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Abstract The paper reports on the prediction of the
flow field around smooth cylinders in cross flow at high
Reynolds number. Both circular and square-sectioned
cylinders are considered. The principal feature of these
flows, and the primary cause for the difficulty in their
prediction, is the development of a von Karman vortex
street leading to significant fluctuations in surface
pressures. It has already been established from several
previous studies that eddy-viscosity closures fail to
capture the correct magnitude of these fluctuations
though there is no consensus as to the underlying
causes. In this work, it is argued that the organized
fluctuations in the mean-flow field introduce energy
into the random turbulence motions at a frequency that
corresponds exactly to the shedding frequency and
that, as a consequence, it becomes necessary to
explicitly account in the turbulence closure for the
resulting modification of the spectral transfer process.
A proposal to account for this direct energy transfer in
the context of two-equation eddy-viscosity closures is
put forward and is checked by comparisons with
experimental data from both square and circular cyl-
inders at high Reynolds number. Uncertainties in the
predictions due to numerical discretization errors are
systematically minimized. The outcome of comparisons
with experimental data and with results from alterna-
tive closures, including Large-Eddy Simulations, vali-
date the proposal.

Keywords Turbulent vortex shedding Æ Turbulence
closures Æ Unsteady RANS

Nomenclature

Bf Blockage ratio
CD Drag coefficient (¼ FD=

1
2qU2

oL
2)

CL Lift coefficient (¼ FL=
1
2 qU2

oL
2)

Cp Wall static pressure coefficient
(¼ ðp� poÞ=12 qU2

o)
D Cylinder diameter
FD In-line component of total force
FL Transverse component of total force
f Frequency of vortex shedding
H Cylinder height
Tu Relative turbulence intensity
k Turbulence kinetic energy
kf Kinetic energy of total (periodic + turbulent)

fluctuations per unit mass
L Characteristic length (D for circular cylinder,

H for square cylinder)
Lr Length of recirculation zone
p Time-averaged pressure
Q Mean-flow kinetic energyð¼ 1

2UiUiÞ
Re Reynolds number (=q Uo L/l)
St Strouhal number (= f L/Uo)
t* Dimensionless time (= Uo t/L)
Ui Time-averaged velocity components
ui Fluctuating velocity components
uiuj Reynolds-stress tensor
xi Coordinate directions
Y
+

Normal distance in wall coordinates

Greek symbols

Dt* Non-dimensional time-step (= DtUo/L)
Dnc Distance from cell center to wall
� Rate of dissipation of k
q Fluid density
j von Karman constant
m Kinematic viscosity
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l Dynamic viscosity
r Prandtl number

Subscripts

w Wall
o Inlet
t Turbulent

1 Introduction

The prediction of vortex shedding from smooth cylinders
continues to receive much attention due to the frequent
occurrence of such flows in nature and in engineering
practice [1], [2]. From an engineering perspective, the safe
and economic design of such diverse structures as towers,
masts, chimneys, bridge piers and offshore platforms
requires a practical and reliable predictions method for
estimating the magnitudes and frequency of the in-line
and transverse forces associated with the shedding of
vortices from these structures. The requirements in such
a method are two fold. Firstly, the method should yield
results that are of reasonable engineering accuracy for a
wide range of geometries and flow parameters. These
parameters often combine to yield very high values of the
Reynolds number which makes more difficult the task of
obtaining numerically-accurate simulations. Secondly,
the method should be practical in the sense of being ro-
bust when used for complex geometries and in being
affordable in terms of computing resources. Specifically,
and to be of use for routine engineering analysis, the
method must be capable of producing results in reason-
able turn-around times. At present, this requirement
rules out Large–Eddy Simulations (LES) as the tool of
choice for such applications. While enormous progress in
understanding the physics of unsteady separated flows at
low Reynolds number has been achieved using this
technique ([3], [4]), its use as a tool for engineering pre-
dictions has been limited by the prohibitive costs inher-
ent in the need to employ very fine meshes and small
time-step sizes to resolve a significant portion of the
turbulence energy spectrum [5]. Turbulence closures are
still generally considered to be the practical approach for
the solution of problems of engineering interest but there
remains a great deal of uncertainty regarding their suit-
ability in flows where vortex shedding occurs. Franke
and Rodi [6], for example, reported that the use of log–
law assumptions to provide wall boundary conditions
lead to damping of the unsteady flow field around a
square cylinder with the result that vortex shedding was
ultimately suppressed and a steady–state solution ob-
tained instead. Similarly, Celik and Shaffer [7] reported
poor agreement with circular cylinder data when using a
conventional turbulence closure. Medic [8], on the other
hand, found that shortcomings in the prediction of
vortex shedding that have previously been attributed to

the turbulence closure have their origins in the use of
dissipative discretization schemes leading to numerical
diffusion errors that are sufficiently large as to suppress
the shedding process. What is not in doubt, however, is
that turbulence closures (as characterized by the widely-
used k-� model) fail, in their standard form, to capture
the correct level of fluctuations in the pressure field
associated with the vortex shedding ([9], [10]). Several
alternative reasons for this result have been put forward,
and proposals made for improvements. Kato and
Launder [11], for example, attributed the defect to the
generation of high levels of turbulence kinetic energy at
the stagnation point ahead of a square cylinder and
found that improvements can be obtained by reducing
the normal-strain contribution to the rate at which this
quantity is generated there. Application of the same
model to the circular cylinder produced even poorer
agreement with experiment than the standard model [12].
In none of the proposals was allowance made for the
effects of the interactions between the large-scale orga-
nized periodicity of the mean flow and the random, small-
scale high-frequency motions that characterize
turbulence. The purpose of this paper is to introduce a
turbulence closure that explicitly accounts for these
interactions and to put on record its performance in
relation to data from both square and circular cylinders.
The mathematical basis of the study is presented in the
next section. Computational details are presented in
Sect. 3 followed by presentation and discussion of the
results. A summary of the main findings is given in
Sect. 5. Issues related to numerical uncertainty are con-
sidered in the Appendix.

2 Mathematical formulation

2.1 Mean-flow equations

The flows considered are governed by the incompress-
ible, unsteady forms of the equations for conservation of
mass and momentum. As is customary in practical ap-
proaches to modeling of turbulent flows, the variables in
the instantaneous equations are averaged over a time
interval Dt:

/ ¼ 1

Dt

ZtþDt

t

/̂ dt ð1Þ

where / and /̂ signify, respectively, the averaged and
instantaneous values of a general variable.

The choice of Dt depends on the nature of the flow
considered. In statistically-stationary flows, the con-
ventional Reynolds averaging would be appropriate
with Dt !1. For the present flows, Dt can be taken to
be equivalent to the computational time-step size. This
would mean that all motions with time scales smaller
than the computational time step would not be captured
in the computations and their effects must be accounted
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for via a turbulence closure. This would also mean that
motions with larger time scales are captured directly.
Conceptually, this approach to averaging the governing
equations is quite different from the more usual ensem-
ble (or phase) averaging which would require the period
of oscillations to be known a priori. In practice, how-
ever, the precise interpretation placed on the averaging
process is quite immaterial as the final outcome is the
same; namely, time-averaged equations which, using
conventional Cartesian tensor notation, are written as:

oUi

oxi
¼ 0; ð2Þ

oUi

ot
þ Uj

oUi

oxj
¼ o

oxj
m
oUi

oxj
� uiuj

� �
� 1

q
op
oxi

: ð3Þ

2.2 Turbulence closure

The unknown correlations in Eq. (3) are obtained here
from Boussinesq’s linear stress-strain relationship:

�uiuj ¼mt
oUi

oxj
þ oUj

oxi

� �
� 2

3
dijk: ð4Þ

In the k-� model, the kinematic eddy viscosity is com-
puted from:

mt ¼ Cl
k2

�
ð5Þ

with k and � obtained from the solution of the equations:

ok
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þ Uj
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oxj
¼ o

oxj

�
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� ok
oxj
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oxj

�
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�2

k

ð7Þ

In the above, Pk is the rate of production of turbulence
kinetic energy:

Pk ¼ �uiuj
oUi

oxj
ð8Þ

The k-� model was developed with reference to data
from statistically-stationary flows and the various
coefficients that appear in its formulation were cali-
brated using data from wall-bounded and free shear
flows in approximate local equilibrium [13]. It has
already been mentioned that this model fails badly in
the prediction of flows dominated by vortex shedding
in that it predicts a far weaker vortex shedding
intensity than that observed in measurements. We take
the view that the establishment of a vortex shedding
field in a turbulent flow leads to direct energy input
from the periodic mean-flow oscillations into the ran-
dom turbulence motions. This direct energy supply
occurs at a frequency that corresponds exactly to the

vortex-shedding frequency. This view is supported by
results from a number of experiments including, for
example, the measurements of Durao et al. [14] of the
turbulence energy spectrum in the unsteady wake be-
hind a square cylinder and the measurements of Jung
and Park [15] in the wake of an airfoil. Now a fun-
damental assumption in turbulence closures developed
with reference to statistically-stationary flows is that of
spectral equilibrium. This requires the rate of dissipa-
tion of turbulence kinetic energy by the action of
viscosity on the small scales (i.e., �) to respond directly
to changes in the rate of energy input at the large
scales due to the working of the turbulent stresses
against the mean rates of strain (Eq. 8). The presence
of a direct input of energy at a discrete frequency
negates this assumption. The immediate implication is
that, in periodic flows, the dissipation-rate equation
should be modified in such a way as to reflect the
expected enhancement of this parameter due to vortex
shedding. The proper way for accounting for the ef-
fects of mean-flow periodicity on the energy-transfer
process is to re-define the rate of production term (Eq.
8) to allow for the increase in k due to the direct
energy input from the mean-flow periodicity. This
additional contribution will then appear in the ‘pro-
duction-of-dissipation’ term in the � equation where its
effect will be to felt mainly through enhancement of
the levels of this parameter relative to a statistically-
stationary case. The same effect can be achieved, albeit
indirectly, through the dissipation rate equation only
[9]. Guidance on how this may be achieved was pro-
vided in [16] by consideration of an idealized distorted
energy spectrum. Thus if EðjÞ is the energy spectrum
function, its form in the energy-production range in
statistically-stationary flows can be taken as [17]:

EðjÞ ¼ A0js ð9Þ
where A0 is a constant and j is the wavenumber vector.
The index s is a matching index whose precise value is
immaterial to the present discussion. When vortex
shedding is present, the shape of the distorted spectrum
now varies in time and may be approximated as:

Eðj; tÞ ¼ ðA0 þ A1ðtÞÞjs ð10Þ
where A1ðtÞ must vanish in the steady limit. The turbu-
lence kinetic energy k is related to Eðj; tÞ via [18]:

k ¼
Z1

0

Eðj; tÞdj; ð11Þ

and

dk
dt
¼ �� ð12Þ

By postulating a shape for Eðj; tÞ based on the measured
spectrum, and after integration of Eq. 11 there results:

k ¼ 3sþ 5

2
ðsþ 1ÞAðtÞjsþ1

m : ð13Þ
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where jm is the wavenumber which corresponds to the
location of the vortex-shedding frequency. Now by dif-
ferentiating Eq. 13 twice, an equation for the rate of
change of dissipation with time is obtained:

d�

dt
¼ �C�2

�2

k
� 1

sþ 1

�

At

dAt

dt
; ð14Þ

Note the emergence of an additional source of dissi-
pation which is finite only in statistically non-stationary
flows and whose precise form will obviously depend on
the assumed form for A1ðtÞ. The most straightforward
way to introduce this additional term into the dissi-
pation rate equation is to redefine the coefficient C�1

thus:

C��1 ¼ C�1 1þ Ct
k
�

1

Qþ k
oðQþ kÞ

ot

����
����

� �
ð15Þ

where Q is the mean-flow kinetic energy per unit mass.
Notice the use of the modulus of the derivative of the
total kinetic energy in recognition of the fact that the
observed peak in the energy spectrum remains in place
at all phases of the shedding cycle. The modification

involves a coefficient Ct whose value (Table 1) was
arrived at by numerical optimization [19]. The desig-
nation ‘‘modified’’ will henceforth be used to indicate
that the predictions were obtained with the use of Eq.
(15). A demonstration of the need for this modifica-
tion can be seen from Fig. 1 which shows the com-
puted lift and drag coefficients for a square cylinder at
Re = 20,000. Results with the k-� model with and
without the modification of Eq. (15) are plotted and
these clearly show the amplification in the shedding
intensity associated with the proposed modification.
Further discussion of these results follows later in this
paper.

The requirement to improve on the performance of
standard eddy-viscosity models in flows that are far re-
moved from equilibrium has motivated the development
of an alternative adaptation to the k-�model; namely the
Renormalization Group (RNG) model of Yakhot et al.
([20]). This model differs from the parent model in two
respects: the coefficients are assigned somewhat different
values but, more importantly, the � equation now has an
additional source term (R) which brings into this equa-
tion a strong dependence on the ratio of the turbulence
time scale (k/�), which is representative of the rate of
transfer of energy across the spectrum, to the mean-flow
time scale, the quantity most strongly modified in the
presence of vortex shedding. This additional source term
is defined as:

R ¼Clg3ð1� g=goÞ
1þ bg3

�2

k

g ¼S
k
�

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

oUi

oxj
þ oUj

oxi

� �2
s ð16Þ

Because of this dependence on the time-scales ratio, it
is likely that the RNG model will also yield improve-
ments in the prediction of the present flows. Therefore,
predictions will be obtained with this model as well,
both to put on record its performance and, also, to
provide a base for the assessment of the present pro-
posal.

The coefficients that appear in the present, modified,
model and in the RNG formulation are assigned their
standard values which are listed in Table 1.

3 Computational method

The governing equations were solved using the finite-
volume methodology described in [21]. Equations (3)–(7)
were integrated, term-by-term, over irregular cells
formed from non-orthogonal meshes. Gauss’s diver-
gence theorem was used to relate the volume integrals to
surface integrals so that the integrated form of the
conservation equation for the general variable / takes
the form:

Table 1 Coefficients of turbulence closures

Model Cl rk r� C�1 C�2 Ct b go

Modified 0.09 1.0 1.30 1.44 1.92 0.38 — —
RNG 0.0845 0.72 0.72 1.42 1.68 — 0.012 4.38

Fig. 1 Square cylinder (Re = 20,000). Predicted CD and CL before
and after the unsteady modification
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d

dt

Z

V

q/ dV þ
I

A

q/UknkdA

¼
I

A

C/
o/
oxk

nk dAþ
Z

V

sV
/ dV þ

I

A

sA
/ nk dA

ð17Þ

where nk is the outward unit normal vector. The con-
vective and diffusive fluxes across the cell faces were
evaluated using by a number of alternative second– and
third–order accurate schemes. These included the
SMART [22] and the QUICK [23] schemes. The
resulting algebraic equations were solved using Stone’s
Strongly Implicit Procedure which is based on incom-
plete lower-upper decomposition. The SIMPLE algo-
rithm [24] was used to couple the solution of the
continuity and momentum equations. At each new time
step, the mean-flow and turbulence-model equations
were solved iteratively till the sum of the normalized
residuals for all variables fell below 10�6. No under-
relaxation was used, with typically 3–5 outer iterations
being required to satisfy the prescribed convergence
criterion. The requirements for numerical accuracy are
particularly severe for unsteady separated flows at high
Reynolds number. A summary of the tests performed to
quantify the numerical uncertainty in the computed re-
sults is presented in the Appendix.

3.1 Solution domain and grids

Figure 2 shows the computational grid used for
the square-cylinder simulations and defines the extent
of the solution domain in terms of the cylinder’s height,
H . The dimensions shown were arrived at as a result of
the tests reported in the Appendix. The grid shown
(hereafter denoted as D1) consists of a total of
139� 122 cells, non-uniformly distributed. The grid
lines were concentrated near the cylinder walls with 24
cells being in contact with each side. The normalized
distance from the cell center to the wall (Dnc=H ) was
0:014. The grid lines were expanded away from the
cylinder with an expansion ratio of 7.5 % in each
direction. The blockage ratio (ratio of cylinder width to
domain width at inlet) produced by using the above

solution domain was Bf ¼ 4:17%. This is approxi-
mately equal to the values obtained in the experiments
of Lee [25] and Bearman and Obasaju [26] but is
smaller than that in the experiments of Lyn [27].
Computations were performed on several other grids,
as is detailed in the Appendix. Of those, grid D2 is of
particular interest since it too contains 24 nodes per
side but with the blockage ratio of 8.33%. The results
obtained with this grid will help quantify the sensitivity
of the computations to the blockage ratio. The main
parameters of some of the grids used are given in Table
2. Computations of the flow around the circular cylin-
der were performed for several values of Reynolds
number. A representative grid, used to compute the
flow at Re ¼ 1:4� 105, is shown in Fig. 3.

3.2 Boundary and initial conditions

The boundary conditions used here are shown in Fig. 2
for the square-cylinder flows. Similar conditions were
applied for the circular cylinders. At inlet, uniform
profiles of streamwise velocity, k and � were prescribed.
The measurements of Lee [25] and Gartshore [28] for

Fig. 2 Square cylinder. Grid D1 and domain boundaries

Table 2 Square cylinders. Parameters of numerical grids used

Grid [NI�NJ] Xi=H Xo=H Ys=H fex fey Dnc=H %Bf

D0� 106� 108 12 30 12 1.10 1.10 0.02 4.17
D1� 139� 122ðaÞ 12 30 12 1.075 1.075 0.014 4.17
D1� 139� 122ðbÞ 12 30 12 1.0635 1.062 0.02 4.17
D2� 114� 92 5.5 29.5 6 1.076 1.076 0.02 8.33

Fig. 3 Circular cylinder. Numerical grid G1 for Re ¼ 1:4� 105
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high Reynolds number flow around a square cylinder
show that the mean-flow parameters (e.g., Strouhal
number and the lift and drag coefficients) are practically
insensitive to the levels of turbulence intensity
(Tu � u0=Uo) in the incident stream provided that
0 < Tu � 0:02. The higher limit was chosen here - a level
similar to that obtained in [27]. The turbulent kinetic
energy was deduced from the isotropic turbulence rela-
tion:

ko ¼
3

2
Tu Uoð Þ2: ð18Þ

� was prescribed by inverting the eddy-viscosity relation
(5) and using the Kolmogorov expression for �:

� ¼ Cl
k
3
2

L�
: ð19Þ

According to Bearman and Morel [29], the dissipation
scale L� is about twice the integral scale Lx and Eq. (19)
then gives :

mt

m

� �
0
� 0:22 Tu Re

Lx

H

� �
0

: ð20Þ

For Lx=H � 1, the value of ðmt=mÞ0 at inlet was 88, which
is appropriate for a low intensity turbulent flow.

At outlet, the streamwise gradients of all dependent
variables were set equal to zero. Similarly, the normal
gradients were set equal to zero at the side planes. At the
cylinder walls, integration through the viscous sub-layer
directly to the wall was not possible since a high tur-
bulence Reynolds–number model was used. Conse-
quently, the boundary conditions for the velocity
components consisted of specifying the momentum
fluxes at the wall. These were deduced from a standard
logarithmic law of the wall (with j = 0.41 and rough-
ness parameter E ¼ 8:6). The values of k and � there
were fixed by the assumption of local equilibrium.

Fig. 4 Square cylinder. Instantaneous streamlines, velocity vectors
and turbulence kinetic energy at maximum CL

Fig. 5 Square cylinder (Re = 20000). Predicted and measured mean
and r.m.s. values of surface pressure coefficient
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4 Results and discussion

4.1 Square Cylinder

An overall impression of the flow around a cylinder is
presented in Fig. 4 which shows plots of the instanta-
neous streamlines, the velocity vectors and contours of
the turbulent kinetic energy at the phase of the shedding
cycle which corresponds to the point where the lift
coefficient is at maximum. The mean-flow streamlines
and the velocity vectors indicate that, at this phase, the
vortex centre is located at ðx; yÞ � ð0:9H ;�0:1HÞ relative
to the centre of the cylinder. The highest levels of tur-
bulence kinetic energy are obtained above the upper side

of the cylinder, within the separated shear layer where
the velocity gradients are large. Note the reattachement
of the separated boundary layer on the top side of the
cylinder.

The predicted and measured values of Strouhal
number, the mean drag coefficient, the r.m.s. values of
the drag and lift coefficients, and the time-mean length
of the recirculation region are compared in Table 3.
The table also shows the results of Franke [30] ob-
tained with a Differential Stress Model (DSM) using
two alternative treatments of the near-wall region.
This model will have involved the solution of a total
of five differential equations for turbulence quantities.
The three-dimensional LES results of Rodi et al. [5]
are also included for comparison. Note in that Table
the very low values of fluctuations in the lift and drag

Table 3 Square cylinder.
Predictions and measurements
of mean-flow parameters

St CD C0D C0L Lr=H

Experiments 0.13–0.139 2.16–2.28 0.18–0.23 1.1–1.4 0.88–1.0
Standard k-� 0.118 1.544 0.0008 0.088 2.39
Modified (D1) 0.141 2.199 0.186 1.386 0.65
Modified (D2) 0.144 2.239 0.186 1.247 0.85
RNG 0.139 2.064 0.092 1.369 0.59
Franke [30], DSM-1 0.136 2.150 – – 0.48
Franke [30], DSM-2 0.159 2.43 – – 0.48
Rodi et al. [5], LES 0.130 2.300 0.140 1.150 0.96

Fig. 6 Square cylinder. Predicted and measured time-averaged
velocity and total fluctuating kinetic energy along the centreline

Fig. 7 Centreline distributions of time-mean apparent normal stresses
in streamwise and transverse directions
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Fig. 8 Time-averaged pro-
files of the Reynolds-stress
component u2

� �
, and the

fluctuating kinetic energy
along upper side of square
cylinder

Fig. 9 Square cylinder.
Predicted and measured
phase-averaged axial and
vertical velocities along
centreline
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coefficients obtained with the standard model. This is
the central defect in this model which, interestingly,
still manages to obtain a reasonable value for Strouhal
number. The modified model of Eq. (15) produces
results that are in close agreement with the measure-
ments, especially for the r.m.s. values of CL and CD.
The relative differences between this model’s results
and the consensus of the experimental values are 5.1,
�1:0, �9:3, 10.9, and �25:7% for the Strouhal num-
ber, the mean drag coefficient, r.m.s. drag and lift
coefficients, and the recirculation zone length, respec-
tively. The RNG model underestimates the mean and

r.m.s. values of CD, and the length of the recirculation
zone. The length of the recirculation zone depends
very strongly on the blockage ratio with Lr ¼ 0:88 for
Bf ¼ 7% [27], and 1.0 for Bf ¼ 14% ([14]). The
modified model reproduces fairly well the length
measured by Lyn when the width of the solution do-
main is taken to produce a similar blockage ratio.
Thus when grid D2 is used, the relative difference is
�3:9% which compares well with a difference of 9%
with the LES results [5]. The DSM-2 model, which
utilizes a complicated two-layer near-wall treatment,
appears to overestimate St and CD.

Fig. 10 Predicted and mea-
sured long-time averaged
(top) and phase averaged
axial velocity profiles along
top of square cylinder
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Attention is now turned to the distributions of the
mean and the root-mean-square pressure coefficients on
the cylinder’s surface. The predicted and measured val-
ues are compared in Fig. 5. On the upstream face AB,
the mean pressure is predicted quite well by all models
but significant differences exist everywhere else. These
differences are within the range of experimental uncer-
tainty on the base CD and they are directly related to the
variations in the predicted mean drag coefficients ob-
served earlier. Although the modified model predicts
fairly well the mean drag coefficient, the result for the
mean pressure behind the rear corner C appears to show
a faster rate of reduction than is suggested by the data.
This is probably a consequence of the continuous pres-
sure increase along the top side BC. The variation on the
top face is captured fairly well by the RNG model and
less successfully by the DSM model. The LES result
seriously underestimates the mean values of surface
pressure along the top side. The present predictions of
the r.m.s. pressure coefficient are compared with the
measured data, Fig. 5. Both the modified and the RNG
models predict the r.m.s. values on the upstream and
back sides satisfactory though only the RNG model
appears to correctly capture the plateau observed on the
top side of the cylinder.

Figure 6 is a plot of the time averaged streamwise
velocity along the centreline. The size of the recirculation

zone downstream of the cylinder is captured quite well by
the modified model when grid D2 is used to obtain a
similar blockage ratio as in Lyn’s experiments. This
parameter is also well predicted with the LES method.
The influence of the blockage ratio can be seen from the
results obtained with the D1 grid, the RNG and the DSM
models, all of which significantly underestimate the size of
the recirculation zone. Further downstream, the data of
Lyn and Durao et al. are significantly at variance with
each other and thus it is not possible to determine which
model, if any, predicts the correct recovery. The variation
of velocity upstream of the stagnation point is also
dependent on the blockage ratio as can be seen from the
results for the two domains D1 (Bf ¼ 8:33%) and D2
(Bf ¼ 4:17%) and from Durao et al.’s data (Bf ¼ 14%).

The total fluctuating kinetic energy is plotted in Fig.
6. Upstream of the cylinder, the modified model pro-
duces what appears to be relatively large levels of this
quantity though this does not cause the suppression of
vortex shedding. The results with the LES method
considerably underestimate the total kinetic energy
fluctuations downstream of the cylinder.

The sum of the apparent normal Reynolds stresses
defines the fluctuating kinetic energy kf and it is of
interest to show their individual contributions to kf .
This is shown in Fig. 7. Both the modified and the RNG
models underestimate the axial component of normal

Fig. 11 Circular cylinder (Re =
1.4 �105). Plots of velocity vec-
tors and pressure contours at
minimum CL
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stress. This turns out in the present flow to be much
smaller than the transverse component due, in part, to
the enhancement of the latter by the flapping of the
shear layer [31]. The modified model captures, fairly
accurately, the peak values of the measured transverse
component. The results for the two domains D1 and D2
indicate a small dependence of these stresses on the
blockage effect though the computed results for the two
domains show a shift between the locations of the peak
values which is also present in the measurements of the
axial normal stresses.

Consideration is now turned to the models’ perfor-
mance in the shear layer region, above the top side of the

cylinder, Fig. 8. Plotted there are the results for domain
with the smaller blockage ratio D1 and the two sets of
measurements reported by Lyn [27]. The evolution of the

Fig. 12 Circular cylinder. Time histories of CL and CD

Fig. 13 Circular cylinder. Time history of angle of flow separation

Fig. 14 Circular cylinder. Computed mean drag coefficient and the
Strouhal number
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normal stresses in the streamwise direction shows that
the models do not quite match the high levels found in
the experiments with the modified model results being
overall the better of the two. The models results along
the first half of the face are obviously affected by levels
of turbulent fluctuations transported from the stagna-
tion region. As in the wake region, the measured levels
of the total fluctuations are captured reasonably well by
both models.

Lyn also reported extensive phase-averaged mea-
surements for various parameters and these are used
here to check the models. The period of a shedding cycle
was deduced in both the measurements and the predic-
tions from values of the static pressure at the mid-point
of the top face of the cylinder. The period was then
divided into 20 intervals (thus phase 0 corresponds to
the beginning of the shedding cycle, phase 1 to T=20,
and so on) and phase-averaged results obtained for each
interval. In the computations, these averages were con-
structed from results of 17 complete cycles. Figure 9
presents the predicted and measured distributions of the
phase-averaged axial and vertical components of
velocity along the centreline. The LES results for phase 1
are also shown. These clearly reveal a significant over-
estimation of the recirculation zone size and underesti-
mation of the peak value of cross-stream velocity

downstream of that zone. Figure 10 shows the phase-
averaged results for the axial velocity component at five
lateral cross-sections along the top cylinder’s side and at
three phases: 1, 9 and 17. The long-time-averaged pro-
files are also displayed. Clearly, both the modified and
RNG models predict the time-averaged velocity distri-
butions fairly well and manage, to varying degrees of

Fig. 15 Predicted and measured time–averaged centreline velocity for
circular cylinder at Re = 1.4 �105

Fig. 16 Predicted and measured time–averaged wall pressure
coefficient for circular cylinder (Re = 3.5 �106)

Fig. 17 Effects of the time-step size on the time-averaged distributions
of the pressure coefficient, the streamwise velocity and the fluctuating
kinetic energy
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success, to reproduce most of the features observed in
the measurements. The comparison of the predicted re-
sults for the axial velocity component with experiments
shows generally reasonable agreement except perhaps in
the far wake region.

4.2 Circular Cylinder

Predictions were obtained for Reynolds number in the
range 2:7� 104 – 3:5� 106. Table 4 lists the principal
parameters for these computations; namely the near–
wall distances (expressed as a proportion of D), the
number of cells in contact with the cylinder surface and
the total number of active cells within the flow domain.

An overview of the computed flow field is presented
in Fig. 11 which shows details of the flow field in the
near wake for Re ¼ 1:4� 105. These results were ob-
tained with the modified model at the phase of the
shedding cycle where CL is at minimum. The velocity
vectors show delayed separation and a significantly
narrower wake than was the case for the square cylinder.
The pressure contours form a typical pattern that
characterizes the vortex shedding process.

The time histories of the force coefficients and the
angle of separation are shown in Fig. 12 while that of the

separation angle is shown in Fig. 13. Results are pre-
sented for three values of Re: 2:74� 104, 1:4� 105 and
1:0� 106. The plots show the existence of a well-estab-
lished periodic vortex shedding process. In the case of
subcritical regime (Re � ð3� 4Þ � 105), the angle of
separation varies significantly with the phase, with
maximum values of around 155� being attained. In
comparison with the experimental values of the flow
separation points, the separation is delayed by up to 45�

for the subcritical regime. It is fairly well predicted for
the postcritical regime (Re � 106), where data suggest
hs � 115� 122� [32].

Table 5 summarizes the results for the time-averaged
integral parameters as obtained with the modified and
the RNG models. Overall, the modified model produces
relatively higher values for the force coefficients and

Fig. 18 Square cylinder (Re
= 20,000). Time histories of
the drag (left) and lift (right)
coefficients as calculated by
three different discretisation
schemes

Table 4 Circular cylinder. Parameters of computational grids used

Grid Dnc=D Cells/
cylinder

Cells Re

G0 5:75� 10�3 160 14000 2:7� 104 – 9� 104

G1 3:45� 10�3 192 20736 1:4� 105

G2 1:38� 10�3 240 31800 5:0� 105

G3 5:75� 10�4 288 45936 1:0� 106; 3:5� 106

Table 5 Turbulent flow around a circular cylinder. Predicted
integral parameters using the modified model, and RNG

Re Dt� � 103 Y þ St CD C0D C0L hsð�Þ

Modified model
27 400 3.41 2–17 0.290 1.171 0.134 1.016 126.7
45 000 2.80 2–28 0.287 1.117 0.115 0.999 127.7
90 000 2.80 10–50 0.298 1.001 0.099 0.939 130.2
1:4� 105 2.18 7–42 0.286 1.162 0.178 1.006 124.1
5:0� 105 3.11 8–66 0.263 0.963 0.262 1.019 117.6
1:0� 106 1.56 5–52 0.266 0.792 0.120 0.776 115.9
3:5� 106 2.72 7–176 0.277 0.715 0.103 0.743 119.6

RNG
27 400 3.41 2–18 0.297 0.967 0.094 0.926 125.1
45 000 2.80 2–30 0.305 0.887 0.089 0.888 127.4
90 000 2.80 3–46 0.322 0.738 0.076 0.795 131.6
1:4� 105 1.52 3–52 0.301 0.926 0.101 0.932 125.1
5:0� 105 3.11 5–68 0.294 0.753 0.071 0.740 116.6
1:0� 106 0.78 5–52 0.270 0.650 0.058 0.687 119.6
3:5� 106 1.36 3–169 0.281 0.557 0.048 0.603 122.3
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lower values for the Strouhal number, compared to the
RNG results. The table also shows the time–step size
and the range of Yþ values for the grid nodes closest to
the wall. Various tests have shown that the predictions
of vortex shedding from circular cylinders are quite
sensitive to the location of the near–wall cells. For this
reason, it was appropriate to adopt the smallest practical
values for Dnc=D even though that meant that, at certain

phases of the shedding cycle, the values of Y þ there fell
to below the values for which the logarithmic velocity
profile can be assumed to apply.

The present results for the variation of the mean drag
coefficient and the Strouhal number with Reynolds
number are compared in Fig. 14 with the data and with
results from other numerical studies. As expected, in the
subcritical regime, with the boundary layers remaining
laminar up to the separation point, and transition to
turbulence occurring in the separated shear layer, the
drag coefficient is underpredicted by the present models
which assume the flow to be fully turbulent everywhere.
The same models also overpredict the drag in the critical
regime so that the drag crisis is not reproduced. To do
that would require the use of a low Reynolds number
model to carry the integration through the viscous sub-
layer down to the wall and, also, the incorporation of
the effects of intermittency on the turbulent stresses [33].
Interestingly, the Strouhal number does not exhibit large
variations in the same range of Reynolds number with
its value remaining between 0.25 and 0.30.

Figure 15 shows the predicted and the measured
time–averaged velocities along the centreline down-
stream of the cylinder and of the wall static-pressure
coefficient at Re ¼ 1:4� 105. Both the modified and
the RNG models produce much shorter recirculation
zones than the measurements. Better results were ob-
tained by Franke [30] but only by switching off the
turbulence model upstream of the measured separation
point. However, downstream recovery is poorly pre-
dicted with the same approach.

High turbulence Reynolds-number models are
inherently more suited to the postcritical flow regime
where the boundary layers become turbulent upstream
to the separation points. This expectation is bourne out
in Fig. 16 which displays the time–averaged wall pres-
sure coefficient computed by the modified and the RNG
models at Re ¼ 3:5� 106. There is satisfactory agree-
ment with experiments of Achenbach [32] for the same
Reynolds number.

5 Closure

The central theme of this paper is that turbulence clo-
sures fail to predict the correct behaviour of flows
dominated by vortex shedding because they fail to cap-
ture an essential aspects of the physics of these flows;
namely, the occurrence of direct input of kinetic energy
from the organized mean-flow fluctuations into the
random turbulence motions. That this is important is
amply demonstrated in experiments though no account
of it has hitherto been included in computational stud-
ies. Here, a relatively straightforward proposal is put
forward, based on consideration of spectral energy
transfer rates. Computations were then performed to
check this model for both square and circular cylinders
with their very different mechanisms for flow separation.
Overall, the results were in accord with the

Fig. 19 Sensitivity to discretisation scheme. Time-averaged pressure
coefficients, streamwise velocity and fluctuating kinetic energy
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measurements especially with regards to the r.m.s. val-
ues of the lift and drag coefficients. The proposed model
is robust and economical, being based on an eddy-vis-
cosity closure. Its extension to transitional flows via
incorporation of a model for intermittency is currently
in progress and will be reported upon later.

Appendix: Quantification of numerical uncertainty

All the calculations reported in the Appendix were per-
formed with the modified model. Only the results for
square cylinder are presented; the results for the circular
cylinder were essentially similar.

A Temporal resolution

Predictions were obtained with three very different
time-step sizes in order to quantify the extent of
uncertainty associated with time discretization.
Table 6 lists the time-step sizes, and the associated
results for Strouhal number, mean and r.m.s. values of
the lift and drag coefficients and the time-averaged
length of the recirculation region, Lr. Strouhal number

is clearly the least sensitive parameter to numerical
errors. The r.m.s. value of the lift coefficient is perhaps
a better indicator of dependence on the time-step and
is seen here to first increase and then decrease with
reduction in Dt. A quantitative measure of discretiza-
tion errors may be obtained via a number of estab-
lished techniques the simplest of which is based on
Richardson extrapolation [35]. The values of the
Estimated Fractional Error for the smallest and the
largest (reference) time-step sizes, E1t and E3t respec-
tively, are quoted in the Table. These quantities were
evaluated as specified in [35] and indicate the extent to
which convergence has been attained. Plots of the
variation with the time-step size of the time-averaged
pressure distribution on the cylinder surface and of the
mean velocity and kinetic energy along the centerline
are presented in Fig. 17. Apart from slight differences
in the distribution of fluctuating pressures, the results
for the smaller of the two time steps are virtually
identical.

B Spatial resolution

Extensive testing of discretization schemes in laminar
vortex shedding [19] yielded results that support the use
of the SMART scheme of [22] which is third-order and
bounded. Here, we contrast this scheme’s performance
with that of two others: MINMOD [34] and QUICK
[23]. The grid used was D1 and the time-step size was
Dt� ¼ 0:0078. The time histories of the drag and lift
coefficients obtained with these schemes are displayed in
Fig. 18. The QUICK scheme, the formally most accurate
of the three, shows larger cycle-to-cycle oscillations. The
predicted mean-flow parameters are given in Table 7.

Table 6 Square cylinder. Results for three time-step sizes obtained
with the D1 grid and the SMART scheme

DtðsÞ Dt� � 103 St CD C0D C0L CL � 103 Lr=H

0.025 7.77 0.1414 2.199 0.186 1.386 )8.0 0.654
0.015 4.66 0.1435 2.226 0.201 1.398 )7.9 0.644
0.0075 2.33 0.1440 2.253 0.207 1.376 )16.4 0.577
E3t% )2.41 )3.20 )13.53 0.97 ) 17.8
E1t% )0.35 )1.12 )2.89 1.60 ) 11.6

Fig. 20 Square cylinder (Re
= 20000). Time histories of
CL and CD as obtained with
three different grids
(SMART scheme and
Dt� ¼ 0:0078)
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The MINMOD scheme, which is the most diffusive of
the three, predicts the highest value for Strouhal num-
ber; a similar outcome to what was obtained for the
laminar flow cases. The differences between the SMART
and QUICK schemes are consistent with the activation
of the flux limiters to prevent unboundedness. Figure 19
compares the results for the surface pressure coefficient
and the centerline values of mean velocity and kinetic

energy as obtained with the different schemes. The ab-
sence of very large differences suggest that the results are
not too far from being independent of the choice of
discretization scheme.

Further tests for grid convergence were performed by
obtaining results with three different grids (Table 2).
When matching the solutions to the log-law, the cell size
in the direction normal to the wall is limited by the non-

Fig. 21 Influence of domain
size on time-averaged pres-
sure coefficient, streamwise
velocity and fluctuating
kinetic energy

Table 7 Square cylinder (Re ¼
20000). Sensitivity to discretisa-
tion scheme

Scheme St CD C0D C0L CL � 104 Lr=H

SMART (S) 0.1414 2.199 0.186 1.386 )80 0.654
MINMOD (M) 0.1425 2.118 0.163 1.270 )2.4 0.850
QUICK (Q) 0.1396 2.023 0.152 1.176 )5.5 0.657
(M)S)/S, % 0.78 )3.68 )12.37 )8.37 ) 29.9
(Q)S)/S, % )1.27 )8.00 )18.27 )15.15 ) 0.5

Table 8 Square cylinder
(Re ¼ 20000). Results for var-
ious grids obtained by (a)
modified and (b) RNG models
using Dt� ¼ 0:0078 and the
SMART scheme

Grid St CD C0D C0L CL � 104 Lr=H

(a) Modified model
D0 ) 106� 88 (C) 0.1412 1.972 0.110 1.009 )7.9 0.912
D1 ) 139� 122ðaÞ (A) 0.1414 2.199 0.186 1.386 )80.0 0.654
D2 ) 139� 122ðbÞ (B) 0.1413 2.093 0.157 1.202 þ6.9 0.801
(B)A)/A, % )0.07 )4.8 )15.6 )13.3 ) 22.5
(C)A)/A, % )0.14 )10.3 )40.9 )27.2 ) 39.4
(b) RNG
D1 ) 139� 122ðaÞ (A) 0.1387 2.064 0.092 1.369 )7.1 0.590
D2 ) 139� 122ðbÞ (B) 0.1207 1.722 0.082 1.048 )3.2 0.540
(B)A)/A, % )12.98 )16.6 )10.9 )23.45 ) )8.5

Table 9 Square cylinder.
Influence of domain size Domain-[Grid size] Bf (%) St CD C0D � 103 C0L CL � 104 Lr=H

D1� 139� 122ðaÞ 4.17 0.1414 2.199 0.186 1.386 80 0.654
D2� 114� 92 8.33 0.1442 2.239 0.186 1.247 )4.8 0.846
(D2)D1)/D1 (%) 1.9 1.8 0.0 )10.0 ) 29.4
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dimensional distance Y þ which is constrained not to fall
below � 11:6. Grids D1� 139� 122ðaÞ and D1� 139�
122ðbÞ have similar expansion factors but different
near-wall distances. The coarsest grid D0� 106� 88 has
a greater expansion factor but the same near-wall dis-
tances as the grid D1� 139� 122ðbÞ. The time histories
of the drag and lift coefficients, calculated by using these
grids are presented in Fig. 20. Table 8 shows the results
for the mean-flow parameters where it can again be seen
that the Strouhal number is the least sensitive parameter
to grid resolution – though not for the RNG model.
While the modified model shows acceptable sensitivity
to the wall distances, the RNG model yields accurate
results only when Y þ is close to the lower limit of �11.6.
The mean value of the drag coefficient obtained with this
model is seen to be particularly sensitive to the location
of the grid node closest to the wall.

C Size of solution domain

The placement of the lateral boundaries to the compu-
tational domain determines the extent to which blockage
effects influence the solutions. To demonstrate the
importance of these effects, grids were generated for two
domains D1 and D2, Table 2. The results for the mean-
flow parameters are given in Table 12. These were ob-
tained with the SMART scheme, using Dt� ¼ 0:0078 and
with Dnc=H ¼ 0:02. The relative differences between the
calculated values are also included. With exception of
the r.m.s. lift coefficient, all other predicted parameters
increase for the smaller domain D2 where the blockage
effects are greatest. This trend is also apparent in the
distributions of the mean and r.m.s. values of the
pressure coefficient shown in Fig. 21.
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