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Abstract This work investigates a modified element-free
Galerkin (MEFG) method when applied to large deforma-
tion processes. The proposed EFG method enables the direct
imposition of the essential boundary conditions, as a result of
the kronecker delta property of the special shape functions,
constructed in the neighborhood of the essential boundary.
The plasticity model assumes a multiplicative decomposi-
tion of the deformation gradient into an elastic and a plastic
part and considers a J2 elasto-plastic constitutive relation that
accounts for a nonlinear isotropic hardening. The constitutive
model is written in terms of the rotated Kirchhoff stress and of
the conjugate logarithmic strain measure. A total Lagrangian
formulation is considered in order to improve the computa-
tional performance of the proposed algorithm. Here, aspects
related to the volumetric locking are numerically investi-
gated and an F-bar approach is considered. Some numerical
results are presented, under axisymmetric and plane strain
assumption, in order to attest the performance of the pro-
posed method.
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1 Introduction

Large deformation analysis has an important role and a key
place in solid mechanics science. Many physical phenomena
that occur in industrial processes, as for instance in metal
forming, require its usage and, in general, a large amount
of plastic deformation. Despite the small deformation anal-
ysis, where the deformation measure is universal, given by
ε(u) = ∇Su, the formulation in finite strains offers a wide
variety of possibilities. Different deformation measures such
as the Lagrangian measures; based on the right Cauchy–
Green tensor U, and the Eulerian measures, based on the
left Cauchy–Green tensor V, together with their conjugate
stresses, may be employed in the finite deformation frame-
work.

In this work, the (MEFG) modified element free Galerkin
method, which combines the Element EFG with an extended
Partition of unity finite element method (PUFEM), allow-
ing the enforcement, in some limiting sense, of the essential
boundary conditions as done in the finite element method
(FEM), will be numerically investigated when applied to
large deformation problems. (see Alves and Rossi [2]).

The proposed extended PUFEM is based in the moving
least square approximation (MLSA) and overcomes singu-
larity problems, in the global shape functions, resulting from
the usage of a conventional PUFEM together with linear and
higher order base functions. In order to avoid the presence
of singular points, the extended PUFEM considers an exten-
sion of the support of the classical PUFE weight function.
Moreover, since the extended PUFEM is closely related to
the EFG method, no need of special approximation functions
with complex implementation procedures is necessary and
no use of the penalty and/or multiplier method is required in
order to approximately impose the essential boundary condi-
tion. Thus, a relatively simple procedure is necessary in order
to combine both methods.

The extension of the modified EFG to finite deformation
considers:

• A Total Lagrangian description;
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• A multiplicative decomposition of the deformation gra-
dient, into a plastic and an elastic part;

• A constitutive relation, given in terms of the logarithmic
deformation measure, ln(U), and the conjugate rotated
Kirchhoff stress measure. In this model the elastic re-
sponse is assumed to be hyperelastic, according to the
Hencky model, and the plastic flow is described by a J2
plasticity model.

The use of the rotated Kirchhoff stress together with the
logarithmic deformation measure was initially described in
Eterovic and Bathe [10] and Weber and Anand [32], and also
employed by Akkaram and Zabaras [1] among others. Sim-
ilar investigations, employing however an Eulerian descrip-
tion using the Kirchhoff stress and the logarithmic deforma-
tion measure, ln(V), were also presented in Souza Neto et al.
[28, 29].

The choice of these above conjugate stress-strain pairs in
the formulation of the constitutive equation leads to a return
mapping that is described in the same form as the one found
in the small deformation plasticity schemes. This allows the
incorporation of elastoplastic material models, derived in the
small deformation scope, into large deformation algorithms
in a simple and direct way.

The J2 plasticity model considered in the work assumes
that the plastic deformation process is incompressible. This
incompressibility hypothesis leads to the so called volumetric
locking phenomenon, which occurs for instance, whenever
a low order finite element interpolation is used, when solv-
ing plane strains and axisymmetric problems. Such phenom-
enon is also verified in mesh-free methods as mention in
Askes et al. [4], Dolbow and Belytschko [8], and Huerta and
Méndez [16].

The B-bar method
(
B̄

)
proposed by Hughes [17], the en-

hanced assumed strain (EAS) method proposed by Simo and
Rifai [27] and the F-bar method

(
F̄
)

proposed by Souza Neto
et al. [28] are examples of methodologies largely used in the
literature in order to circumvent the volumetric locking phe-
nomenon, when using low order finite elements. These meth-
odologies are formulated in a general frame work and may be
applied, without significant changes, to the MEFG method.

More specifically, on the volumetric locking phenomenon
in EFG methods, some procedures were proposed in order to
cope with the problem. Wells et al. [29] propose that a local
extrinsic enrichment be accomplished just where the plastic
flow takes place. Vidal et al. [31] proposes a pseudo-diver-
gence-free approach, which consists in using shape functions
that verify approximately the divergence-free constraint. In
Askes et al. [4], it is numerically shown, for near incom-
pressible solids, that the volumetric locking problem is not
evidenced if a sufficiently large support of the global shape
function is used. However, Huerta and Méndez [15], show
that the volumetric locking problem is just attenuated, but
not suppressed from the analysis. Mixed formulations, where
the displacements and pressure fields are approximated sep-
arately, are also proposed in the literature in the context of
mesh-free methods, together with strategies of selective inte-
gration. In this case the inf–sup condition of Ladyzhenskaya–

Brezi–Babuska (LBB) must be satisfied. See Dolbow and
Belytschko [8].

This work presents a variation of the F-bar method
(
F̄
)
,

which is implemented in the context of the modified EFG
method and investigated under axisymmetric and plane strain
conditions. The choice of selecting an F-bar approach is due
to the simplicity of its implementation, when compared to
the other proposed strategies, and the good results obtained
by Souza Neto et al. [28, 29] and Akkaram and Zabaras [1].

2 A brief description of the modified element-free
Galerkin method

2.1 Introduction

In the last 10 years a considerable attention has been given
to the so-called “meshless or mesh-free methods”. This new
class of numerical methods is being applied to solve engi-
neering problems, where the traditional numerical methods
face difficulties, such as in large deformation problems.

Naturally, together with these new methods new problems
have originated, such as the need to: implement appropriate
numerical integration schemes; enforce essential boundary
conditions; and reduce the computational cost, when com-
pared with the traditional finite element method, amongothers.

Here, the focus is on the extension of the MEFG method,
which proposes a novel method to impose the essential
boundary conditions, to large deformation problems and the
reduction of the computational cost of the method. The com-
putational cost may be considerably reduced if one considers:

• the formulation of the problem in the Total Lagrangian
framework, which allows the implementation of simple
procedures, such as computing only once and storing in
memory the matrices containing the global interpolation
functions and their derivatives at each integration points;

• the investigation of effective and low computational cost
methods for coping with the existing volumetric locking
problems.

The need of special procedures for the imposition of
the essential boundary conditions, in the scope of the EFG
method, arises from the fact that the resulting shape functions
do not satisfy the kronecker delta property. Several distinct
approaches have been proposed in the literature to overcome
this problem. Among them are: the usage of collocation meth-
ods Belytschko and Tabbara [5], and Zhu and Atluri [35], the
usage of Lagrange multiplier methods Belytschko et al. [6],
the combination of EFG with the FEM Belytschko et al. [7],
Krongauz and Belytschko [19], Hegen [13] and Huerta and
Méndez [15], the usage of singular weight functions Duarte
and Oden [9] and Kaljević and Saigal [17], and the appli-
cation of penalty methods Zhu and Atluri [35]. Some other
approaches and variations can also be found in Günther and
Liu [12], Pannachet and Askes [23], Gavete et al. [11], Zhang
et al. [34] and Ventura [30].
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Each of these methods presents some advantages and
drawbacks. Lagrange multiplier methods are commonly used
and are effective to impose constraints on optimization prob-
lems. Nevertheless, their use present some disadvantages
such as: the ill conditioning of the resulting algebraic sys-
tem of equations, the increase in the problem size, and the
inability to impose the essential boundary conditions with a
high degree of accuracy as mentioned in Belytschko et al. [6].

Methods that combine EFG with FEM, such as Bely-
tschko et al. [7], Krongauz and Belytschko [19], Hegen [13]
and Huerta and Méndez [15], make use of a mixed inter-
polation approach requiring both finite elements and EFG
base functions. Thus the domain must be decomposed in two
sub domains, one defined by a set of nodes with their asso-
ciate FE shape functions and the other defined by a set of
particles with their associated EFG shape functions. More-
over, in the transition domain, where the support of both EFG
and FE base functions overlap, the global approximation is
decomposed as a sum of a FE and EFG global shape func-
tions what requires, in order for satisfying the consistency
conditions, some special procedures, making it difficult to be
implemented and generalized.

The use of singular weight functions has the drawback
of been highly non-polynomial, as shown in Hegen [13], and
are responsible for a loss in accuracy, if an inadequate inte-
gration scheme is employed. Also, the enforcement of the
essential boundary conditions are only achieved at the center
of the singular weight functions. In addition, results obtained
from penalty methods are parameter dependent and Colloca-
tion methods are in general inappropriate, see Zhu and Atluri
[35].

Here, the imposition of the essential boundary conditions
is performed by the introduction of a weight function derived
from, an extended PUFEM (EPUFEM). This EPUFEM will
act only at the neighborhood of the essential boundary. Thus,
the remaining domain is covered by traditional EFG weight
functions. Also, since both EFG shape functions and EPUFE
shape functions are derived from the MLSA approach using
the same intrinsic base, the consistency condition is naturally
satisfied in the transition domain. Thus, the MEFG method
can be seen as a conventional EFG method, containing a set of
different weight functions, with the ability to identify at each
particle the proper type of weight function and to determine
the adequate size of its support.

2.2 Moving least square approximation

With the usage of the Moving Least Square Approximation,
presented by Lancaster and Salkuskas [20], it is possible to
construct an approximation function uh(X) that fits a discrete
set of data {uI , I = 1, . . . , n} so that:

uh(X) =
∑n

I=1
�I (X)uI , (1)

�I (X) = p(X) · A(X)−1bI (X), (2)

A(X) =
n∑

I=1

w(X − X I )[ p(X I )⊗ p(X I )] (3)

and

bI (X) = w(X − X I ) p(X I ), (4)

where
{

p j (X), j = 1, . . . ,m
}

represents the set of intrinsic
base functions and w(X − X I ) represents a weight function
centered at X I . Here, �I (X) is the global shape function,
defined at particle X I , and A(X) is the moment matrix.

2.3 Element-free Galerkin

The conventional EFG method, see Belytschko et al. [6], is
described by the procedure that constructs the set of global
shape functions, �I (X), defined at each particle X I , which
defines the approximation space. These global shape func-
tions are then used together with the Galerkin method to
solve the boundary value problem. The particles distribution,
which defines how the covering of the domain is done by the
global shape functions �I (X), is not arbitrary since it must
satisfy the following stability condition:

card{X J |�J (X) �= 0 } ≥ dim [A(X)]. (5)

Thus, the number of particles X J who’s associated shape
function �J (X) have a nonzero value at X, must be larger
than the size of A(X),which is given by the number of intrin-
sic base functions in p(X).Moreover, for each X ∈ Rn , there
must be n + 1 particles, whose position vectors form a non-
zero nth rank simplex element, Liu et al. [21]. Here, since
X ∈ R2, with X = (X, Y ), and the intrinsic base func-
tions is pT(X) = [1, X, Y ] then, from (5), for all X ∈ �̄,
there must be at least three particles whose weight functions
have a nonzero value at X and whose position vector forms
a triangle with a non-zero area. Notice that, since the MLSA
reproduces exactly the intrinsic base functions in p(X), the
consideration of a linear intrinsic base ensures the satisfac-
tion of the classical patch test.

In order to obtain a particle distribution that comply with
(5), one performs a partition of the domain, �o, into a trian-
gular integration mesh, where one considers each triangular
partition/element to be an integration cell and each vertex
node to be the position of a particle.

2.3.1 Element-free Galerkin weight functions

One of the most common weight functions, used in the con-
ventional EFG method, is the quartic-spline function, de-
noted here by wEFG and given as:

wEFG(r) =
⎧
⎨

⎩

1 − 6r2 + 8r3 − 3r4, for r ≤ 1.0

0, for r > 1.0.
(6)
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Fig. 1 An example of body coverage by the MEFG

Here, r = rI /r̄ I with rI = ‖X − X I ‖. The radius r̄ I , defin-
ing the support of wEFG(X − X I ), is determined by

r̄ I = s · rI max, s > 1 s ∈ R (7)

and

rI max = max
i

‖X i − X I ‖, i ∈ JI , (8)

where JI represents the set of adjacent nodes associated with
X I . Here, one considers s=1.5, what assures a covering of the
entire domain. The selection of the proper parameter s, which
characterizes the support size, was based on the results of a
parametric analysis performed in Rossi and Alves [24, 25].

Now, since the global shape functions
{
�I (X), I

= 1, . . . , n
}

do not satisfy, in general, the kronecker delta
property, �I (X j ) �= δI J , it is not possible to enforce the
essential boundary conditions, by directly prescribing nodal
values, as done in the FEM. However, special weight func-
tions may be constructed in order to satisfy the kronecker
delta property. Among the possible weight functions is the
extended partition of unity finite element (EPuFe) weight
function.

2.4 Extended partition of unity finite element weight
functions

The global shape functions {�I (X), I = 1, . . . , n}, employed
in EPuFe, are also obtained by the use of the MLSA. A typ-
ical support of an EPuFe global shape function is illustrated
in Fig. 1, where one can identify the adjacent extended node
list of X I given by the set X∗

1, X∗
2, X∗

3, X∗
4, X∗

5. Now, at par-
ticles where a linear triangular finite element type of function
is used as a weight function in the MLSA, it is possible derive:

wEPF(X−X I )=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2A

[(
X∗

i Y ∗
i+1−X∗

i+1Y ∗
i

)

+(
Y ∗

i − Y ∗
i+1

)
X + (

X∗
i+1 − X∗

i

)
Y

]
,

X ∈ supp [�I (X)]

0, otherwise

.(9)

Here, X∗
i and X∗

i+1 are the elements of the adjacent extended
node list set of X I , obtained in a counter clockwise sense of
the triangular integration cell whose area is A. The usage of
an intrinsic base pT(X) = [1, X, Y ] together with a EPuFe
weight function satisfy the requirement in (5) and, there-
fore, ensures the regularity of the moment matrix A(X). The
extended points are determined as:

X∗
i = X i + ε(X i − X I ). (10)

Notice that, letting ε → 0, one derives a global shape func-
tion that satisfy, in a limiting sense, at a given particle X J ,
the kronecker delta property, i.e.

lim
ε→0

�I (X J ) = δI J . (11)

As a consequence, one may imposes the essential boundary
conditions in the same way as done in the traditional FEM.
Moreover, the error in the imposition of the essential bound-
ary condition can be made as small as required, provided
one uses a sufficiently small extension parameterε. Here, it’s
important to notice that, for a finiteε, a small violation of
the kronecker delta condition occurs, i.e., there is a small
violation of the prescribed essential boundary condition.

2.5 Modified element-free Galerkin method

The objective of the MEFG method is to combine, in a suit-
able way, both weight functions, in order to explore the smooth-
ness of wEFG and the kronecker delta property of wEPF. The
strategy is shown by considering a body with domain�o and
boundary ∂�o, where ∂�o = �u ∪�t and �u ∩�t = ∅. Here,
�u and �t are respectively the part of ∂�o with prescribed
essential and natural boundary conditions, as illustrated in
Fig. 1. Notice that the EPuFe weight functions are speci-
fied at particles that belong to a neighborhood of �u and the
EFG weight functions are specified at the remaining parti-
cles of the mesh. This procedure enables the determination
of an approximate solution that satisfies accurately the essen-
tial boundary condition and is smooth in the entire domain,
except for a neighborhood of �u .
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The advantage of using EFG weight functions relies in
the fact that the derived global shape functions are weakly
depended on the selected integration mesh, when compared
with the traditional FEM. This characteristic allows mesh
free methods to withstand very large deformations before any
numerical ill-conditioning takes place. In order to achieve
the same level of deformation, traditional FEM requires the
performance of some re-meshing procedures, introducing a
relevant source of errors. In addition, if the weight function is
continuous together with its first ith derivatives, the derived
global shape function is also continuous together with its first
ith derivatives, see Belytschko et al. [6].

Also, since the global shape functions are constructed
with the same intrinsic base, the approximation keeps the
reproducibility property over the entire domain, an important
MLSA characteristic. A sensitivity and convergence exam-
ination of the approximate solution with respect to the ε
parameter is given in Alves and Rossi [2].

In order to impose the essential boundary condition, by
directly prescribing the nodal values, one has to assure that no
EFG weight functions do overlap any point at the boundary
�u . In order to achieve this goal, one considers:

(1) The partition of the domain into a triangular mesh so that
each element defines an integration cell.

(2) The identification of the set of nodes of the mesh that be-
long to �u and the specification of an EPUFE weight
function, centered at these nodes, constructed using a
sufficiently small parameter ε.

(3) The verification, at each of the remaining nodes of the
integration mesh, if the trial EFG weight function cen-
tered at the given node, overlaps any point of the bound-
ary �u . If not, the trial EFG weight function is employed
at the node. Otherwise, an EPUFE weight function is
specified at the given node as done in (2).

Thus, each node of the integration mesh is assumed to be a
center of a weight function and the shape of the support at
the node depends whether one employs an EPUFE or an EFG
weight function.

Notice that differently of the approach presented by Be-
lytschko et al. [7], Krongauz and Belytschko [19], Hegen
[13] and Huerta and Méndez [16] which combine mesh-free
methods with FEM, this approach does not requires the par-
tition of the domain into two different regions. Also, it is able
to satisfy the linear consistency condition by simply employ-
ing the base, pT(X) = [1, X,Y ], over the entire domain.
Moreover, it is important to notice that by using only EPUFE
weight functions, the covering requirement is naturally sat-
isfied. Thus, the covering strategy, defined in (7) and (8), is
only necessary for the determination of the support of the
EFG weight functions.

2.5.1 Covering algorithm

The strategy employed in the covering algorithm consists
initially in a triangularization of the domain. Once the mesh
nodes are defined one proceeds as follows:

Fig. 2 Definition of the admissible radius,rIadm

• For each node X I of the mesh, do:
If (X I ∈ �u) then
Employ at X I an EPUFE weight, wEPF

I (X).
Else
Determine the support of the trial EFG
weight, wEFG

I (X).
(1) Get the set of adjacent nodes associated with node
X I (2) Determine the radius, r̄ I by (7),
of the support of the trial EFG weight function

Compute the admissible radius for the support, rIadm, by
determining the shortest distance from the given node
X I to every boundary segment approximating �u , as
illustrated in Fig. 2.

If (r̄ I < rIadm) then
Employ at X I the given trial EFG weight, wEFG

I (X)
Else
Employ at X I an EPUFE weight, wEPF

I (X)
End if

End if
End do.

2.5.2 Transition from EFG to EPUFE shape functions

The aim of this section is to give some insight on the behavior
of the shape functions in the neighborhood of the essential
boundary �u , which is fundamental for understanding the
applicability and performance of the F-bar method, applied
to cope with the volumetric locking phenomena, explained
in Sect. 5.5.

Consider initially the particular case in which the base
pT (X) = [1], the parameter ε = 0, and X ∈ �o is con-
tained only in the interior of the support of PUFE weight
functions. Then,

A−1(X) = 1
∑n

i=1w(X − X i )
and bI = w(X − X I ).

Now, using the property that,
∑n

i=1w(X − X i ) = 1, one
derives

�I (X) = pT(X)[A(X)]−1bI (X) = w(X − X I ).

This result shows that, in this particular case, the computed
shape function �I (X) reproduces exactly the traditional FE
interpolation functions, which in the scope of this work rep-
resents the conventional Tri3 finite element base function.

Now, consider the more general case where pT(X) =
[1, X, Y ], ε > 0, and X ∈ �o is contained only in the inte-
rior of the support of EPUFE weight functions. In this case,



386 R. Rossi, M. K. Alves

as shown in Alves and Rossi [2, 34], the resulting shape func-
tion differs only slightly from the Tri 3 base function, which
as seen in Sect. 6 will be responsible for a loss of efficiency of
the F-bar method. The reason is that, in the FEM, the usage
of Tri 3 elements results in a constant deformation gradi-
ent, F = ∇Xϕ(X, t), making the mean dilatation approach,
presented in Sect. 5.5, completely ineffective.

Now, let X ∈ �o be contained only in the interior of
the support of EFG weight functions. In this case, the result-
ing approximating function may have an arbitrary degree of
regularity, depending only on the regularity of the chosen
weighting function, see Belytschko et al. [6], and is non-
polynomial. This non-polynomial behavior is what suggests
the applicability of the mean dilatation approach, which is
investigated in Sect. 6. Notice that, in the FE framework, the
applicability of the F-bar method requires the usage of high
order interpolation functions, with special reduced quadra-
ture rules, which increases the computational cost for solving
large deformation problems.

3 Finite deformation

3.1 Kinematics of deformation

The model presented in this paper considers the multipli-
cative decomposition of the deformation gradient F into an
elastic, Fe, and a plastic part, Fp, as shown in Fig. 3, so

F = FeFp, (12)

where

F = ∇Xϕ(X, t). (13)

Based on this assumption the rate of deformation can be
decomposed additively as

D = De + Dp. (14)

The consideration of a J2 plasticity model, which considers
the plastic flow to be incompressible, implies that det(F p) = 1.
Moreover, since det(F) > 0, one also obtain that det(Fe) > 0.

Fig. 3 Multiplicative decomposition of the deformation gradient

Thus, the elastic deformation gradient admits a polar decom-
position, i.e.,

Fe = ReUe, (15)

where

Ue = √
Ce (16)

with Ce being the elastic right Cauchy–Green tensor given
by

Ce = (
Fe)TFe (17)

and Re the elastic rotation tensor. The elastic deformation
measure assumed in this work is the logarithmic or Hencky
strain tensor, given by

Ee = ln
(
Ue). (18)

3.2 Conjugate stress measure

As pointed by Hill [14], in the formulation of constitutive
theories, the stress–strain pairs must be such that the rate of
work density remains preserved. As a result, the conjugate
stress, associated with the Hencky strain, is the rotated Kir-
chhoff stress τ̄ , given by

τ̄ = (
Re)T

τRe (19)

in which τ is the Kirchhoff stress, τ = det(F)σ , and σ is the
Cauchy stress.

3.3 Constitutive hyperelastic law, free energy and
dissipation potentials

Here, one incorporates, to the J2 plasticity model, a nonlinear
isotropic hardening rule, described by the isotropic hardening
strain α. Moreover, in the framework of the thermodynamic
of irreversible process, one assumes the existence of a free
energy potential of the form:

ψ = ψ
(
Ee, α

)
, (20)

where

ρoψ(Ee, α) = 1
2 DEe · Ee

+ 1
2 Hα2 + (

σ∞ − σy
)[
α + 1

δ
e−δα]. (21)

Here, ρo is the mass density, H, δ and σ∞ are material param-
eters and σy is the initial yield stress. Moreover, D is the
standard isotropic elasticity tensor, which is given by

D = 2μI +
(
κ − 2

3
μ

)
I ⊗ I, (22)

where I and I are respectively the fourth order and the second
order identities with μ and κ denoting material parameters,
known as shear and bulk modulus. The derived state equa-
tions are:

τ̄ = ρo
∂ψ(Ee, α)

∂Ee
= DEe (23)

for the rotated Kirchhoff stress and
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k = ρo
∂ψ(Ee, α)

∂α
= Hα + (

σ∞ − σy
)(

1 − e−δα) (24)

for the isotropic hardening stress k. This isotropic hardening
relation was used by Simo and Armero [26], and also by Sou-
za Neto et al. [29], where an investigation of the volumetric
locking, in a large deformation process, was performed.

The dissipation associated with the elasto-plastic response
is given by

D = τ̄ · D̄p + k · α̇ ≥ 0, (25)

in which D̄p is the modified plastic stretching.
Here, one considers the yield function to be given by

F(τ̄,k) = √
3J2 − [

k(α)+ σy
]

(26)

where

J2 = 1

2
τ̄ D · τ̄ D (27)

and

τ̄ D = τ̄ − 1

3
tr(τ̄ )I. (28)

Hence, the admissible stress state E is defined as

E = { τ̄ | F(τ̄ , k) ≤ 0}. (29)

In order to describe the dissipative elasto-plastic process, one
needs to introduce complementary kinetic laws. These kinetic
laws are obtained by the introduction of a pseudo-potential of
dissipation and by the application of the normal dissipation
hypothesis. Now, since the J2 plasticity model is associa-
tive, one derives, from the normal dissipation hypothesis, the
following evolution equations:

• The plastic flow equation

D̄p = λ̇
∂F
∂τ̄
. (30)

• The isotropic hardening evolution

α̇ = −λ̇ ∂F
∂k
. (31)

Here, λ is the plastic multiplier and must satisfy the fol-
lowing complementary conditions

F ≤ 0, λ̇ ≥ 0 and λ̇F = 0. (32)

4 The elasto-plastic initial value problem

The elasto-plastic problem presented in Sect. 3 is dependent
on the deformation history. Thus, in order to integrate the
evolution equations from time step tn to tn+1, one must solve
an initial value problem. The elasto-plastic constitutive ini-
tial value problem can be stated as: Given the deformation
history F(t), t ∈ [tn, tn+1] and the initial conditions

Fp(tn) = Fp
n

α(tn) = αn
(33)

determine Fp
n+1 and αn+1 such that the (23), (30), (31) and

(32) are satisfied.
With the aim of solving the elasto-plastic initial value

problem one applies the operator split method. Thus, the non-
linear evolution problem is split into a sequence of two sub
problems that are:

• the elastic predictor problem;
• the plastic corrector problem.

4.1 The elastic predictor problem

In this step, the material is assumed to behave purely hyper
elastically between times tn to tn+1. Hence, the elastic pre-
dictor problem may be stated as: Given the initial conditions
Fp(tn) = Fp

n and α(tn) = αn together with the history of the
deformation gradient F(t), t ∈ [tn, tn+1]. Then, the initial
value problem consists in finding F p(t) and α(t) so that

Ḟp = 0 (34)

and

α̇ = 0 (35)

for t ∈ [
tn, tn+1

]
. The solution to the elastic predictor prob-

lem at time tn+1, defining the so called elastic trial state, is
given by

Fptrial

n+1 = Fp
n , αtrial

n+1 = αn, (36)

Fetrial

n+1 = Fn+1
(
Fp

n
)−1

, Cetrial

n+1 =
(

Fetrial

n+1

)T
Fetrial

n+1,

Eetrial

n+1 = 1

2
ln

(
Cetrial

n+1

)
, τ̄ trial

n+1 = DEetrial

n+1 and ktrial
n+1 = kn .

4.2 The plastic corrector problem

The plastic corrector step is only solved whenever τ̄ trial
n+1 /∈ Ē ,

i.e., the trial elastic state is not feasible, what corresponds
to F(

τ̄ trial
n+1, ktrial

n+1

)
> 0. This step considers a return mapping

algorithm that incorporates: a backward exponential approx-
imation to the plastic flow equation (see Eterovic and Bathe
[10] and Weber and Anand [32]), a fully implicit standard
Euler backward approximation to the hardening evolution
and the enforcement of the yield criterion. The initial condi-
tions, for this step, are given by the trial elastic state.

Now, based on the above considerations, the plastic flow
equation

Fp = D̄pFp (37)

is discretized, based on the backward exponential approxi-
mation, as

Fp
n+1 = exp

(
D̄p

n+1

)
Fp

n . (38)
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Fig. 4 Kinematics of deformation in the presented algorithm

Moreover, after a straightforward manipulation, (39) reduces
to

Ee
n+1 = Eetrial

n+1 −�λNn+1 (39)

with

Nn+1 = ∂F
∂τ̄

∣∣
∣∣
n+1

(40)

and

D̄p
n+1 = �λNn+1. (41)

Also, it can be shown that

Re
n+1 = Retrial

n+1. (42)

The isotropic hardening evolution law

α̇ = λ̇ (43)

is discretized by the fully implicit Euler backward method,
resulting in

αn+1 − αn −�λ = 0. (44)

As a result, the plastic corrector scheme reduces to the solu-
tion of the following set of nonlinear equations, for Ee

n+1,
αn+1 and �λ, with
⎧
⎪⎨

⎪⎩

Ee
n+1 − Eetrial

n+1 +�λNn+1

αn+1 − αn −�λ

F(τ̄n+1, k(αn+1))

=
⎡

⎣
0

0

0

⎤

⎦. (45)

Figure 4 sketches the deformation process in the algorithm.

5 A total Lagrangean formulation

5.1 Strong formulation of the problem

The finite deformation elasto-plastic problem may be stated
as: determine u so that

div P + ρo b̄ = 0 in�o

Pm = t̄ in�t

u = ū in�u

, (46)

where P is the first Piola–Kirchhoff stress, m is the outer
normal on ∂�o and b̄, t̄ and ū are the prescribed body force,
traction vector and displacement field respectively.

5.2 Weak formulation of the problem

Let H =
{

u| ui ∈ W 1
p(�o), u=ū on �u

}
denote the set of

admissible displacements and Ho = {u ∈ H | u= 0 on �u}
the set of admissible variations. The weak formulation of the
problem may be stated as: find un+1 ∈ H such that

G(
un+1, û

) = 0 ∀ û ∈ Ho (47)

where

G(
un+1, û

) =
∫

�o

P(un+1) · ∇X û d�o

−
∫

�o

ρo b̄ · û d�o −
∫

�ot

t̄ · û d�ot . (48)
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Fig. 5 Definition of the integration cell

5.3 Linearization and Newton method

The solution of the nonlinear problem in (48) is obtained by
applying Newton’s method. In this context the linearization
of the functional G(

un+1, û
)

is required. Assuming G to be
sufficiently regular and that

G
(

uk+1
n+1, û

)
= G

(
uk

n+1 +�uk
n+1, û

)
= 0, (49)

one derives

G(
uk

n+1 +�uk
n+1, û

) = G(
uk

n+1, û
)

+DG(
uk

n+1, û
)[
�uk

n+1

]
(50)

where

DG
(

uk
n+1, û

)[
�uk

n+1

]
= d

dε

∣
∣∣
∣
ε=0

G
(

uk
n+1 + ε�uk

n+1, û
)

=
∫

�o

A(un+1) · ∇X

(
�uk

n+1

)
· ∇X û d�o

(51)

with

[A]i jkl = ∂Pi j

∂Fkl

= ∂τi p

∂Fkl
F−1

j p − τi p F−1
jk F−1

lp .

(52)

5.4 Determination of A

Now, the determination of A requires the derivative of the Kir-
chhoff stress tensor with respect to the deformation gradient.
As already seem, the Kirchhoff stress is related to the rotated
Kirchhoff stress by (19). This means that in the determina-
tion of (53) a derivative of the rotated Kirchhoff stress with
respect to the deformation gradient takes place. But since

τ̄n+1 = ˆ̄τn+1

(
Eetrial

n+1, (•)n
)
, (53)

one may use the chain rule of differentiation to derive

D̂ = ∂τ̄n+1

∂Fn+1
= ∂τ̄n+1

∂Eetrial

n+1

∂Eetrial

n+1

∂Cetrial

n+1

∂Cetrial

n+1

∂Fn+1
= D̃GH, (54)

Fig. 6 a One-dimensional axisymmetric model and b simple shear
model

Fig. 7 Analytic versus numeric results for simple tension-compression
test

Fig. 8 Analytic versus numeric results for pure shear simulation

where

D̃ = ∂τ̄n+1

∂Eetrial

n+1

, (55)
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(a) (b) (c)

Fig. 9 Integration meshes a FEM – 1379 nodes, b MEFG – 364 nodes and c MEFG – 1379 nodes

G = ∂Eetrial

n+1

∂Cetrial

n+1

, (56)

and

H = ∂Cetrial

n+1

∂Fn+1
. (57)

The terms G and H in (55) are related with the geometric
part of D̂ and are given by

[H]i jkl =
∂Cetrial

n+1i j

∂Fn+1kl

= F p−1

nli Fetrial

n+1k j
+ Fetrial

n+1ki
F p−1

nl j (58)

and

G = ∂Eetrial

n+1

∂Cetrial

n+1

= ∂

∂Cetrial

n+1

ln
(

Uetrial

n+1

)

= 1

2

∂

∂Cetrial

n+1

ln
(

Cetrial

n+1

)
. (59)

Notice that in the (60) a derivative of the type ∂
∂X ln(X) is

required, which consists of a derivative of an isotropic ten-
sor function, which was investigated in details in Ortiz et
al. [22]. Moreover, D̃ is the only contribution related to the
constitutive relation in the consistent tangent modulusA. Its
determination depends if the state is elastic, F ≤ 0, or elas-
to-plastic F > 0. Then

D̃ =
{

D i f F ≤ 0

D
ep i f F > 0

. (60)

Here, D is the elasticity tensor given in (22) and D
ep is the

elasto-plastic modulus that must be identified for each given
constitutive model. For the J2-plasticity model presented in
this paper

D
ep = dτ̄n+1

dEetrial

n+1

=
(

D
−1 +�λ

∂Nn+1

∂T̄n+1
− 1

∂F/∂αn+1
Nn+1 ⊗ Nn+1

)−1

.

(61)
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Fig. 10 Comparison among deformed bodies at 85% and 100% of the
process

5.5 An F-bar implementation

Basically, the F-bar methodology requires that the deforma-
tion gradient be decomposed into a volumetric and an devi-
atoric component

F = FdevFvol (62)

with

Fdev = [det (F)]−
1
3 F (63)

and

Fvol = [det (F)]
1
3 I. (64)

The basic F-bar methodology considers Fvol to be computed
as a constant term within each finite element. Thus,

F̄ = Fdev(Fa)vol =
(

det(Fa)

det(F)

) 1
3

F. (65)

Souza Neto et al. [28] promotes that this constant term be
calculated by the interpolation of F at the baricenter of the
integration cell�c, see Fig. 5. Here one considers the average
term det (Fa) to be computed as

det (Fa) = 1

�c

∫

�c

det (F) d�c, (66)

which is known as the mean dilatation procedure. This is a
well established procedure used to prevent volumetric lock-
ing in FEM and its extension to the mesh-free methods can
be performed in a natural way once the integration cell is de-
fined. However, the numerical integration requirement in (67)

introduces a completely different perspective inside the EFG.
As in the integration of the weak form, (67) also requires the
information of the support of each integration point. Thus, the
average det (Fa) will depend strongly on the shape function
form. In the particular case of the MEFG method, at cells
covered only by EPuFE shape functions, since the EPuFE
shape functions differ only slightly from the classical Tri3
finite element base functions, the resulting deformation gra-
dient, F, will be approximately constant in cell, making the
anti-volumetric locking strategy completely ineffective over
this area (see Alves and Rossi [3, 25]).

The derivation of the internal force in (48) and the tan-
gent stiffness in (53) is achieved by making the following
composition

P = P ◦ φ(F) (67)

with φ(F) = F̄. Thus,

[
Ā

]
i jkl = ∂Pi j

× ∂ F̄rs
∂ F̄rs

× ∂Fkl .

[
Ā

]
i jkl = ∂Pi j

∂ F̄rs
∂ F̄rs

∂ F̄rs

∂Fkl
(68)

At this point, it is important to notice that Akkaram and Zab-
aras [1] had observed some hour-glass instabilities in the
deformation pattern for the F-bar approach, when applied in
the scope of the finite element method, and have devised a
stabilization procedure of the form

F̄new = (1 − β)F̄ + βF, (69)

where F̄new is the value actually implemented, due to the
modified F-bar approach, andβ is an empirical small positive
parameter, β → 0. Also, in the context of the FEM, the F-bar
method can only be applied to elements with a high order of
interpolation, i.e. it’s not applicable to tri3 elements.

Here, due to the non-polynomial nature of the EFG global
base functions, the F-bar method may be applied to a tri3
type of particle distribution. Moreover, no hour-glass insta-
bility problems have been observed so far in the examples
solved in this work.

6 Examples

In order to validate the proposed procedure, some problem
cases are numerically investigated. These examples were se-
lected among the ones found in the literature, used for evalu-
ation of the volumetric locking phenomenon. The solution to
these problems allow the comparison of the MEFG results,
obtained with the proposed F-bar approach, with the results
presented in other papers.

Unless stated contrary, the parameters used in (7) and (10)
are set as: s = 1.5 and ε = 10−4.
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(a) (b) (c)

Fig. 11 Accumulated plastic strain at the end of the process

Fig. 12 Comparison between force versus displacement at the top of
the body

6.1 Simple tension-compression and pure shear:
hyperelastic deformation tests

A simple tension-compression analysis is carried out in or-
der to illustrate the nonlinear constitutive relation among the

rotated Kirchhoff stress and the logarithmic deformation.
Considering a one-dimensional model, as illustrated in Fig. 6a,
it can be shown that

τ̄zz = E ln (λz) (70)

with

E = 9κμ

3κ + μ
, (71)

where λz is the stretching on the z direction. The material
parameters adopted for this analysis are: κ = 164206.35 MPa
and μ = 80193.80 MPa.

Figure 7 compares the analytical and the numerical solu-
tions for this problem case. It is also plotted the normalized
stress (τ̄zz/E) versus the stretch λz .

Figure 8 depicts the results determined in the pure shear
case, which is illustrated in Fig. 6b, where the plane strain
hypothesis is assumed. Analytic results in terms of the Cau-
chy stress for this problem case are available in the literature,
see Weber and Anand [32], and are given as
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(a) (b)

Fig. 13 a undeformed model b deformed configuration

σxx = σyy = 1

2
γ σxy

σxy = μγ

⎡

⎣ 1

γ

√
1 + 1

4γ
2

ln

(
1 + 1

2γ
2 + γ

√
1 + 1

4γ
2

)⎤

⎦.

(72)

Figure 8 plots the normalized Cauchy shear stress σxy/μ
versus the shear strain γ , obtained both numerically and ana-
lytically, for a comparison purpose. Here, again, one sees a
fine agreement between the results.

6.2 Necking of a circular bar

Here, one considers the analysis of a hypothetical cylindri-
cal bar with the objective of verifying the necking behavior.
The model of the problem, illustrated in Fig. 9, consists of
a bar with a length of 53.334 mm and a radius of 6.413 mm.
Due to the symmetry condition, only a quarter of the model
is discretized. The model is submitted to a prescribed dis-
placement, uz = 7 mm, in the upper surface of the bar. The

Fig. 14 Comparison between force versus displacement at the top of
the body

Fig. 15 Integration meshes and particle distribution used in the plane
strain example

prescribed displacement is applied by a linear ramp where
several steps are considered. To trigger the necking, a small
geometric imperfection is introduced into the model. This
imperfection consists of a variation of the radius in the central
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(a) (b)

(c) (d)

Fig. 16 Deformed configurationsFEM-tri6

region of 1%, i.e., the radius of the central region is 6.35 mm.
Similar examples are presented in the works of Simo and
Armero [26] and Souza Neto et al. [28] where an investiga-
tion of the volumetric locking problem was accomplished.
Fig. 9a shows the discretization of the domain into trian-
gular integration cells. The mesh presented in Figure 9a is
also used in a finite element simulation, employing a clas-
sical tri6 element, with a mesh of 1379 nodes. Figure 9b,
c shows the MEFG particle distribution that contains 364
and 1379 nodes/particles, respectively. The material proper-
ties used are: κ = 164206.35 MPa, μ = 80193.80 MPa, H =
129.24 MPa, δ = 16.93, σ∞ = 715 MPa and σy = 450 MPa.

Fig. 17 Force versus displacement at the top of the body, FEM-tri6

Figure 10 shows the comparisons among the deformed
configurations of the body outline at 85 and 100% of the
total prescribed displacement, considering the meshes in Fig-
ure 9a, c with and without the F-bar methodology. Note that
at 85 there is no apparent distinction between the two meth-
ods. However, at 100% of the process, a discrepant differ-
ence is verified in the necking region. Note also that there is
a relevant difference, in the necking region, when the F-bar
methodology is considered.

Differences are also noted when the accumulated plastic
strain analysis, shown in Fig. 11, is considered, where the
results were obtained for the meshes in Figure 9a, c.

Figure 12 plots the force versus displacement diagram
calculated at the top of the bar. It is clear from this figure that
the results remain close to one another during a great part of
the deformation process. In a certain threshold point, looking
what seems to be an inflection point, the solution moves away
from that achieved using the finite element method. Notice
again that the implementation of the F-bar procedure gener-
ates improved results when compared with the finite element
solution. Also is plotted, in this figure, the results presented
by Simo and Armero [26] and Souza Neto et al. [28].

6.2.1 Half simetry

In the previous example, where a quarter of symmetry was
imposed, the region with the highest deformation level was
precisely the one which was covered by EPuFe weight func-
tions, due to the enforcement of the two symmetry conditions.
Notice that, as commented in Alves and Rossi [2], when only
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EPuFe weight functions are used for the EFG approximation,
the resulting global base functions tend to reproduce the stan-
dard tri3 finite element type of base function, what causes a
deterioration of the approximate solution, making it prone to
the volumetric locking phenomenon.

In order to allow the contribution of spline weight func-
tions in the central region, a model that enforces only a half
symmetry condition is considered, as illustrated in Fig. 13a.
Figure 13b shows the deformed configuration at the end of
the deformation process.

The results in terms of force versus displacement are pre-
sented in Fig. 14. Again, the force and the displacement are
“measured” on the top of the structure. Notice that the MEFG
results for this example are closer to those obtained consid-
ering the FEM, using a Tri6 element. Again, the results pre-
sented by Simo and Armero [26] and Souza Neto et al. [28]
are also plotted in Fig. 14.

6.3 Plane strain localization and mesh dependency

In this example, a uniaxial traction model of a rectangular bar
under plane strain condition is presented. The dimensions of
the bar coincide with those presented in the previous exam-
ples. That is, instead of having a radius of 6.413 mm it will
have a dimension defining one half of the base of the rectangu-
lar bar. Again, a small geometric imperfection is introduced
in the model. This imperfection consists of a variation in the
central region of the 1% model, which is the distance from
the center of the rectangular bar to the lateral is 6.35 mm.
This bar is then submitted to a prescribed displacement of
uz = 5 mm in both the extremities.

In order to prevent a loss of regularity, when using EPuFe
particles, the entire domain was discretized.

The material parameters are the same as the ones used
in the previous example, with the exception of the parameter
H employed in the hardening rule, which is assumed to be:
H = −12.924 MPa, as suggested by Simo and Armero [26].

This example verifies if the solution of the problem suffers
from a integration mesh dependency. Therefore, two integra-
tion meshes with the same distribution and number of par-
ticles, 861, but with different orientations of the integration
cells are proposed. These integration meshes are shown in
Fig. 15a, where they are called O1 (of orientation 1), and in
Fig. 15b, where they are called O2. Figure 15c shows the
particle distribution that, in this case, is the same for both
meshes. However, this does not mean that the support of the
shape functions is precisely the same, as a result of the cover-
ing algorithm earlier presented. In this algorithm the determi-
nation of support size parameter s depends on the maximum
distance between the particle and its adjacent particle list,
which in fact is different for each of the meshes.

For a comparison purpose, the same analysis is performed
using a triangular finite element, with a tri6 element. In order
to do so, the same integration meshes shown in Fig. 15a,
b is used in the analysis. However, in this case the number
of degrees of freedom associated with the FEM analysis is

larger than those used in the MEFG analysis. The number of
nodes of the FEM-tri6 mesh is 3321.

6.3.1 Finite element results–Tri6

This section presents and discusses the results obtained only
by the FE analysis, using a tri6 element. Figure 16 shows
the deformed meshes achieved at the end of the analysis.
Figure 16a is related to the mesh with orientation O1 and
Fig. 16b to the mesh with orientation O2. Figure 16c,d shows
a magnification of the refined regions of the deformed config-
urations, shown in Fig. 16a, b respectively. The differences
among the two deformed meshes are visible and arise due
to the bias in the mesh and represent an example of the well
known mesh-alignment problem associated with the FEM.

This difference is still more evident when the force ver-
sus displacement curve, for the top region of the body, is
plotted, as shown in Fig. 17. Notice, again, that the curves
are almost identical during most part of the analysis. But,
at a certain point, in the necking phase, occurs an increasing
difference between the values determined for the two meshes.
To establish a comparison with similar works presented, for
example, by Simo and Armero [26] and Souza Neto et al.
[28], the results obtained by these two authors are also pre-
sented in the figure. Notice that the mesh with O2 orienta-
tion shows a better result for the force versus displacement
response, when compared with the values presented by the
other authors. Note also that in the PuFem tri3 case the curve
behavior is almost constant after the necking threshold, that
is, no necking is experience if one uses this order of PuFem
approximation. Here, as explained in Sect. 2.5.2, on can see
the inadequacy of the PuFem tri3 shape functions to cope
with the volumetric locking phenomena.

6.3.2 MEFG results

Here, one discuss and presents the results obtained by the
MEFG analysis. Figure 18 shows the deformed meshes at the
end of the analysis. Figure 18a shows the integration mesh
with orientation O1 and Fig 18b the mesh orientation with
orientation O2. Again, Fig. 18c, d show a magnification of
the more refined region of the deformed configuration, shown
in Fig. 18a, b respectively. Differently to the previous exam-
ple, there are no observable differences among the deformed
configurations. This indicates that the solution of the problem
does not have relevant integration mesh dependence.

Also, this difference is not evident in the force versus dis-
placement curve plotted in the Fig. 19. In this graph the results
obtained for the analyses with or without the incorporation
of F-bar methodology are presented, considering the integra-
tion meshes with orientation O1 and O2, shown in Fig. 19a,
b respectively. One can notice that the curves are practically
identical during the entire analysis and are independent of
the orientation of the cells. Again, for a comparison purpose,
similar results presented by Simo and Armero [26] and Souza
Neto et al. [28] are also shown in this figure.
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(a) (b)

(c) (d)

Fig. 18 Deformed configurations, MEFG result

Fig. 19 Force versus displacement at the top of the body, MEFG result

6.4 Stretching of a double notched specimen

This example reproduces a state of high degree of restriction
due to the use of an ideal elato-plastic J2 constitutive model
together with the enforcement of a plane strain condition.
The material parameters used in this analysis are the fol-
lowing ones: κ = 164206.35 MPa, μ = 80193.80 MPa, σy =
450 MPa.

The analysis consists in the stretching of a notched body
with dimensions shown in Fig. 20a. This stretching is car-
ried out through the prescription of a displacement in the
upper/lower region of the body, with no symmetry condi-
tions imposed. In both regions a prescribed displacement of

uy = 0.3 mm is applied. An incremental analysis is per-
formed, considering 100 constant prescribed displacement
steps. Figure 20b shows the integration mesh employed, con-
sidering the support parameter s = 1.5. Figure 20c shows the
particle distribution. For a comparison purpose, the mesh pre-
sented in Fig. 20b is also used in FEM-tri6 and a PuFem-tri3
analysis. It is important to note that the number of degree of
freedom in the FEM-tri6 is larger than the one used in the
PuFem-tri3 and also MEFG analysis.

The force versus displacement curve is shown in Fig. 21.
Notice that it is clear that the MEFG, without any anti-vol-
umetric locking strategy, is not able to represent the limit
load response associated with this problem. Also, the results
obtained for the PuFem-tri3 and for the FEM-tri6 analysis
moves away, in a drastic form, from the desired result. On
the other hand, when the anti-volumetric locking strategy is
used, considering two different support sizes, the limit load
response is reproduced, as one can observe by the compari-
son with the results presented by Simo and Armero [26] and
Souza Neto et al. [28]. Notice also that according with Askes
et al. [4] and Huerta and Méndez [16] the size of the support,
s, plays an important role in the volumetric locking analyses
in the EFG method.

6.5 Cook’s membrane problem

In this last example, the performance of the method is
analyzed in a problem case where the bending effects are
predominant. This example, known as Cook’s membrane,
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(a) (b) (c)

Fig. 20 Double notched specimen model

Fig. 21 Force versus displacement at the top of the body

consists of a trapezoidal panel, under a plane strain condition,
that is clamped on the left side and submitted to a shearing
force of magnitude V = 5 kN on the right side, as illustrated
in Fig. 22a. This shearing force is constant, and is distributed
over the right edge, i.e., the total force applied is converted
into a distributed force, given by f = 312.5 N/mm. The inte-
gration meshes as well as the respective particle arrangements
are shown in Fig. 22.

The results for the displacement uy at the right top point
of the panel versus the number of elements, distributed per
side of the body, are shown in Fig. 23. Notice that, when the
integration mesh is refined, the result tends to the solution of
the problem, presented by Simo and Armero [26], and shown
in Fig. 23.

7 Conclusion

In this work an element-free Galerkin method is numerically
investigated under finite strains. Results in this paper show
the necessity of using some anti-volumetric locking strategy
for the MEFG method. However, the incorporation of the pro-
posed F-bar approach has improved considerably the results.
Moreover, Figs. 12 and Fig. 14 show that with a proper mesh
refinement strategy, acting mainly in the regions subjected to
high plastic flows, it is possible to reduce even more the pres-
ence of volumetric locking and improve the solution to the
problem. Here, one notice that the use of the EPuFe global
shape function, necessary to enforce the symmetry condi-
tions, in the regions subjected to high plastic flows, as in
the case of the necking of a circular bar, in Sect. 6.2, lead
to a decrease in the accuracy of the solution to the problem,
due to the loss of effectiveness of the F-bar methodology.
The reason for this behavior is the fact that the EPuFe global
shape function interpolates F as a constant, what makes the
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Fig. 22 Cook’s membrane model

Fig. 23 Displacement of the right superior point versus the number of
elements

anti-volumetric locking strategy ineffective at the support of
the EPuFe global shape function. However, this loss of accu-
racy can be minimized as much as required by the implemen-
tation of an h-adaptive mesh refinement procedure.
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