γ1)

(
I − (

m(1)+m(2)
)

⊗(m(1) + m(2)
))
.
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