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Abstract This paper presents a multiscale/stabilized finite
element formulation for the incompressible Navier–Stokes
equations written in an Arbitrary Lagrangian–Eulerian (ALE)
frame to model flow problems that involve moving and deform-
ing meshes. The new formulation is derived based on the
variational multiscale method proposed by Hughes (Comput
Methods Appl Mech Eng 127:387–401, 1995) and employed
in Masud and Khurram (Comput Methods Appl Mech Eng
193:1997–2018, 2006); Masud and Khurram (Comput Meth-
ods Appl Mech Eng 195:1750–1777, 2006) to study advec-
tion dominated transport phenomena. A significant feature of
the formulation is that the structure of the stabilization terms
and the definition of the stabilization tensor appear naturally
via the solution of the sub-grid scale problem. A mesh moving
technique is integrated in this formulation to accommodate
the motion and deformation of the computational grid, and to
map the moving boundaries in a rational way. Some bench-
mark problems are shown, and simulations of an elastic beam
undergoing large amplitude periodic oscillations in a viscous
fluid domain are presented.

Keywords Multiscale finite element methods · Arbitrary
Lagrangian–Eulerian (ALE) framework · Fluid–structure
interaction (FSI) · Moving meshes

1 Introduction

As computational fluid dynamics (CFD) tools are becoming
popular and widespread in engineering analysis and
design, there is a growing trend towards applying compu-
tational methods to the analysis and understanding of com-
plex multi-physics problems. From a mathematical viewpoint
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multi-physics problems are governed by multiple simulta-
neous physical phenomena with physical balance laws that
are represented via sets of independent state variables. Fluid–
structure interaction (FSI) is a classical example of this class
of problems. Because of the merger of various balance laws,
FSI problems fall in the category of mixed field problems and
are therefore governed by the mathematical theory of mixed
methods. A literature review reveals that within the classi-
cal Galerkin framework, developing stable and convergent
mixed finite element methods has been a formidable task.
Furthermore, the presence of multiple spatial and temporal
scales necessitates the use of methods that a priori accom-
modate the notion of multiscale solutions and also possess
enhanced stability and convergence properties.

A comprehensive FSI capability requires fluid analysis,
solid analysis, modeling of coupling effects at the common
interfaces, and a method of dealing with the changing and
evolving fluid boundaries that are dictated by the motion of
the adjoining structures. An important issue in FSI problems
lies in the mathematical descriptions employed for formu-
lating solid/structural mechanics and fluid mechanics. Equa-
tions of solid/structural mechanics are invariably formulated
and solved in a Lagrangian frame of reference where the
mesh is considered glued to the material particles and it
deforms together with the material. Fluid equations on the
other hand are usually formulated and solved in an Eule-
rian frame of reference where fluid particles are allowed to
move through an otherwise stationary mesh. In FSI problems
where large-scale motions of fluid boundaries occur, a pure
Eulerian description is inadequate because of the inability
of the computational domain to accommodate the changing
physical boundaries imposed by the moving structures. In
such situations Arbitrary Lagrangian–Eulerian (ALE) tech-
niques provide a reference frame that moves independent of
the motion of the fluid particles and thus offers the flexibil-
ity to arbitrarily deform the computational grids [9, 21, 32].
In ALE formulations the fluid flow equations and the fluid
boundary conditions are integrated with the equations gov-
erning the deformation of the fluid domain so that flow calcu-
lations can be carried out on continuously deforming meshes
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(see e.g., [1, 9, 10, 21, 24, 26, 27, 32, 38, 40, 43, 44] and ref-
erences therein). A formal equivalence between the ALE
based formulations for FSI and the space-time finite ele-
ment formulations with slanted-in-time space-time slabs was
established in Masud and Hughes [32].

Stabilized methods have been developed over the years
to address the shortcoming of the classical Galerkin method
when applied to mixed field problem (see e.g., [2–8, 11–16,
20, 22, 30, 31, 33, 39–45] and references therein). The most
significant contributions have been by Hughes and colleagues
who introduced the Streamline upwind/Petrov-Galerkin
(SUPG) method [7], that turned out to be the precursor
to the Galerkin/least-squares (GLS) stabilization method [22].
The fundamental contributions of these methods, in the con-
text of the advection-dominated transport phenomenon has
been (1) stabilization of the advection operator without upset-
ting consistency or compromising accuracy, and (2) circum-
vention of the BB (inf-sup) condition that restricts the use
of many convenient interpolations. In the mid 1990s Hughes
revisited the origins of the stabilization schemes from a var-
iational multiscale view point and presented the variational
multiscale method [18, 23]. Employing this method, Masud
and coworkers [2, 29, 31, 34–36] developed multiscale/sta-
bilized formulations for the incompressible Navier–Stokes
equations. This paper is an extension of our work to ALE
based formulations of Navier–Stokes equations for applica-
tion to moving boundary flows and fluid–structure interac-
tion. The most notable feature of the present method is that
the structure of the stabilization terms is derived consistently,
and an explicit definition of the stabilization tensor is ob-
tained via the solution of a sub-grid scale problem.

An outline of the paper is as follow. In Sect. 2, we pres-
ent the strong and weak forms of the incompressible Navier–
Stokes equations that are expressed in the ALE form. The
multiscale method is presented in Sect. 3. The mesh motion
scheme which is an integral part of an FSI solution strategy
is presented in Sect. 4. Section 5 presents some benchmark
problems to validate the method, and some numerical simula-
tions of large amplitude oscillations of an elastic beam in the
surrounding fluid domain to show its range of applicability.

2 Lagrangian, Eulerian, and ALE frames

Figure 1 shows a schematic diagram of the mappings be-
tween Lagrangian, Eulerian and ALE frames. Points in the
Lagrangian domain are denoted as X . Mapping ϕ(X, t) pro-
jects points X onto x in the Eulerian frame. For a given time
level t , this mapping is indicated as ϕt (X). In addition, an
intermediate domain is introduced that provides the flexi-
bility of arbitrary motion of the underlying domain that is
independent of the motion of the fluid particles. χ(X, t) is
the mapping associated with this transformation from the
Lagrangian frame to the ALE frame. Furthermore, a map-
ping φ(x̂, t) is introduced between the ALE and the Eulerian
frames, the inverse of which yields the arbitrary motion of the
fluid domain. In the computational setting this inverse map-

Fig. 1 Mappings between Lagrangian, Eulerian and Arbitrary Lagrang-
ian–Eulerian frames

ping yields the mesh motion schemes. At a given time level
“t”, these transformations between different domains are rep-
resented via Eqs. (1) and (2). Furthermore, it is assumed that
these mappings are smooth, orientation preserving, one-to-
one, and invertible [21, 28].

ϕt (x) = φt (x̂) · χt (X) (1)

χt (X) = φ−1
t (x̂) · ϕt (x). (2)

2.1 The strong form

Let � ⊂ �nsd be an open bounded region with piecewise
smooth boundary �. The number of space dimensions, nsd, is
equal to 2 or 3. The incompressible Navier–Stokes equations
can be written in an Arbitrary Lagrangian–Eulerian frame-
work as:
•
v + (v − vm) • ∇v−2ν∇ • ε(v) + ∇ p= f in �×]0, T[ ,

(3)

∇ • v = 0 in� × ]0, T[ , (4)

v = g on �g × ]0, T[ , (5)

σ • n = (2νε(v) − pI ) • n = h on �h × ]0, T[ , (6)

v(x, 0) = v0 on � × {0}, (7)

where v is the velocity vector, p is kinematic pressure, f is
the body force vector, ν is kinematic viscosity, and I is the
identity tensor. vm is the velocity of the fluid domain which
in the computational setting becomes the velocity of the fluid
mesh. ε(v) is the strain rate tensor which is defined as

ε(v) = 1

2
(∇v + (∇v)T).
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Fig. 2 Comparison of Streamlines superimposed on the velocity contours. (a) Eulerian (b) ALE
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Fig. 3 A comparison of the pressure contours. (a) Eulerian (b) ALE

Equations (3, 4, 5, 6, 7) represent balance of momentum, the
continuity equation, the Dirichlet and Neumann boundary
conditions, and the initial condition, respectively.

2.2 The standard weak form

Find v ∈ V = (H1
0 (�))nsd and p ∈ P = C0(�) ∩ L2(�)

such that

(w,
•
v)� + (w, (v − vm) • ∇v)� + (∇w, 2ν∇v)�

−(∇ • w, p)� = (w, f )� + (w, h)�h (8)

(q, ∇ • v)� = 0. (9)

3 The variational multiscale method

The present work is an extension of our earlier work on
incompressible Navier–Stokes equations [29, 35, 36]. Our
objective here is to develop a multiscale/stabilized formu-
lation for computations over moving domains. We do so
by invoking the ALE condition wherein the fluid particles
can move independent of the movement of the spatial fluid
domain. Although these developments are being presented
within the context of incompressible Navier–Stokes equa-
tions for application to FSI and free surface flows, it is being
pointed out that similar developments can lead to ALE based
stabilized formulations for compressible Navier–Stokes equa-
tions as well.
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Fig. 4 Comparison of the pressure coefficient with the experimental
data (Re = 40)

3.1 Multiscale decomposition

We consider the bounded domain � discretized into numel
non-overlapping regions �e (element domains) with
boundaries �e, e = 1, 2, . . . , numel such that

� =
numel⋃

e=1

�e. (10)

We denote the union of element interiors and element
boundaries by �′ and �′, respectively.

�′ =
numel⋃

e=1

(int) �e (element interiors) (11)

�′ =
numel⋃

e=1

�e (element boundaries) . (12)

We assume an overlapping sum decomposition of the velocity
field into coarse-scales or resolvable scales and fine-scales or
the subgrid scales. Fine-scales can be viewed as components
associated with the regions of high velocity gradients.

v(x, t) = v(x, t)︸ ︷︷ ︸
coarse scale

+ v′(x, t)︸ ︷︷ ︸
fine scale

(13)

We assume that v′ is represented by piecewise polynomials of
sufficiently high order, continuous in x but discontinuous in
time. In particular v′ is assumed to be composed of piecewise
constant-in-time functions. Accordingly, we have

v(x, t) = v(x, t) + v′
t (x). (14)

Thus,
•
v(x, t) = •

v(x, t). (15)

Likewise, we assume an overlapping sum decomposition of
the weighting function into coarse and fine scale components
indicated as w and w′, respectively.

w(x) = w(x)︸ ︷︷ ︸
coarse scale

+ w′(x)︸ ︷︷ ︸
fine scale

. (16)

We further make an assumption that the subgrid scales al-
though non-zero within the elements, vanish identically over
the element boundaries.

v′
t (x) = 0 on �′

t (17)

w′ = 0 on �′. (18)

For discussion on the appropriate spaces of functions, see
[18, 34, 35].

3.2 The variational multiscale formulation

Following along the lines of Masud and coworkers [29, 35,
36], we substitute the trial solutions (13) and the weighting
functions (16) in the standard variational form (8) and (9)
that yields the following set of equations.

(w + w′,
•
v) + (w + w′, ((v + v′) − vm) • ∇(v + v′))

+(∇(w + w′), 2ν∇(v + v′)) (19)

−(∇ • (w + w′), p) = (w + w′, f ) + (w + w′, h)�h

(q,∇ • (v + v′)) = 0. (20)

The weak form of the momentum equations is nonlinear be-
cause of the skew convection term. However, it is linear with
respect to the weighting function slot. Exploiting this linear-
ity, we split (19) into two parts: the coarse-scale sub-problem
W and the fine-scale problem W′ that can be written as fol-
lows.

3.2.1 The coarse-scale problem W

(w,
•
v) + (w, ((v + v′) − vm) • ∇(v + v′))
+(∇w, 2ν∇(v + v′)) − (∇ • w, p)�

= (w, f )� + (w, h)�h (21)

(q,∇ • (v + v′))� = 0. (22)

3.2.2 The fine-scale problem W′

(w′,
•
v) + (w′, ((v + v′) − vm) • ∇(v + v′))

+(∇w′, 2ν∇(v + v′)) − (∇ • w′, p) = (w′, f ). (23)

The coarse and fine scale equations are in fact nonlinear equa-
tions wherein the nonlinearity is engendered by the convec-
tion term. In general, to solve nonlinear equations we need
to linearize them. To keep the linearization process simple,
we employ ideas from the fixed point iteration method that
yields the following linearized formulations for W and W′,
respectively.
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Fig. 5 Velocity contours: comparison of the transient solution obtained with various time steps at time level t = 15, with that of the steady state
solution. (a) �t = 0.1 (b) �t = 0.05 (c) �t = 0.025 (d) Steady state solution

3.2.3 The linearized coarse-scale problem W

(w,
•
v) + (w, (vc − vm) • ∇(v + v′))

+(∇w, 2ν∇(v + v′))

−(∇ • w, p)� = (w, f )� + (w, h)�h (24)

(q, ∇ • (v + v′))� = 0. (25)

3.2.4 The linearized fine - scale problem W′

(w′,
•
v)+ (w′, (vc − vm) • ∇(v + v′)) + (∇w′, 2ν∇(v + v′))

−(∇ • w′, p) = (w′, f ). (26)

In (24) and (26), νc is the last converged solution from the
fixed point iteration and νm is the mesh velocity, obtained
from mesh motion scheme in the last step. The general idea
at this point is to solve the fine-scale problem, defined over
the sum of element interiors, to obtain the fine-scale solution
v′. This solution is then substituted in the coarse-scale prob-
lem given by (24) and (25), thereby eliminating the explicit
appearance of the fine scales v′ while still modeling their
effects.

3.3 Solution of the fine scale problem (W′)

The solution of fine-scale problem closely follows the devel-
opments presented in Masud and Khurram [35]. Accordingly,
they are only being outlined herein, while the structure of the
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stability tensor that emanates from the fine-scale problem is
being highlighted. Employing linearity of the solution slot in
equation (26), and rearranging terms, we get

(w′, (vc − vm) • ∇v′) + (∇w′, 2ν∇v′)

= (w′, f ) − (w′,
•
v) − (w′, ∇ p)

−(w′, (vc − vm) • ∇v) − (∇w′, 2ν∇v) (27)

= (w′, r), (28)

where r = f − •
v−∇ p−(vc −vm) • ∇v+2ν�v. It is impor-

tant to note that the right hand side of (28) is a function of
the residual of the Euler–Lagrange equations for the coarse
scales over the sum of element interiors. This shows that the
fine scale problem is in fact driven by the coarse scale resid-
uals. This is a crucial ingredient of the present multiscale
method and ensures that the resultant formulation yields a
consistent method.

Our objective at this point is to solve (28) either analyti-
cally or numerically to extract the fine scale solution v′ that
can then be substituted in the coarse-scale problem W. This
would eliminate the explicit dependence of (28) on v′, while
the ensuing terms will model the effect of v′.

If we assume that the fine scales v′ and w′ are repre-
sented via bubbles over �′ and substitute in (28), we recover
a local problem. The solution of the local problem yields the
constructed fine-scale field v′(x)

v′
t (x) = be(ξ)

[∫
be(vc − vm) • ∇bed�I

+ν

∫
|∇be|2d�I + ν

∫
∇be ⊗ ∇bed�

]−1

×
∫

�e

berd�, (29)

where be represents the bubble shape functions over element
domains, I is a nsd × nsd identity matrix, ∇b is a nsd× 1
vector of the gradient of bubble functions, and nsd represents
the number of spatial dimensions.

3.4 The coarse scale problem (W)

Let us now consider the coarse scale part of the weak form
W. Exploiting linearity of the solution slot and applying inte-
gration by parts we get

(w,
•
v) + (w, (vc − vm) • ∇v) − ((vc − vm) • ∇w, v′)
+(∇w, 2ν∇v) − (�w, 2νv′) − (∇ • w, p)

= (w, f ) + (w, h)�h (30)

(q,∇ • v) + (q, ∇ • v′) = 0 (31)

First considering the coarse-scale momentum equation (30)
and substituting v′ in the terms that contain the fine scale
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velocity field we get

(w,
•
v) + (w, (vc − vm) • ∇v) + (∇w, 2ν∇v)

−(∇ • w, p) + ((vc − vm) • ∇w + 2ν�w, τ (
•
v + ∇ p

+(vc − vm) • ∇v − 2ν�v))

= (w, f ) + (w, h)�h

+((vc − vm) • ∇w + 2ν�w, τ f ), (32)

where the stability tensor τ is defined as

τ =
(

be
∫

b
e

d�

) [∫
be(vc − vm) • ∇bed�I

+ν

∫
|∇be|2d�I + ν

∫
∇be ⊗ ∇be d�

]−1

. (33)

Next considering the continuity equation (31) and substitut-
ing v′ from (29) we get

(q,∇ • v) − (∇q, τ ( f − •
v

−∇ p − (vc − vm) • ∇v + 2ν�v)) = 0. (34)

3.5 The multiscale form

We can combine (32) and (34) to develop the multiscale/sta-
bilized form, termed as the HVM form [29, 34, 35] of the
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Fig. 8 Schematic diagram of the elastic beam in the fluid domain

incompressible Navier–Stokes equations written in an ALE
frame. Since the resulting equation is expressed entirely in
terms of the coarse scales, for the sake of simplicity the super-
posed bars are dropped.

(w,
•
v)� + (w, (vc − vm) • ∇v)�

+(∇w, 2ν∇v)� − (∇ • w, p)� + (q,∇ • v)�

+(((vc − vm) • ∇w + 2ν�w

+∇q), τ (
•
v + (vc − vm) • ∇v − 2ν�v + ∇ p))�

= (w, f )� + (w, h)�h + (((vc − vm) • ∇w

+2ν�w + ∇q), τ f )�. (35)

Remark The stabilization tensor τ appears as a consequence
of the fine scale problem. In order to retain the contribution
from the skew term, we employ a different order bubble in
the weighting function slot of this term.

τ = be
1

∫

�′
be

1d�




∫

�′
be

2(v
c − vm) • ∇be

1d�I

+ν

∫

�′
|∇be

1|2d�I + ν

∫

�′
∇be

1 ⊗ ∇be
1d�




−1

, (36)

where be
1 is the standard quadratic bubble while be

2 represents
the bubble for the fine scale weighting function in the skew
part.

Remark In the structure of the stability tensor, if vm = 0,
we recover the stability tensor for incompressible Navier–
Stokes equations within the Eulerian frame [35]. If the mesh
velocity is set equal to the fluid particle velocity, the convec-
tion term drops out and we recover the stability tensor of the
underlying Stokes problem [35]. Thus mesh velocity plays
an important role in the structure of the stability tensor τ .

4 Mesh moving scheme

The ALE descriptions are based on the notion of an arbi-
trary movement of the reference frame, which is continuously
updated in order to allow for a precise description of the mov-
ing interfaces. For computational efficiency one would like
to minimize the frequency of the remeshings, thus prompting
mesh rezoning techniques that preserve the mesh connectiv-
ity while continuously updating the nodal coordinates [25,
32, 41, 42]. Mesh rezoning is typically continued until the
condition number of the elements in the deforming meshes
starts deteriorating. At this point, a new mesh is constructed
by freezing the calculations in time, and information is pro-
jected from the old mesh on to the new mesh using the pro-
jection techniques.

In this section we present a mesh motion technique which
can be applied to map arbitrarily shaped domains [32, 37].
The formal statement of the boundary-value problem is: given:
g, the prescribed mesh displacements at the moving bound-
ary, find the mesh displacement field um : � → �nsd , such
that
∇ • (1 + τm)∇um = in � (37)

um = g on �m (38)

um = 0 on �f , (39)
where �m and �f indicate the moving and fixed parts of the
mesh boundary, respectively. τm is a bounded, non-dimen-
sional function which is designed to prevent the inversion of
small elements in the high density regions of the fluid mesh.
A simple definition of τm is given in Masud et al. [37]. The
mesh velocity νm at node “i” can be obtained from the mesh
displacement um as follows:

vm
i =

(
um

i

)n+1 − (
um

i

)n

�t
, (40)

where n is the time level and �t is the step size.
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Fig. 9 Computational mesh for the oscillating beam problem

5 Numerical results

We first present the validation of the ALE formulation by
comparing the ALE based calculations with the Eulerian cal-
culations. We then present numerical simulations of large
amplitude oscillations of an elastic beam in a fluid domain.
Through out this paper backward Euler implicit scheme is
employed and optimal quadrature rules are used for numeri-
cal integration (see e.g., [19], Chapter 3)

5.1 Verification of the ALE formulation

This numerical study presents an analysis of flow over a cyl-
inder at Reynolds number 40. Both Eulerian as well as ALE
formulations are used. For Eulerian calculations a unit inlet
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0

2

Fig. 10 Zoomed view of the initial undeformed mesh

velocity is imposed. Free stream boundary condition is as-
sumed at the top and bottom surfaces along with a stress free
outlet. No slip boundary condition is applied on the surface
of the cylinder. For ALE calculations, the cylinder is moved
with a given velocity in an infinite, stationary fluid domain.
In order to invoke the no slip boundary conditions, we set
the fluid particle velocity on the surface of the cylinder as
vx = −1 and vy = 0. In this simulation, the fluid mesh
moves without distortion together with the cylinder. Accord-
ingly, we set vm

x = −1 and vm
y = 0. Stress free boundary

conditions are assumed at the outlet.
Figure 2a, b shows the streamlines superimposed on the

velocity contours for the Eulerian and the ALE calculations,
respectively. As expected, the pressure contours shown in
Fig. 3 are similar for the two cases, that verifies the validity
of the ALE formulation. Figure 4 shows the comparison of
the coefficient of pressure obtained with Eulerian and ALE
formulations with the available experimental data [17].

5.2 Flow over a stationary beam

Flow over a square block at Reynolds number 100 typically
produces Karman vortex street. However, introduction of a
beam in the wake region prevents asymmetry in the flow,
thus suppressing the appearance of Karman vortices. Figure 5
shows the wake structure of the flow over the stationary beam.
In these figures streamlines are superimposed on the velocity
contours. Three different time steps of �t = 0.1, 0.05 and
0.025 are used. The steady state solution for the problem is
compared with the transient solutions obtained using differ-
ent time steps to reach a time level t = 15. The transient
solutions and the steady state solution show similar wake
structures with the transient solutions approaching the steady
state for the problem.

We have also computed the coefficient of pressure on the
surface of the beam. The coefficient of pressure C p is defined
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as

C p = p − p∝
(1/2) ρ v2 , (41)

where p is the local pressure, p∝ is the free stream pressure
(we chose the pressure at the mid point of the inlet), ρ is the
density and v is the inlet velocity. Figure 6 shows the coeffi-
cient of pressure on the surface of beam (as a function of the
axial distance) for various time steps at the time level t = 15.
The dip in C p near the tip of the beam is due to the suction
effects of the tip induced wake. The upper and lower surfaces
of the beam have same C p distribution, so results for only the
upper surface of the beam are shown.

Figure 7 shows the temporal evolution of the coefficient
of pressure at the mid-span on the surface of beam. Tran-
sient values of C p that are obtained with different time-steps
approach the steady state value.

5.3 Large amplitude oscillation of an elastic beam

This is a typical FSI problem wherein an elastic beam is
undergoing large amplitude oscillations which is driving the
surrounding fluid. Figure 8 shows the schematics of the prob-
lem. Inflow conditions are imposed at the left boundary, while
free stream conditions are assumed at the top and bottom
boundary. Exit (zero stress) condition is assumed at the right
boundary. Reynolds number based on the inflow velocity and
the length of square base is 100. No-slip boundary conditions
are imposed on the surface of the beam. Consequently, the
local fluid velocity at the interface is equal to the local veloc-
ity of the beam.

Figure 9 shows the mesh employed in the simulation and
consists of a combination of 3-node triangles and 4-node
quadrilaterals (720 4-node quadrilaterals and 9,920 3-node
triangles). For enhanced accuracy of the computed solution,

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30

Time

Y
- 

V
el

oc
ity

Fig. 12 Y -velocity at the tip of the beam as a function of time

the mesh has a higher resolution around the moving bound-
aries. Since triangles can conveniently discretize any arbi-
trary region and can accommodate more distortion while
maintaining their condition number as compared to quad-
rilaterals, 3-node triangles are used near the moving sur-
faces. However, in the far field, 4-node quadrilaterals are
employed because of their higher engineering accuracy. This
mesh highlights an important feature of the formulation, i.e.,
accommodating different element types in the computational
domain. This test problem is of great practical importance
in that any of-the-shelf mesh generator can be employed
for adequate spatial discretization, and the proposed mul-
tiscale/stabilized formulation written in an ALE frame can
be employed to obtain stable and convergent solutions. This
feature of the method will be of great significance in large-
scale 3D FSI problems where different element types can be
employed in different regions of the computational domain
to easily discretize the region around complicated 3D struc-
tures.

A mesh moving scheme [37] is applied to accommo-
date the large amplitude oscillations of the flexible canti-
lever beam. Figure 10 shows the zoomed view of the ini-
tial mesh with high resolution around the beam to capture
the flow physics in the boundary layer region. Figure 11
shows the zoomed view of the deformed mesh wherein the
smaller elements close to the moving fluid–solid interfaces
have translated with the least amount of distortion, and the
larger elements in the far field have deformed substantially
to absorb the motion of the beam. Consequently, the quality
of the elements is maintained in the boundary layer regions,
resulting in well-defined meshes for successive time-step cal-
culations.

In this problem the beam is moved in a prescribed sinu-
soidal motion using the following function which gives qua-
dratic transverse deflection to the beam.

Y (x, t) = A(x − x0)
2sin(2πωt), (42)

where Y (x, t) is the y-displacement of the beam at a given
x-location of the undeformed configuration at a given time t .
“A” is the maximum amplitude at the tip of the beam. For the
present case A = 0.1. ω is the angular velocity and x0 is the
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Fig. 13 Comparison of transient solution obtained with different time-step sizes (Pressure contours at time level t = 2.0). (a) �t = 0.1 (b)
�t = 0.05 (c) �t = 0.025

off set of the base of the beam along the X -axis. The period
of oscillation is 7.5. The beam is considered inextensible and
therefore x-displacement is also prescribed to prevent any
change in the length of the beam. The maximum transverse
velocity and therefore the maximum mesh velocity is 1.05,
which is of the order of the inlet velocity. Temporal variation
of the maximum mesh velocity is shown in Fig. 12. The mesh
velocity is kept constant for the three different time step stud-
ies by changing the number of steps per cycle. The three time
step sizes of �t= 0.1, 0.05, 0.025 require 75, 150 and 300
steps per period of oscillation, and four complete oscillation
cycles are simulated.

Figure 13 presents a study of the effects of the time step
size on the computed solution at a given time level. Other
problem parameters, i.e., mesh discretization, mesh velocity,
geometry configuration, and flow conditions are kept con-
stant. The pressure contours show similar trends, however,

smaller time step size helps in decreasing the numerical dis-
sipation, which is an attribute of the backward Euler time
integration scheme. Figure 14 shows the pressure profiles at
different time levels for �t = 0.025, when beam is com-
ing down from its highest position (along y-axis) in the 4th
cycle. In Fig. 14a the beam is moving down and the suction
effect is visible on the upper surface of the beam and high
pressure can be seen on the lower surface. As it moves down,
the high pressure becomes prominent (Fig. 14b, c) on the
lower surface and the low energy boundary layer separates
into a circular vortex (Fig. 10d) which advects downstream
(Fig. 14e, f) with the mean background flow.

Figure 15 shows the y-displacement at the mid-span of
the beam. Figure 16 and 17 show the pressure coefficient
C p (at the mid-span) as a function of time, on the top and
bottom surfaces, respectively. Again three simulations are
performed with different time steps. The results from the
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Fig. 14 Pressure contours obtained at various time levels (�t = 0.025). (a) t = 24.375 (b) t = 25.125 (c) t = 25.875 (d) t = 26.625 (e)
t = 27.375 (f) t = 28.125

two smaller time step simulations are closer to each other,
indicating converging solutions. The two profiles are super-
imposed for �t = 0.025 in Fig. 18. The off-set of the two

C p profiles from C p = 0 axis is approximately −0.3. This
is because of the fact that the beam is in the wake of the flow
produced by the square head.
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of time

The Cp distribution along the top surface of the beam is
shown in Fig. 19. Again three different time steps are used
and the Cp profiles are shown at time level t = 15. At this
time level the beam has deflected back to its mean position
after having completed two cycles. Since the beam is moving
in the positive y-direction, the positive Cp values indicate a
high pressure on the top surface. However, near the tip of the
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Fig. 18 Cp at mid-span of the top and bottom surfaces of the beam as
a function of time
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t = 15
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Fig. 20 Cp distribution on the top and bottom surfaces of the beam at
time level t = 30

beam, the low pressure from the lower surface reaches the top
surface. Figure 20 shows the Cp profile on both the surfaces
at t = 30, i.e., at the end of the 4th cycle, where the beam is
deflecting back to its mean position from its lower extreme
position. This result is shown for time step �t = 0.025. The
suction and stagnation effects can clearly be seen on the two
surfaces.
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6 Concluding remarks

We have presented a multiscale/stabilized method for the
incompressible Navier–Stokes equations on moving grids.
In this method the stabilization terms appear as a result of
the assumption of the existence of fine scales in the problem.
The proposed method exhibits the superior stability proper-
ties like that of the SUPG and the GLS methods. An important
feature of the proposed method is that a definition of the sta-
bility tensor “τ” appears naturally via the solution of the fine
scale problem. In the present context of the ALE framework,
the stability tensor “τ” is a function of the mesh velocity.
A mesh rezoning scheme is integrated in the stabilized/mul-
tiscale method. It is then applied to a typical FSI problem
involving large amplitude oscillation of an elastic beam in
the fluid domain. Transient pressure contours are presented
and line plots of the pressure profile on the surface of the
beam are plotted. Numerical results show the good stability
properties of the proposed method for this class of problems.
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