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Abstract In this paper, the stability problem in the analysis
of the convection dominated problems using meshfree meth-
ods is first discussed through an example problem of steady
state convection-diffusion. Several techniques are then devel-
oped to overcome the instability issues in convection dom-
inated phenomenon simulated using meshfree collocation
methods. These techniques include: the enlargement of the
local support domain, the upwind support domain, the adap-
tive upwind support domain, the biased support domain, the
nodal refinement, and the adaptive analysis. These techniques
are then demonstrated in one- and two-dimensional prob-
lems. Numerical results for example problems demonstrate
the techniques developed in this paper are effective to solve
convection dominated problems, and in these techniques,
using the adaptive local support domain is the most effec-
tive method. Comparing with the conventional finite differ-
ence method (FDM) and the finite element method (FEM),
the meshfree method has found some attractive advantages in
solving the convection dominated problems, because it easily
overcomes the instability issues.

Keywords Meshless method · Meshfree method ·
Convection-diffusion · Convection dominated · Numerical
analysis

1 Introduction

Convection-diffusion problems are of significant importance
and challenging in computational mechanics. Many practical
problems in engineering are governed by the so-called con-
vection-diffusion equations, in which, there are both convec-
tive and diffusive terms. To analyze the convection-diffusion
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problems, the traditional finite element method (FEM), the
finite difference method (FDM), or the finite volume method
(FVM) has been widely used.

However, there is a well-known technical issue in the
analysis for the convection-diffusion problem using the
numerical methods: the solution becomes instable or oscilla-
tory when the problem becomes convection dominated if the
standard FEM or FDM procedure is followed without special
treatments. It is because that, in these convection dominated
problems, a thin boundary layer is usually formed. In the thin
boundary layer, it exists a very high gradient. Using the stan-
dard numerical techniques, this thin boundary layer is very
difficult to be simulated, and it will result in an oscillatory
(unstable) solution. A lot of studies have been performed to
solve the instability problem in FEM and FDM, and an excel-
lent documentation on this topic for FEM and FDM can be
found in the book by Zienkiewicz andTaylor [27].To stabilize
the numerical approximation for these problems, schemes
related to upwinding are the most general techniques in FEM,
FDM and FVM. In addition, the Petrov-Galerkin forms are
also used in FEM [27]. However, the mesh or regular grid
used in FEM or FDM makes difficulty to totally overcome
this instability problem. For example, the adaptive interpo-
lation is difficult to fulfill in FEM and FDM because of the
limitation of the mesh or regular grid that is pre-defined. In
addition, the adaptive analysis for the convection dominated
problems is also difficult to be performed in FEM and FDM.

In recent years, meshless or meshfree methods have
attracted more and more attention from researchers, and are
regarded as promising numerical methods for computational
mechanics. These meshfree methods do not require a mesh
to discretize the problem domain, because the approximate
solution is constructed entirely based on a set of scattered
nodes. A group of meshfree methods has been proposed.
Some of these methods based on the collocation techniques
and the meshfree shape functions (the moving least squares,
the radial basis function interpolation, etc.), for example,
the finite point method (FPM) [18], the hp-meshless cloud
method [12], the meshfree collocation method [10,17,22,
23]. Some other meshfree methods are based on global or
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weak forms and meshfree shape functions, e.g., the
element-free Galerkin (EFG) method [4] the radial point
interpolation method (RPIM) [15,20] the meshless local
Petrov-Galerkin method (MLPG) [1,2,7,8,25,26] the local
point interpolation method [9,11,21] the method of finite
spheres [6], and so on.

The meshfree methods based on the collocation tech-
niques have been found to possess the following attractive
advantages:

• They are truly meshless methods. No mesh is required in
the whole processes including the function approximation
and numerical integrations.

• The procedure is basically straightforward, and hence the
algorithms and coding are very simple.

• They are computationally efficient, and the solution is
accurate when there are only Dirichlet boundary condi-
tions.

Owing to the above advantages, meshfree collocation meth-
ods have been studied and used in computational mechanics,
especially in problems of the computational fluid mechanics.
However, the major shortcoming of these methods is that the
derivative (Neumann) boundary conditions may lead to large
computational error, such as for solid mechanics problems
with stress (natural) boundary conditions. Some techniques
have been developed to avoid this problem, and they are sum-
marized by Liu and Gu [16].

Only very few works was reported to solve convection
dominated problems using the meshfree methods. Oñate et al.
[18,19] applied the finite point method to the convection
dominated problem with upwinding for the first derivative or
with characteristic approximation.Atluri et al. [1,13] used the
MLPG method to solve the convection-diffusion problems.
They used the local upwinding weight and trial functions in
MLPG to overcome the instability in the convection dom-
inated problem. In this paper, techniques to stabilize the
convection dominated problems will by developed and inves-
tigated for meshfree collocation methods. The stability prob-
lem in the analysis of the convection-diffusion problem using
meshfree methods is first discussed through an example prob-
lem. Several techniques are then developed to overcome the
instability issues in convection dominated problems. These
techniques include: the enlargement of the local support
domain, the upwind support domain, the adaptive upwind
support domain, the biased support domain, the nodal refine-
ment, and the adaptive analysis. Most of these techniques
are developed and discussed in the first time for the analysis
of convection dominated problems by the meshfree method.
These techniques are then demonstrated in one- and two-
dimensional problems simulated by the meshfree collocation
method. Numerical results demonstrate that using these tech-
niques the meshfree method is very effective to solve convec-
tion dominated problems. Comparing with the conventional
FDM and the FEM, the meshfree method has found some
attractive advantages in solving the convection dominated
problems to overcome the instability problems.

2 Techniques for Meshfree Methods to Overcome
the Instability Issues

In this section, several techniques for meshfree methods are
developed to overcome the instability issues for the analysis
of convection dominated problems. To unveil the stability
issue, a one-dimensional (1-D) steady-state convection-
diffusion problem governed by the following equation is first
considered [27]

V
du

dx
− d

dx
(k

du

dx
) + q = 0, x ∈ (0, 1) (1)

where u is a scalar field variable, V , k and q are all given con-
stants, and they carry different physical meanings for differ-
ent engineering problems.

The following Dirichlet boundary conditions are consid-
ered.

u|x=1 = 1, (2)

u|x=0 = 0

Equation (1) is an ordinary differential equation (ODE) of
second order with constant coefficients. The exact solution
for this problem can be easily obtained by solving ODE ana-
lytically with boundary conditions. The Peclet number is
defined as follows and it often controls the stability of the
numerical solution of this problem.

Pe = V dc

2k
(3)

where dc is the nodal spacing for two neighbor field nodes.
For example, in this example, if the problem domain is rep-
resented by 21 regularly distributed nodes, dc = 0.05.

The meshfree polynomial point collocation method
(PPCM) [16] that uses shape functions created by the polyno-
mial interpolation [14,15] is employed to solve this problem.
The function u is approximated by

u(x) =
n∑

i=1

�i(x)ui (4)

where �i is the meshfree shape functions that are constructed
using the polynomial interpolations, and n is number of field
nodes used in the local interpolation (support) domain. The
local interpolation domain is usually defined to select several
closest nodes for computing the meshfree shape functions.

It can be found that the accuracy of solutions deteriorates
as Pe increases, if no special treatment is performed. When Pe
is very large, Eq. (1) becomes convection dominated, and the
accuracy of the standard numerical result becomes oscilla-
tory. In the case of convection dominated (the Peclet number
is large but finite), the effect of the second term in Eq. (1)
becomes negligible resulting in the down stream boundary
condition, u|x=1 = 1, to affect only a very narrow region to
form a thin boundary layer (the boundary layer can be seen
from following figures). The thin boundary layer is very diffi-
cult to be reproduced by a standard numerical method and
results in an oscillatory (unstable) solution. This type of insta-
bility can occur in many numerical methods including FEM,



Meshless techniques for convection dominated problems 173

FDM, FVM and the meshfree method if no special treatment
is implemented. The key to overcoming this problem is to
effectively capture the upstream information in the approxi-
mation of the field variables. To stabilize the solution for the
convection dominated problem mentioned, several strategies
for meshfree methods are newly developed in the following.

Technique 1: Nodal refinement
It is known that the instability is directly related to the Peclet
number given in Eq. (3). Therefore, a natural and simple
way to stabilize the solution is to reduce the Peclet num-
ber by reducing the nodal spacing dc for given V and k. To
confirm this argument, two models of 21 and 41 regularly
distributed nodes are used to solve the same problem by the
meshfree method. When 21 nodes and 41 nodes are used, the
nodal spacings are dc = 0.05 and dc = 0.025, respectively.
For example, when V = 100 and k = 1, P e = 2.5 and
Pe = 1.25 for 21 nodal model and 41 nodal model. Because
the Peclet number becomes smaller, the instability of solution
is naturally alleviated (it is quite easy to understand, hence
the detailed results are not presented here). Using finer field
nodes is a very simple way to alleviate the instability problem,
and applicable for all methods of the domain discretization,
e.g., FEM, FDM, and the meshfree methods. Note that an
increase of nodes leads to an increase in computational time.
Increasing the nodal density only in the boundary layer can
certainly be more efficient.

Technique 2: Enlargement of the local support domain
The instability is caused by the failure to capture the upstream
information by the discretion scheme used in the numerical
methods. The simplest way to capture the upstream infor-
mation is naturally to use more nodes in the local support
domain for interpolations. This may not be done easily in
FEM and FDM as the interpolation in them is mesh based,
and it is limited in the pre-defined elements or grids. How-
ever, this technique can be easily used without any difficulty
in meshfree methods by simply enlarging the local support
domain of the interpolation node near the boundary layer,
because, in the meshfree method, no mesh is used, and the
local interpolation (support) domain can be selected freely
based on the requirement for the problem.

To demonstrate this technique, three types of local sup-
port domains of selecting 3, 5 and 7 closest field nodes are
used to solve the same problem, and results obtained using
the meshfree method are plotted in Fig. 1. From this figure,
it can be found that the accuracy and stability of solutions
are significantly improved by using more nodes in the inter-
polation domains. It proves that the enlargement of the local
interpolation (support) domain can effectively stabilize the
numerical solution. Because a big local interpolation domain
can capture more information from both upstream and down-
stream, it is quite straightforward manner in meshfree meth-
ods to improve the accuracy and stability of solutions without
refining the nodes.

It should be mentioned again that this technique is very
easy to implement in the meshfree methods because of the

freedom in construction the meshfree shape functions. In
addition, the meshfree interpolation domains often overlap
with each other. The “overlap” feature also helps to stabilize
the solution. In the other hand, the enlargement of the local
interpolation (support) domain needs to be done only for the
interpolation points that are in and near the boundary layer.

Technique 3: Fully upwind support domain
The upwind difference scheme has been often used in the
FDM to solve the convection dominated problems. Similar to
the upwind difference scheme used in FDM, the local upwind
support domain that is fully biased on the upwind side, as
shown in Fig. 2b, is proposed here and implemented in the
meshfree method to stabilize the solution. Results for Pe =
2.5 are obtained and plotted in Fig. 3. It is observed that
the upwind support domain can improve the accuracy and
stability for problems with large Peclet numbers because it
can fully capture the information from upstream. However,
results for Pe = 0.25 are also obtained and plotted in Fig.
3. It can be found that it gives very poor results for cases of
smaller Peclet numbers because of the fully “asymmetric”
interpolation using the upwind support domain.

Technique 4: Adaptive upwind support domain
Comparing with the fully upwind support domain, when us-
ing the normal local support domain that is symmetric, it gives
good results for small Peclet numbers but unstable results
for large Peclet numbers. Hence, the ideal local support do-
main should be updated with Peclet number. We term such
a local support domain as adaptive upwind support domain.
The freedom to construct local interpolation domains in the
meshfree method provides the possibility to fulfill the adap-
tive upwind domains. The adaptive upwind support domain
can be defined using the following formula.

du = αu · rs, where αu = coth |Pe| − 1/ |Pe| (5)

In above equations, du is the central offset distance as shown
in Fig. 2(c), and rs is the size of the support domain, and
rs = αs · dc.

Figure 4 plots the change of αu with Pe. It can be found
that αusatisfies

αu =
{

0, P e → 0
1, P e → +∞ (6)

Therefore, Eq. (5) satisfies the following two conditions.

• When Pe→0, the normal support domain is used and du =
0.

• When Pe→ ∞, fully upwind support domain is used and
du = rs .

Equation (5) works well for arbitrary Pe. It performs better
when the number of the nodes used in the support domain is
large, and is easy to use in the meshfree methods. Figure 5
shows that Eq. (5) works well for both large and small Peclet
numbers. It is one of the most effective methods to ensure
the stability of convection dominated problems.
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Fig. 1 Results of different support domains (Pe = 2.5)

Fig. 2 Different types of local support domains (a) The normal support domain, (b) The fully upwind support domain, (c) An adaptive upwind
local support domain, (d) A biased support domain by deliberately adding two more nodes

Another effective and simple way to establish a biased
support domain is deliberately selecting more nodes in the
upstream direction when constructing the local support
domain for a interpolation node [5]. Fig. 2d shows a
biased support domain constructed based on a normal support
domain by adding two more nodes in the upstream direction.
Due to the freedom in selecting the support domain in mesh-
free methods, the method of using the biased support domain
is also very effective and easy to use in the practical applica-
tions.

3 Two-dimensional convection-diffusion problem

3.1 Governing equations

Some techniques to overcome the instability issue in the
convection dominated problems solved by the meshfree meth-
ods have been developed and discussed in Sect. 2. We will
use these developed techniques to solve 2-D convection-
diffusion problems. Let us consider the following
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Fig. 3 Results obtained using normal and upwind support domain for Pe = 0.25 and Pe = 2.5

Fig. 4 αu for different Pe
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Fig. 5 Results using adaptive upwind support domains

convection-diffusion equation, given by

L(u) = vT · ∇u − ∇T(D∇u) + βu − q(x) = 0, in � (7)

together with the general boundary conditions:
Neumann boundary condition:

Lb1(u) = nT D∇u + q̄n = 0 on �b1 (8)

Dirichlet boundary condition:

u − ū = 0 on �b2 (9)

The following equations are satisfied in the internal nodes:

Ri = vT · ∇û+
i ∇T (D∇ûi) + βûi − q(xi ) = 0 (10)

The following equations are satisfied on Neumann boundary
�b1:

nT D∇ûi + q̄n = 0 (11)

The following equations are satisfied on Dirichlet boundary
�b2:

ûi − ū = 0 (12)

where ûi is the approximation u at ith collocation point, and
it can be obtained using the radial basis function (RBF) inter-
polation:

ûi(x) =
n∑

i=1

�i(x)ui (13)

where �i is the meshfree shape function that can be con-
structed by the radial basis function interpolation [14,15], n

is number of field nodes used in the local support domain to
construct meshfree shape functions.

Using Eqs. (10–13), we can obtain the discretized system
equations for the meshfree method.

In the following computing, we consider the problem
domain of (x, y) ∈ � = [0, 1] × [0, 1], and the coefficients
in Eq. (7) are

D =
[

ε 0
0 ε

]
, v = {

3 − x, 4 − y
}
, and β = 1 (14)

in which ε is a given constant of diffusion coefficient. The
boundary conditions are considered as

u| x = 0
x = 1
y = 0
y = 1

= 0 (15)

The exact solutions for this problem is given by

uexact = sin(x)
(

1 − e− 2(1−x)

ε

)
y2

(
1 − e− 3(1−y)

ε

)
(16)

The velocity distribution is plotted in Fig. 6.
For error analyses, the following error indicators are

defined.

e =

√√√√√√√√

N∑
i=1

(
uexact

i − unum
i

)2

N∑
i=1

(uexact
i )2

, ex =

√√√√√√√√

N∑
i=1

(
∂uexact

i

∂x
− ∂unum

i

∂x

)2

N∑
i=1

(
∂uexact

i

∂x

)2
(17)
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Fig. 6 Velocity distributions

3.2 Numerical results

Two nodal distribution models are used: 21 × 21 (441 nodes)
regular nodes and 383 irregularly distributed nodes.The irreg-
ular nodes are shown in Fig. 7. The Multi-quadrics (MQ)
RBF [14] is used to construct meshfree shape functions. The
dimensionless size of support domain is chosen as αs = 2.5.
The results obtained by the meshfree collocation method are
listed in Table 1. It can be found that the meshfree colloca-
tion method obtains very good results using both regular and
irregular nodes when ε is large enough (e.g. ε > 0.1) or the
Peclet number is small enough, see also Fig. 8(a). However,
the error becomes very large when ε is small (i.e. ε = 0.01)
or the Peclet number is large, see also Fig. 8(b).

Fig. 7 383 irregular nodes

Table 1 Errors in the numerical results for different ε

ε 441 regular nodes 383 irregular nodes

e 0(%) e x(%) e 0(%) e x(%)

100.0 0.245 0.966 0.532 1.061
10.0 0.255 0.995 0.546 1.654
1.0 0.346 1.722 1.122 2.476
0.1 1.276 20.069 2.023 26.13
0.01 15.832 80.021 38.17 82.58
0.001 195.345 196.271 243.64 341.87

Note that when ε is very small( e.g., ε ≤ 0.01), the prob-
lem is convection dominated, for which the instability in the
solution (see also Fig. 8(b)) has been well known for many
numerical methods including the FDM and FEM, as already
discussed in Sect. 2. Figures 8(b) and 9 plot the numerical
and exact results for ε = 0.01. It can be found that there is a
thin boundary layer near the right-up corner of the problem

Fig. 8 Numerical results for different ε (a) ε = 1 (b) ε = 0.01
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domain when ε is small. The pre.sence of the boundary layer
is the major reason for the instability. These techniques devel-
oped in Sect. 2 will be used for this two-dimensional problem.

(a) Using enlarged local support domains Table 2 lists the
results of different sizes of support domains αs for the case
of ε = 0.01 that is a highly convection dominated case. This
table clearly shows that the accuracy of solution improves
with the enlargement of the local support domain. It confirms
that the enlargement of the support domain can help to stabi-
lize the solution of a two-dimensional convection dominated
problem. However, this technique cannot totally solve the
instable issue, e.g., when αs = 3.0, the error, e0, is still
13.55%.

(b) Using adaptive support domains As shown in Fig. 10,
the adaptive upwind support domain is defined by

du = αurs (18)

where du is the central offset distance against the stream
direction from the collocation node as shown in Fig. 10, αu

is the dimensionless coefficient, and rs is the size of the local
support domain. Following the same formulation in Eq. (5),
the adaptive upwind support domain for a 2-D problem is
defined by assuming the following formula

αu = coth |Pe| − 1

Pe
(19)

where Pe is the vector of the local Peclet numbers. In a two-
dimensional problem, Pe is a vector that has the following
form

Pei =
{

P x
ei

P
y

ei

}
=

{
Vx(xi )dc

2ε

Vy(xi )dc

2ε

}
(20)

where Vx and Vy are velocity components in x and y direc-
tions, respectively.

The vector of velocity can be expressed as

�V (xi ) = Vx(xi )
⇀

i + Vy(xi )
⇀

j (21)

Hence, the offset direction for the adaptive support domain
can be determined as
⇀
n = −Vx√

V 2
x + V 2

y

⇀

i + −Vy√
V 2

x + V 2
y

⇀

j (22)

Using Eqs. (18) and (22), the adaptive support domain can
be determined.

Table 2 Errors in the numerical results for ε = 0.01 using different local
support domains

αs e0(%) ex(%)

1.5 22.55 91.90
2.0 18.34 83.70
2.5 15.83 80.02
3.0 13.55 68.87

Fig. 9 Exact solution for ε = 0.01 (a) 3-D plotting, (b) x-y plane plotting

Fig. 10 Construction of an adaptive upwind local support domain using
offset distance du



Meshless techniques for convection dominated problems 179

Table 3 Errors in the numerical results for different ε

ε
Conventional support domain Adaptive support domain

e0(%) ex(%) e0(%) ex(%)

100.0 0.245 0.966 0.245 0.966
10.0 0.255 0.995 0.255 0.995
1.0 0.346 1.722 0.345 1.692
0.1 1.276 20.069 1.242 14.956
0.01 15.832 80.021 4.833 28.633
0.001 195.345 196.271 5.923 32.378

Fig. 11 Numerical solution for ε=0.01

The results of this problem are obtained using the above
presented adaptive local support domain and listed in Table 3.
The errors using the conventional support domain are also
listed in the same table. It can be found from this table that
the adaptive upwind support domains can stabilize the solu-
tion, and lead to good results for both small (large ε ) and
large (small ε ) Pe. Figure 11 also plots the results for ε =
0.01, and it shows better results compared with Fig. 8b. These
results prove that using the adaptive local support domain in
the meshfree method is a very effective method to solve the
convection dominated problems.

(c) Using more nodes near the area with boundary layer
We already mentioned that the instable problem of convec-
tion-dominated problem is because the presence of the bound-
ary layer.Therefore, we can deliberately distribute more nodes
near the area with the boundary layer. Figure 12 presents
two nodal distribution models: one uses more nodes on the
up-right corner (Fig. 12a), and the other uses more nodes
on the down-left corner (Fig. 12b). Using the conventional
support domain and ε = 0.001, e0 = 18.345% and e0 =
48.345% for nodal distribution models I (shown Fig. 12a)
and II (shown Fig. 12b), respectively. The model I leads to
better results than the model II. From the exact solution, Fig.
9, we can find that the boundary layer locates on the up-right
corner of the problem domain. Hence, the model I obtains bet-
ter results because more nodes are distributed in the boundary
layer area.

Fig. 12 Two nodal distributions with 552 nodes (a) model I,
(b) model II

(d) Using adaptive analysis Comparing with the conven-
tional FEM or FDM, one of very attractive advantages for
the meshfree method is that it is easy to do the adaptive anal-
ysis, because no mesh is used in the meshfree method. Hence,
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Fig. 13 Nodal distributions and the error norms of three steps in the adaptive analysis (a) step 1, (b) step 2, (c) step 3

the adaptive analysis technique is developed in this paper to
solve the convection dominated problem.

In the adaptive analysis, one of the most important
issues is to estimate the error and determine the local area
to add or reduce nodes. Rather than estimate the error us-
ing a higher interpolation scheme, we use the posteriori error
estimates proposed by Behrens [3]. This error estimates is a

good scheme for the detection of discontinuities of a surface
from scattered data, which was appeared in Wu [24]. The
posteriori error estimates based on solution interpolation is

η (x) =
∣∣∣sN̄ (x) − u (x)

∣∣∣ (23)

where u (x) is the value at node x, and s (x) is the value
obtained by an interpolation for value at node x, using the
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neighbouring set N̄ ≡ N\ {x} (using the current interpola-
tion domain, but not included the current node). We note that,
if N̄ ≡ N , then η (x) ≡ 0.

The posteriori error estimates provide an estimation to
determine the region of the domain need to be added/reduced
nodes. The value η (x) is small whenever the reproduction
quality of u around x is good, and in contrast, a high value
of η (x) indicates that u is subject to strong variation locally
around x.

In order to balance the accuracy of the solution and the
computational cost, we will add new nodes into regions that
have higher η (x) values (refinement), or remove nodes from
regions that have the small value of η (x)(coarsening). Let

η∗ = max
x∈�

η (x) (24)

Consider two tolerance values to be satisfied 0 < θc < θr < 1.
This two parameters: θc is known as the coarsening parame-
ters and θr is known as the refinement parameters.

• A node ξ ∈ � will be refined, if and only if η (ξ) > θr ·η∗,
and

• A node ξ ∈ � will be coarsened, if and only if η (ξ) <
θc · η∗.

By the fact of θc < θr , we can make sure that a node can only
be either coarsened or refined at a time.

Using above discussed adaptive analysis algorithm, the
convection dominated problem with ε = 0.01 is adaptively
analyzed. Figure 13 shows results of nodal distribution and
error e0 in three steps for the adaptive analysis. The initial
nodal distribution is 11 × 11 regular nodes. It can be found
that more nodes are automatically added in the area with
the thin boundary layer and the results converge although
the convergent procedure is not always monotonous. It dem-
onstrates that the adaptive analysis for the convection domi-
nated problems can be effectively fulfilled using the meshfree
methods and leads to very good results.

4 Conclusions

In this paper, the meshfree method is used to solve convection
dominated problem. Several techniques are newly developed
to overcome the instability when the convection dominated
problems are solved by the meshfree method. These tech-
niques are applied and demonstrated in both one- and
two-dimensional problems. The following conclusions can
be drawn through the studies in this paper.

(1) Comparing with the conventional FDM and FEM, the
meshfree method has a very attractive advantage in solv-
ing the convection dominated problems because it can
easily overcome the instability problem by using proper
techniques.

(2) The techniques developed in this paper can overcome
the instability issues in convection dominated problems
analyzed by the meshfree method. These techniques in-
clude: the adaptive local support domain, the enlarge-
ment of the local support domain, using more nodes in

the area with the boundary layer, and using the adaptive
analysis.

(3) In these techniques, using the adaptive local support
domain is the most effective method and it is very easy
to use because of the freedom of selecting the support
domain in a meshfree method.

(4) The adaptive analysis for the convection dominated prob-
lems can be effectively fulfilled using the meshfree meth-
ods and leads to very good results.

(5) In some cases, one technique may not solve the insta-
bility issue totally. Several techniques can be combined
together to solve it. For example, if the Peclet number is
very large, we can use the adaptive analysis, and, in each
analysis step, the adaptive local support domains is used
to construct the meshfree shape functions.

(6) The meshfree collocation methods are used in the above
studies. Nearly all meshfree methods have the same fea-
ture in terms of determining the local support domains.
Therefore, in solving a convection dominated problem,
the similar conclusions can be drawn for other meshfree
methods. The techniques developed in this paper can also
be used in other meshfree methods.

(7) Numerical examples are used to demonstrate the devel-
oped techniques in this paper. More further research is
required to improve these techniques and apply them to
other practical convection dominated problems in engi-
neering.
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