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Abstract The meshless local Petrov—Galerkin method is
used to analyze transient heat conduction in 3-D axisymmet-
ric solids with continuously inhomogeneous and anisotropic
material properties. A 3-D axisymmetric body is created by
rotation of a cross section around an axis of symmetry. Axial
symmetry of geometry and boundary conditions reduces the
original 3-D boundary value problem into a 2-D problem. The
cross section is covered by small circular subdomains sur-
rounding nodes randomly spread over the analyzed domain.
A unit step function is chosen as test function, in order to
derive local integral equations on the boundaries of the cho-
sen subdomains, called local boundary integral equations.
These integral formulations are either based on the Laplace
transform technique or the time difference approach. The
local integral equations are nonsingular and take a very sim-
ple form, despite of inhomogeneous and anisotropic material
behavior across the analyzed structure. Spatial variation of
the temperature and heat flux (or of their Laplace transforms)
at discrete time instants are approximated on the local bound-
ary and in the interior of the subdomain by means of the mov-
ing least-squares method. The Stehfest algorithm is applied
for the numerical Laplace inversion, in order to retrieve the
time-dependent solutions.
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1 Introduction

Functionally graded materials (FGMS) are multi-phase mate-
rials with the phase volume fractions varying gradually in
space, in a pre-determined profile. This results in continuously
graded thermomechanical properties at the (macroscopic)
structural scale. Often, these spatial gradients in material
behavior render FGMs as superior to conventional compos-
ites. FGMs posses some advantages over conventional com-
posites because of their continuously graded structures and
properties [19, 29]. FGMs may exhibit isotropic or aniso-
tropic material properties, depending on the processing tech-
nique and the practical engineering requirements. Frequent
use of FGMs for structures under thermal load motivates
analysis of the temperature distribution in such materials.
The optimum design of FGMs with respect to their ther-
mal stress resistance requires the mathematical solutions for
the thermomechanics of FGMs with arbitrarily graded mate-
rial properties. Literature on heat conduction problems in
FGM materials is mostly focused on problems with expo-
nential variations of thermal properties, formulated in Carte-
sian coordinates under stationary boundary conditions [11,
13, 21]. Transient heat transfer in FGMs with the exponential
spatial variation has also been examined [12, 14, 15, 22, 30].

Due to the high mathematical complexity of the initial-
boundary value problems, analytical approaches for the ther-
momechanics of FGMs are restricted to simple geometry
and boundary conditions. Thus, the transient heat conduc-
tion analysis in FGM demands accurate and efficient numer-
ical methods. The finite element method can be successfully
applied to problems with an arbitrary variation of material
properties by using special graded elements [16]. In commer-
cial computer codes, however, material properties are consid-
ered to be uniform on each element. The boundary element
method (BEM) is a suitable numerical tool for this purpose
too. However, to the knowledge of the authors, only Sutradhar
et al. [30] applied the BEM to 3-D transient heat conduction
analysis in FGM, where the Green’s function approach and
an exponential variation of material parameters were used.
Up to date no special BEM has been presented in literature to
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analyze 3-D axisymmetric functionally graded bodies. Only
homogeneous problem was investigated by Brebbia et al.
[5]. The conventional boundary integral formulation in the
time-domain requires a complex fundamental solution pro-
portional to the modified Bessel function of the first kind.
A pure BEM formulation can be applied only to problems,
where fundamental solutions are available. For a general non-
homogeneous body the fundamental solution for transient
heat conduction problem is yet not known in literature. One
possibility to obtain a BEM formulation is based on the use of
fundamental solutions for a fictitious homogeneous medium,
as has been suggested for the first time by Butterfield [6] for
potential flow problems. This approach, which is the basis
of the global BEM, however, leads to a boundary-domain
integral formulation with additional domain integrals for the
gradients of primary fields to obtain a unique formulation.
This integral formulation valid for the global domain has
been applied to the heat conduction analysis in nonhomoge-
neous media by Tanaka and Tanaka [31]. The price to be paid
in such an approach is the loss of a pure boundary integral
character of the formulation. Evaluation of integrals on the
global domain brings some computational difficulties. Albeit
the great success of the finite and boundary element meth-
ods as effective numerical tools for the solution of boundary
value problems on complex domains, resting shortcomings
of these methods still distill growing interest in development
of new advanced computational methods.

In particular, meshless formulations are becoming pop-
ular, due to their high adaptivity and a low cost to prepare
input data for numerical analyses. A significant number of
such methods have been proposed so far [2-4]. The ana-
lyzed domain can be divided into small subdomains with a
simple, e.g. circular, geometry. To each subdomain one can
relate the fundamental solution of some simplified differen-
tial operators or of a parametrix (Levi function), instead of
the fundamental solutions [10, 32]. On the surface of sub-
domains the local boundary integral equations (LBIEs) are
written in the Laplace transform domain to eliminate the time
dependence of the governing equation for transient heat con-
duction problems. This idea was applied to 2-D transient
heat conduction analysis [18, 23, 26]. Authors applied that
approach to analyze transient heat conduction problems in
3-D axisymmetric and isotropic functionally graded solids
[24]. The anisotropy increases the number of heat conduc-
tion constants, which renders the derivation of fundamental
solutions as difficult even in a homogeneous case. Sladek
et al. [25] proposed the meshless method based on the local
Petrov—Galerkin approach to solve stationary and transient
heat conduction problems in 2-D for anisotropic FGM.

In this paper, the meshless local Petrov—Galerkin (MLPG)
method is applied to transient heat conduction problems in
3-D axisymmetric solids with continuously nonhomogeneous
and anisotropic material properties. A 3-D axisymmetric body
is created by the rotation of the cross section around the axis
of symmetry. Axial symmetry of the geometry and boundary
conditions reduces the original 3-D boundary value problem
to a 2-D problem. Therefore, it is sufficient to analyze only

the cross section, which is covered by small circular subdo-
mains surrounding nodes randomly spread over the analyzed
domain. A unit step function is chosen as the test function
to derive local integral equations on boundaries of the cho-
sen subdomains. There are two ways of eliminating the time
variable in the differential equation. The first of them con-
sists of elimination of the time derivative by using Laplace
transformations. In the second approach, the finite difference
interpolation for the time variation of the temperature field
is used, in order to convert the linear parabolic differen-
tial equation into a linear elliptic differential equation [8].
For 3-D axisymmetric problem the LBIEs have a boundary-
domain integral form. In contrast to the global BEM based on
boundary-domain integral formulation the present boundary-
domain integral formulation for simple subdomains does not
imply any difficulties. The local integral equations are non-
singular and take a very simple form. Spatial variation of
the Laplace transforms or the time-discrete temperature and
the heat flux on the subdomain are approximated by means
of the moving least-squares (MLS) method. Several quasi-
static boundary value problems are solved for various values
of the Laplace transform parameter. The Stehfest [28] numer-
ical inversion method is applied to obtain the time-dependent
solutions. Numerical examples for functionally graded full
and hollow cylinders with an exponential spatial variation of
thermal conductivity and diffusivity are presented to verify
the proposed numerical method.

2 Local boundary integral equations

Consider a boundary value problem for the heat conduc-
tion problem in a continuously nonhomogeneous anisotropic
medium, which is described by the governing equation:

a0
pPX)c(X) o (X, 1) = [kij(x)6,;(x, )] ; + Q(x, 1), (0

where 6 (x, t) is the temperature field, Q(x, ¢) is the density
of body heat sources, k;; is the thermal conductivity tensor,
p(x) is the mass density, and c(x) is the specific heat.

For an axisymmetric problem, it is convenient to use
cylindrical coordinates x = (r, ¢, z7)(Fig. 2). In this case,
the governing equation (1) can be rewritten in the form

[kij ()6, (x, 0] ; + @e,z(x, 1)

krr a0
r(X) O,(x,1)+ Q1) = p(X)C(X)E(X, 1), )

where the summation convention for repeated indices i, j,
representing the coordinates r, z, is assumed. Two different
approaches will be applied to solve the governing equation
2).

The following boundary and initial conditions are as-
sumed

—+

O(x,1) =6(x,1), on I,
q(x, 1) =kij(x)0 ;(x,)n;(x) = g(x,t), on Iy,
0(x,1)|;=0 = 0(x,0) and 6(x,1)|,_, =0(x,0) in Q,
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local boundary 6Q'=6Q)'
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Fig. 1 Local boundaries for weak formulation (5) or (10), the domain €2, for moving least squares (MLS) approximation (11) of the trial function

0(x), and support area of weight function (18) around node x!

where I is the part of the global boundary with prescribed
temperature (see Fig. 1), while on I'; the heat flux is given,
and n; are the components of the unit outward normal vector
to the boundary.

2.1 Laplace transform formulation

Applying the Laplace transform

LIOx,1)] =0(x,s) = /e(x, e Sldr,
0
to Eq. (2) we get
[kij ()0, (x, 9)] ; + krzr(x) 6.(x,s)
ey (%) - _ _
+ 0,x,5)+ FX,5)=pXc(x)0(X,s), 3)

where s is the Laplace transform parameter and
F(r,z,s) = 0(r.z,5) +60(r,z,0)

is the redefined body heat source in the Laplace transform
domain with the initial boundary condition for the tempera-
ture field O (r, z, 0). In this analysis, quantities in the Laplace
transform domain are denoted by an over-bar.

Instead of writing the global weak form for the above
governing equation, the MLPG methods construct the weak
form over local subdomains such as €2, which is a small
region taken for each node inside the global domain [3]. The
local subdomains overlap each other, and cover the whole
global domain €2 (Fig. 1). The local subdomains could be
of any geometric shape and size. In the current paper, the
local subdomains are taken to be of circular shape. The local

weak form of the governing equation (3) for x' € Q’c can be
written as

/ [(kij ®0,;(x.5)) , + k”r(") Ao(x.5) + k”r(") 0,0 (x,5)
QL
— X)) Ox. 5) + F(x, s>} 6*(x) dQ = 0, (4)

where 6*(x) is a weight (test) function.
Applying the Gauss divergence theorem to Eq. (4) one
can write

/ G(x, )0*(x)dl" — / kij (00, (x, $)6% (x)dQ2

aQi Qi
5 ky7(X) ~
—/ p(X)c(x)s0(x, 5)0* (x)dQ +/ [ 0.:(x,5)
& o '
krr(x) ~

+

f,(x, s):| 0* (x)dQ2 +/ F(x, $)0*(x)d2 = 0,

o8

r

®)

where 39! is the boundary of the local subdomain and

G(x,5) = kij(x)0,; (X, 5)n; (x)

is the Laplace transform of the heat flux. The local weak form

(5) is a starting point to derive LBIEs if an appropriate test

function is selected. Aunit step function can be used as the

test function 6*(x) in each subdomain
1 at x e (3 U0R2)

0*(x) = 6

®) {0 at x ¢ Q. ©®)
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Then, the local weak form (5) is transformed into a simple
LBIE

/ g(x, s)dl' — / p(X)c(x)s0(x, 5)dQ

Qi Qi
+/|:rz() L) + rr()e (XS)}
Qi
—/ F(x, 5)dQ (7)
Qi

_ Inthe MLPG method the test and trial function, 6*(x) and
6(x, s), are not necessarily from the same functional spaces.
The test function is chosen as the unit step function with sup-
port on the local subdomain. The trial function, on the other
hand, is chosen to be the MLS interpolation over anumber
of nodes randomly spread within the domain of influence, as
described in greater detail in Sect. 3. While the local subdo-
main is defined as the support of the test function on which the
integration is carried out, the domain of influence is defined
as aregion where the weight function is not zero and all nodes
lying inside are considered for interpolation.

2.2 Time difference formulation

In this approach, we use the linear interpolation for the time
variation of the temperature field and the partial differential
Eq. (2) is converted into the following system of equations:

rz( X) rr( )

[k 009 0]+ 9000+ g0 )+ 0(x. 1)

1
= p(x)c(x)z[m")(x) - 9<”—”(x)],

m=1,2,..., N), (8)

where the backward difference scheme for the time derivative
of the temperature is applied, and 6" (x) denotes the value
of the temperature at a point x and the time instant ¢, = nAt.

Following the procedure used in the previous paragraph
one can derive the integral representation of temperature in
the nth time step. The local weak form of the governing
Eq. (8) for x € Q’v can be written as

/[(kij(x)g’(;l)(x)) + rz(X)e(n)( ) + rr(X)e(n)( )

Q

_ 1w 1 e-y
p(x)c(x) Y 0 (x) + p(X)c(x) v 0 (x)

+0(x,1)]6*(x) dQ = 0. )

Similarly to the Laplace transform formulation, the local
weak form (9) is transformed into a simple local boundary
integral equation

1
(n) = (n) _ ag=1)
/ g™ (x)dr At/ p(X)e(x) [9 (x)— 0 (x)]dQ

aQi Qi

+/|: rZ(X)Q(”)( )+ rr( )9(”)( ):|

Q

—/ 0(x, 1)d€, (10)

Q

where ¢ (x) = k;; (X)9,(;>(X)ni (x).

For the first time step, i.e., n = 1, the value ZIC (x) is
given by the initial condition for the temperature distribu-
tion. Applying a spatial approximation for the temperature,
the local integral equation (10) is transformed into the system
of algebraic equation with unknown quantities at nodes used
for spatial approximation, as described in Sect. 3. The sys-
tem of algebraic equations is solved by step by step technique
with respect to the time stepping.

3 Numerical solution

In general, a meshless method uses a local interpolation to
represent the trial function with the values (or the fictitious
values) of the unknown variable at some randomly located
nodes. The MLS approximation [4, 17, 20] used in the pres-
ent analysis may be considered as one of such schemes. Let
us consider a sub-domain €2, of the problem domain €2, in
the neighbourhood of a point x, for definition of the MLS
approximation of the trial function (i.e. the actual tempera-
ture distribution) around x (Fig. 1). To approximate the dis-
tribution of the Laplace transform of temperature in €2, over
anumber of randomly located nodes {x*},a =1, 2, ...n, the
MLS approximant 6" (x, s) of 6, Vx € Q,, is defined by

(1)

where pT(x) = [p'(x), p>(x), ..., p"(%)] is a complete
monomial basis of order m; and a(x) is a vector containing
the coefficients a’ x), j = 1,2,..., m which are functions
of the space co-ordinates x = [x1, X2, x3]T. For example,
for a 2-D problem

6"(x,s) = p" (Ma(x, s), Vx € Qy,

pT(x) =[1, x1, x2], for linear basis m = 3 (12a)
pTx) =[L xi, x2, (xD? xix2, (x2)7],
for quadratic basis m = 6 (12b)

Similarly to Eq. (11) one can write approximation of ™ (x)
in the time difference formulation. The coefficient vector a(x)
is determined by minimizing a weighted discrete Ly-norm
defined as

" . 2
J00 =3 w0 [pT xDacx, 5) = 0(5) | (13)
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where w®(x) is the weight function associated with the node
a with w?(x) > 0. Recall that n is the number of nodes in
Q, for which the weight function w(x) > 0 and 4 (s) are
the fictitious nodal values, but not the nodal values of the
unknown trial function 6" (x, s) in general. The stationarity
of J in Eq. (13) with respect to a(x, s)

dJ/oa =0
leads to the following linear relation between a(x, s) and o (s)

AXa(x,s) —Bx)f(s) =0, (14)

where

A =D w'xpx)p’(x),

a=1

Bx)=[w'®px"), w?®px?),.... w"®px")]. (15)

The MLS approximation is well defined only when the
matrix A in Eq. (14) is nonsingular. A necessary condition to
satisfy this requirement is that at least m weight functions are
non-zero (i.e. n > m) for each sample point x € €2 and that
the nodes in €2, are not arranged in a special pattern such as
on a straight line.

The solution of Eq. (14) for a(x, s) and a subsequent sub-
stitution into Eq. (11) lead to the following relation

6" (x,5) = @T (%) - 6(s) = D ¢* ()6 (s), (16)

a=1
where

oT(x) = pT A (®)B(x). (17)

In Eq. (17), ¢“(x) is usually referred to as the shape function
of the MLS approximation corresponding to the nodal point
x?. From Egs. (15) and (17), it can be seen that ¢ (x) =0
when w?(x) = 0. In practical applications, w*(x) is often
chosen such that it is non-zero over the support of the nodal
point x“. The support of the nodal point x* is usually taken
to be a circle of the radius ¢ centred at x? (see Fig. 1). The
radius r¢ is an important parameter of the MLS approxima-
tion because it determines the range of the interaction (cou-
pling) between the degrees of freedom defined at considered
nodes.

A fourth-order spline-type weight function is applied in
the present work

w(x) = (1)_ 6(%)2”(?—3)3‘3(%)4 Zaidaas ra
zZTr,
(18)

where d* = ||x — x?|| and r¢ is the radius of the circular sup-
port domain. With Eq. (18), the C'-continuity of the weight
function is ensured over the entire domain, therefore the con-
tinuity condition of the heat flux is satisfied. The size of
thesupport ¢ should be large enough to cover a sufficient

number of nodes in the domain of definition to ensure the
regularity of the matrix A. The value of # is determined by
number of nodes lying in the support domain with radius r¢.

The partial derivatives of the MLS shape functions are
obtained as [2]

m
9% = > [PhATBY 4 pl AT B+ AL B
j=1
(19)

wherein A" = (A7) , Tepresents the derivative of the
inverse of A with respect to xi, which is given by

Al =-A"A AT

The directional derivatives of (x, s) are approximated in
terms of the same nodal values as

L .
%(x, $) = (%)) 04 ()¢% (x). (20)

a=1
Then, the Laplace transform of the heat flux is approximated

by

(%, 5) = kij(0On; (%) > 6% ()¢ (%)

a=1

21

The local boundary integral equation (7) for the source point
x' located inside Q2 yields the following set of equations:

> 6% / ki (i (x)¢% (x)dT

a=l I

=200 / pR)Cc(x)5¢" (x)dQ

a=1

Q

+Z é‘a(s)/ [krz(x) ¢'flz(x) n kyr (X) ¢flr(x):|d9
o pe r r

—_ / Fix, 5)dS. (22a)

Qi

s

For the source point x’ located on the global boundary I’
the boundary of the subdomain 92’ is created by Li and
Fé o (part of the global boundary with prescribed heat flux)
according to Fig. 1. The local integral equation has in this
case the following form:
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> 64 / k;; (0n; ()¢ (0)dT
a=l Li

=206 / pR)c(X)s¢ (X)dQ

=l g

+26°(s) / [k”(x) p2 00 + X g (x)}dsz
a=1 Qi r

r

=_/axmw—/ﬁmwaz (22b)

ri, Qi
It should be noted that there are neither Lagrange multipliers
nor penalty parameters introduced into the local weak form

(4) because the essential boundary conditions on Fée can be
imposed directly using the interpolation approximation (16):

Z(p“ (X)é“(s) = Gz(xi, s) for x € l"ée,

a=1

(23)

where 6(x', 5) is the Laplace transform of temperature pre-

scribed on the boundary 1";0 for boundary conditions intro-
duced below Eq. (2).

Similarly one can obtain the equation for unknown 64 (s)
at nodes from the global boundary where natural conditions
are prescribed. Set of algebraic equations (22) and (23) is
used for computation of the Laplace transform of fictitious
parameters e (s).

The time-dependent values of the transformed quantities
in the previous consideration can be obtained by an inverse
transform. There are many inversion methods available for
the inverse Laplace transform. As the inverse Laplace trans-
form is an ill-posed problem, small truncation errors can be
greatly magnified in the inversion process and hence lead to
poor numerical results. In the present analysis, the sophisti-
cated Stehfest’s algorithm [28] for the numerical inversion is
used. If f (s) is the Laplace transform of f(¢), an approximate
value f, of f(t) for a specific time 7 is given by

m2y.,  _/In2
Ja(t) = 2V f(Tl),

(24)
i=1
where
Ui — (_1)N/2+l
min(i, N/Z) kN/2(2k)'
> (25)

k=121 (N/2 =)'k (k— DG —k)! 2k —i)!
Sutradhar et al. [30] have suggested to use N =10 for
single precision arithmetic. It means that for each time ¢ it
is needed to solve N boundary value problems for the cor-
responding Laplace parameters s =iIn2/t, with i =1, 2,
..., N.If M denotes the number of the time instants in which

we are interested to know f (), the number of the Laplace
transform solutions f(s;) is then M x N.

It is noteworthy that most of the alternative methods for
the numerical inversion of the Laplace transform [9] require
the use of complex valued Laplace transform parameter, and
as a result, the application of complex arithmetic may lead to
additional storage requirement and an increase in computing
time.

4 Numerical examples
4.1 Full cylinder

An infinitely long full cylinder with a radius @ = 1 m loaded
on its surface by a thermal shock with the Heaviside time step
variation f(a,t) = T H(t — 0) where T = 1 deg is consid-
ered firstly. Homogeneous material properties are assumed in
the numerical analysis to check the accuracy of the proposed
method. The diffusivity coefficient is chosen as k = 1 m?s~!.
Since the boundary conditions along the cylinder are uniform
we can consider a finite part of the cylinder in the numerical
analysis with prescribed vanishing heat fluxes on both artifi-
cial cross sections of the cylinder. The cylinder can be created
by the rotation of the rectangular plate (a x L), where 2L is
the length of the finite cylinder. Here, L =1 m is chosen.
The temperature field on the finite square region is approx-
imated by using 105 (5 x 21) nodes distributed in 5 layers
in axial direction with 21 nodes equidistantly distributed in
radial direction. Domains €2, are chosen identical to support
domains Q¢ with 7' = 0.2 m. Numerical results are compared
with the analytical solution [7]:

2T &
0, 1) =T — —
a

n=1

Jo(roy)

o Ji(aay) 20

exp(—xa,zlt),

where o, are the roots of the following transcendental equa-
tion

Jo(ac,) =0

and Jp and J; are first-type Bessel functions of zeroth and
first order.

Both the Laplace transform and time-difference tech-
niques were applied to solve the problem. For the Stehfest’s
numerical inversion of the Laplace transforms we have used
ten different Laplace transform parameters. The time step was
selected for the whole time interval as Az = 0.04s. The time
variation of the temperature on the axis of the cylinder is pre-
sented in Fig. 3, where an excellent agreement between the
numerical and analytical results is obtained for the Laplace
transform approach. In time difference technique the rela-
tive error of numerical results of temperature approaching
the stationary quantity is about 1%. One way to increase the
accuracy of the numerical scheme is the use of the second
order backward difference scheme for the time derivative of
the temperature in the governing Equation (2) [8].
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Fig. 2 Boundary conditions and node distribution in analysed domain
for a finite hollow cylinder

4.2 Hollow cylinder

In the next example, we consider an infinitely long func-
tionally graded thick-walled hollow cylinder with the radii
a=4.0m and b= 8.0m as depicted in Fig. 2. Since bound-
ary conditions along the cylinder are considered to be uni-
form a finite part of the cylinder in the numerical analysis is
selected with length L =4 .0m. On the external surface of
the hollow cylinder the temperature, 6 = 1 deg, is prescribed
either stationarily or as Heaviside time-step thermal load-
ing at time instant # =0. The inner surface is kept at zero
temperature. The mass density p(x) and the specific heat

1,2
1_
F
3 08
[«
o
E 0,6 T
<
2 04
g ’ analytical eq.(26)
= 02 e MLPG-Laplace
A -time
O T T T

0o 02 04 06 08 1 12 14 16 18

Time t [sec]

Fig. 3 Temporal evolution of temperature on the axis of ahomogeneous
full cylinder, subjected to Heaviside-type thermal loading at the jacket
surface, at time instant ¢t = 0

-0,5
1A —@®— regular
= =A= = irregular
-1,5 1
=
S
o 2
=
-2,5 1
‘3 T T T
-0,8 -0,6 -0,4 -0,2
log10(s)

Fig. 4 Relative errors and convergence rates

c(x) are considered to be uniform with p =1.0kg/m> and
¢=1.0Ws/kgdeg. We consider a functionally graded hol-
low cylinder with the thermal conductivity being graded in
the radial direction r as

kij(x) = ki exp [y (r — a)].

Isotropic material properties are considered in the first, k?j =
dij [ W/m deg]. The exact solution for radial distribution of
the stationary temperature in tube of exponentially graded
material is given as [27]

0(b) —0(a)

Ei(yb) — Ei(ya)

27)

0(r) =06(a) + [Ei(yr) — Ei(ya)],

(28)

where E1(x) is the exponential integral function [1].

For this case an error and convergence analysis is studied.
The relative percentage errors of L,-norm are introduced for
temperature as

Henum _ gexact “

€0 ||9exact|| ’
where
12
ol = / (0)*d2
Q

The relative percentage errors and the convergence rates for
three different node distributions are presented in Fig. 4,
where s represents the node-distance on radial coordinate.
The accuracy is very high (0,3%) especially for the finest
node distribution consisting of 105 (21 x5) nodes uniformly
distributed in the rectangular domain with 21 nodes in the
radial direction. In other two cases, 44 (11x4) and 24 (6x4)
nodes have been used. The influence of the irregular node
distribution on the accuracy is analysed too. At the vicinity
of the corner, on internal radius (r = a) and z = 0, one
additional node is included into the previous regular node
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Fig. 5 Stationary radial temperature distribution in an isotropic FGM
hollow cylinder with functional gradation parameter y = —0.2

distribution. Only one node is used to destroy the regularity
of node distribution in all three densities. The coordinates of
the additional node for the coarse-, middle- and finest-node
distributions are (r=4,1; z=0,4), (4,2; 0,5) and (4,333; 0,5),
respectively. One can observe on Fig. 4 very similar relative
errors and convergence rates for both regular and irregular
node distribution.

The radial variation of the temperature is an isotropic
FGM hollow cylinder with y = —0.2 under stationary tem-
perature conditions is presented in Fig. 5 for temperature ap-
proximation with 150 nodes. In numerical analyses we have
used the circular subdomain with radius r;,, = 0.1m and
support domain radius r! = 1m.

Almost the same results were obtained for a twice larger
support domain, however, computaional time grows with in-
creasing support domain size. Numerical results were ob-
tained by the Laplace transform technique. The dashed line
is valid for a homogeneous hollow cylinder, where analytical
solution is available too:

In (r/a)

O (28a)

0(r) =

One can observe a very good agreement of numerical
and analytical results. The temperature for FGM cylinder
with negative exponent of material gradation is lower than
for the homogeneous cylinder within the whole radius since
the thermal conductivity is also lower. Opposite situation is
observed for the positive material gradation y = 0.2. Results
are presented on Fig. 6. One can observe a good agreement
of results obtained by the MLPG and the analytical method
given by Eq. (28) for an isotropic FGM hollow cylinder.

Next, a thermal shock on the external surface of the hol-
low cylinder is considered. For an isotropic homogeneous
cylinder analytical solution is available [7]:

Fig. 6 Stationary radial temperature distribution in an isotropic FGM
hollow cylinder with functional gradation parameter y = 0.2 [see (27)]
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Fig. 7 Temporal evolution of the temperature in an isotropic FGM hol-
low cylinder with functional gradation parameter y = 0.2 [see (27)],
subjected to thermal shock on outer (jacket) surface, at time instant
r=0

In (r/R)

In (R2/Ry)

. JZ(Rian)Up(ray)
— 70

2 J2(Riam) — I3 (Rocty)

n=1

O(r,t) =T

exp(—tcaﬁt),

(29)
where
Uo(rap) = Jo(ran)Yo(an R2) — Jo(on R2) Yo (ra),
and «, are the roots of the following transcendental equation
Jo(r)Yo(rRy/R1) — Jo(rR2/R1)Yo(r) =0

with Jo(r) and Yy (r) being the Bessel functions of the first
and second kind and zeroth order.
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Fig. 8 Stationary radial temperature distribution in an anisotropic
homogeneous hollow cylinder
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Fig. 9 Temporal evolution of the temperature at the mid radius in an
anisotropic homogeneous hollow cylinder subjected to thermal shock
on outer (jacket) surface, at time instant = 0

Numerical results for the mid radius, r = 6.0, presented
by a dashed line in Fig. 7, are in a very good agreement with
analytical ones. In the same figure the time variation of the
temperature in isotropic FGM hollow cylinder with y =0.2
is given too.

Next, we consider ahomogeneous anisotropic hollow cyl-
inder with the same boundary conditions as in the isotropic
case, and with thermal conductivity tensor of: k- = 1,k,, =
1.5, k-, = 0.5 W/mdeg. Temperature variations with radial
coordinate on upper and bottom sides are given in Fig. 8. The
temperature variation with radial coordinate for the isotropic
cylinder is lying between temperatures on bottom and upper
sides of the anisotropic cylinder. The highest temperatures
are observed on the bottom side of the cylinder. Time varia-
tions of the temperature at the mid radius and on the both ends
of the cylinder under a thermal shock are given in Fig. 9. One
can observe that temperatures are eventually approaching the
stationary values.
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Fig. 10 Stationary radial temperature distribution in an anisotropic
FGM hollow cylinder with functional gradation parameter y =0.2
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Fig. 11 Temporal evolution of the temperature at the mid radius in an
anisotropic FGM hollow cylinder with functional gradation parameter
y =0.2 [see (27)], subjected to thermal shock on outer (jacket) surface,
at time instant r =0

Finally, we consider a functionally graded hollow cylin-
der with the thermal conductivity being graded in the radial
direction r as described by Eq. (27), whereby k?r =1, kgz =
1.5, k?z = 0.5 W/mdeg. Radial variations of the temperature
in an anisotropic FGM hollow cylinder with y = 0.2 under
stationary temperature conditions are given in Fig. 10. The
Heaviside time-step variation prescribed on the external sur-
face of the cylinder is considered too. Time variations of the
temperature at the mid radius in an anisotropic FGM hollow
cylinder with ¥ =0.2 under the thermal shock is given in
Fig. 11.

It is interesting to investigate the influence of the material
gradation on the temperature variation in the anisotropic hol-
low cylinder. Comparison of radial variations of the tempera-
ture in anisotropic FGM hollow cylinders for different mate-
rial gradation under stationary and thermal shock conditions
are presented in Figs. 12 and 13, respectively. A difference
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Fig. 12 Comparison of radial variations of the temperature in aniso-
tropic FGM hollow cylinders for different material graduation under
stationary temperature conditions
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Fig. 13 Comparison of time variations of the temperature at the mid
radius in anisotropic FGM hollow cylinders for different material grad-
uation under thermal shock on outer surface

between temperatures on the bottom and upper sides of the
cylinder is larger for material gradation y = 0.2 than for the
negative exponent y = — 0.2.

5 Conclusions

A local boundary integral equation method with the MLS
approximation for spatial variations of physical fields together
with using the Laplace transform technique for time variable
is presented for transient heat conduction analysis in 3-D
axisymmetric functionally graded bodies with continuously
nonhomogeneous and anisotropic material properties. The
initial-boundary value problem is solved in the Laplace trans-
form domain with a subsequent numerical Laplace inversion
to obtain time-dependent solutions. The boundary-domain
formulation can be easily implemented on simple circular

subdomains to which the local boundary integral equations
are related. Contrary to the conventional boundary integral
equation methods, all integrands in the present formulation
are regular, thanks to the choice of a unit-step function as test
function. Thus, no special integration techniques are required
to evaluate the integrals. The present local boundary integral
equation method removes the well-known restriction of the
conventional BEM to problems with homogeneous material
properties.
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