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Abstract The essential feature in arbitrary Lagrangian–Eule-
rian (ALE) based finite element approaches is the additional
requirement to consider flow effects of the materials and the
solution variables through the computational domain. These
flow effects are commonly known as advective effects. The
present paper examines different advection strategies for the
application of the ALE finite element method in a finite defor-
mation solid mechanics framework, where especially mi-
cromechanical problems are referred to. The global solution
algorithm is based on the well-known fractional step method
that provides an operator splitting approach for the solution
of the coupled ALE equations. Distinguishing the so-called
single-material and the multi-material ALE method, different
advection schemes based on volume- and material-associated
advection procedures are required. For the latter case, the
material interfaces are not resolved explicitly by the finite
element mesh. Instead a volume-of-fluid interface tracking
approach in terms of the volume fractions of the different
material phases is applied.

Keywords Arbitrary Lagrangian–Eulerian · Finite defor-
mations · Finite elementmethod · Volume-of-fluid interface
reconstruction · Advection schemes

1 Introduction

Conventional finite element procedures in a solid-mechanics
framework are usually based on a purely Lagrangian view
of the deformation, where the finite element mesh remains
attached to the material points while the material deforms
according to the governing equations. The advantages of this
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approach are obvious: material points are explicitly tracked
during the proceeding deformation process, and the history
of these points can be accessed directly. Thus the handling of
history variables, necessary to describe e.g. inelastic effects,
becomes straightforward. Furthermore, if a domain with mul-
tiple material properties is analyzed, material boundaries are
resolved explicitly by the finite element edges and are thus
considered very accurately in dependence of the local mesh
size. However, a considerable drawback of these methods
appears, if large material deformations have to be taken into
account. Deforming elements lead to a deterioration of the
solution and in the limit potentially to an inversion of single
elements. As a consequence, the analysis terminates due to
negative Jacobians and cannot be continued (cf. e.g. [8] and
references therein).

In this case, a remeshing procedure becomes necessary,
where in general a new mesh in the deformed configura-
tion is generated and the current solution state is transferred
to this new mesh using appropriate transfer procedures. An
efficient and continuum-mechanical consistent formulation
can be achieved by the arbitrary Lagrangian–Eulerian (ALE)
method that introduces additional flux terms into the govern-
ing equations (see e.g. [22, 42] or [36]). Essential in this case
is a constant mesh topology, where only the mesh nodes are
relocated to obtain a homogeneous and undistorted mesh. The
resulting partial differential equations represent a set of cou-
pled equations for the material velocity and the relative veloc-
ity between the mesh and the material, which is also known
as the convective velocity. If the material deformations and
the convective velocity are discretized simultaneously using
a conventional (Bubnov-) Galerkin-type approach, various
problems concerning the stability and robustness of the finite
element solution can occur. This requires the implementa-
tion of special upwinding procedures, like the streamline up-
wind Petrov-Galerkin (SUPG) or the Galerkin least squares
method (see e.g. [8, 17, 37, 43] or [62] for a review of these
methods). Another problem is the occurrence of the second
spatial derivatives of the primary variable in the advection
term. In case of linear ansatz spaces for the displacements and
the velocities, these gradients cannot be computed properly
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on the element level and a least-squares extrapolation to the
nodes, based on a C0-continuous distribution of the primary
variable or a mixed formulation becomes necessary. Note that
these approaches can lead to a considerably more complex
implementation of the global algorithm.

This motivates the use of a computational split, where
the coupled set of equations is decomposed into a Lagrang-
ian step and a transport or advection step. In the first step, all
advective effects, i.e. flow effects, are neglected and the mesh
deforms with the material, while the second step explicitly
accounts for the relative motion of the finite element mesh
with respect to the material. This computational split is usu-
ally referred to as fractional-step or operator-split approach
and can be found in various publications in the ALE litera-
ture (see e.g. [9, 13, 20] or [56]). The constant mesh topol-
ogy enables the determination of material fluxes and fluxes of
the solution variables across the edges of adjacent elements,
where the transport process can now be performed by solv-
ing the linear, homogeneous advection equation. Indeed, this
is a common problem in the fluid dynamics community and
special purpose algorithms can be applied for the solution of
the transport problem, which will be the main topic of this
paper.

A further point of discussion is the consideration of mate-
rial boundaries in a domain with multiple material properties
as it appears for instance in micromechanical observations of
heterogeneous materials. In an ALE framework usually two
different strategies are conceivable. Within a single-mate-
rial ALE (SALE) approach, the material interfaces are accu-
rately resolved by the element edges in a Lagrangian manner
throughout the whole deformation process (see e.g. [9, 27] or
[57]), whereas in a multi-material ALE (MMALE) approach,
the different materials are allowed to “flow” freely through
the computational domain without persistent connection to
the finite element mesh ([10] or [49]). This implies that also
the material interfaces are allowed to change their position
relative to the elements and therefore so-called mixed ele-
ments with multiple material properties have to be taken into
account. The tracking of the material deformations is per-
formed by the volume-of-fluid method (VOF) ([32]), where
different material occurrences are considered by their respec-
tive volume fractions on the element level. This requires the
inclusion of special integration algorithms for the govern-
ing finite element equations. In this framework, a distinction
between volume- and material-associated quantities has to
be introduced and special advection procedures have to be
incorporated for both kinds of variables. In particular, mate-
rial-associated quantities require an advection process that is
able to account for the distribution of the different material
phases to consider the conservation properties of the solution
variables with respect to the associated material phase.

The following paper mainly refers to problems in a finite
deformation, micromechanical framework, where multiple
material phases are gathered together in a so-called repre-
sentative volume element (RVE). Furthermore, the matrix or
void material generally fills the space between the different
inclusions and a coherent material structure is considered.

This assumption allows the application of the principles of
standard continuum mechanics to the heterogeneous mate-
rial. The application of special boundary conditions, consis-
tent with the micromechanical assumptions, finally leads to
large material deformations of the internal microstructure.
Note that in the following only structured meshes are consid-
ered, where a logical mesh direction can be defined, mainly
in the direction of the local element coordinate axes. Further
informations about these micromechanical assumptions can
for instance be found in [1] or [28].

The outline of this paper is as follows. Section 2 briefly
refers to the basic continuum mechanical equations in the
ALE method and the integration into a finite element frame-
work, including the description of the global solution algo-
rithm and the special features of the multi-material version
of the ALE method. Section 3 gives some more informa-
tions about the advection process, the basic equations and
some fundamental requirements for the solution scheme of
the advection process as well as a closer discussion of the
distinction between volume- and material-associated quan-
tities. In Sect. 4 and 5 finally, the advection algorithms for
both types of quantities are described and respective numer-
ical examples are given. The paper will be finished with a
summary in Sect. 6.

2 Arbitrary Lagrangian–Eulerian finite element method

The description of the motion within an ALE framework is
based on an extension of the classical theory of large deforma-
tion, non-linear continuum mechanics ([45, 65]). Since this
extension of the kinematical relations and the derivation of
the governing equations are nowadays standard and can be
found in various publications and textbooks, the following
section will only give a short overview of the most important
aspects concerning the advection process. Further details can
be found in e.g. [8, 10, 22, 33, 34, 57] or [42].

2.1 ALE-kinematical description

In a Lagrangian description of the motion, the deformation of
a material point X in n spatial dimensions is given in terms
of the mapping function ϕ(X, t) : Rn × R → Rn that in
general is a function of time t and the initial position X

x(X, t) = ϕ(X, t). (1)

Here the initial configuration �0 with associated coordinates
X ∈ Rn and the spatial configuration � with coordinates x ∈
Rn describe the undeformed and the deformed configuration,
respectively. However, in an ALE point of view, additionally
an independent referential configuration �̂ with time depen-
dent coordinates χ(t) ∈ Rn is introduced. In a discrete finite
element sense, this configuration usually coincides with the
position of the finite element mesh nodes. The total deforma-
tion map Eq. (1) can subsequently be described with respect
to these intermediate coordinates. Therefore, two time vary-
ing, generic mapping functions �(χ(t), t) : Rn ×R→ Rn
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and �(χ(t), t) : Rn ×R → Rn are introduced that define
the relations between these different configurations

�
(
χ , t

) : χ(t)→ X
(
χ , t

)
,

�
(
χ , t

) : χ(t)→ x
(
χ , t

)
,

(2)

i.e. these functions map referential points χ(t) in the referen-
tial configuration �̂, to initial points X(χ , t), defined in the
initial configuration �0 = �(�̂) and spatial points x(χ , t),
defined in the spatial configuration � = �(�̂) (cf. Fig. 1).
The total deformation map Eq. (1) can then be written as

x = ϕ(X, t) = �(
χ , t

) = �(
�−1(X(χ , t), t), t

)

→ ϕ = � ◦�−1.
(3)

The fundamental difference to a Lagrangian description is
that the initial configuration X(χ , t) now becomes a func-
tion of time and the association between material particles
and points in the referential configuration, i.e. points, acces-
sible in the finite element mesh, can change. This leads to the
characteristic non-Lagrangian nature of the ALE description
where additional flow effects of the material phases and the
solution variables through the computational domain have to
be taken into account.

2.2 General time derivatives

The explicit time dependency of the referential coordinates
χ(t) leads to an additional term in the material time deriv-
ative of a general space and time dependent scalar quantity
φ(χ , t) that can be given as

φ̇|X = dφ(χ , t)

dt
= ∂φ(χ , t)

∂t

∣∣
∣∣
χ

+ grad φ(χ , t) · c. (4)

˙(•)|X = d(•)
dt refers to the material time derivative at fixed

initial coordinates X, while ˙(•)|χ holds the referential coor-
dinates fixed and is thus a local time derivative of the quan-
tity (•) with respect to χ . In the above equation, the time
derivative has been decomposed into a local derivative at

Fig. 1 Mapping relations between the three ALE configurations

fixed referential coordinates, describing the change of φ with
respect to this referential configuration, and in a convective
part that considers the relative motion of the referential con-
figuration with respect to the initial configuration. The con-
vective velocity

c = v − v̂ with v = ∂x
∂t

∣
∣∣
∣

X

and v̂ = ∂x
∂t

∣
∣∣
∣
χ

, (5)

gives the relative motion of the velocity of the material parti-
cles v to the mesh velocity v̂, i.e. the velocity of the material
through the finite element mesh and the convective derivative
thus denotes a flux of the variable φ.

2.3 Governing equations and variational form

The set of governing equations, necessary for the implemen-
tation of a finite deformation finite element analysis, are given
by the balance of mass, momentum and energy. Note that in
contrast to a Lagrangian approach, where the balance of mass
is usually fulfilled by construction, the density has to be bal-
anced explicitly to account for the conservation of mass dur-
ing the non-Lagrangian deformation. If furthermore inelastic
effects, like plasticity, viscoelasticity or damage have to be
accounted for, additional evolution equations for the internal
variables are to be considered. These equations can be written
in a general form, similar to Eq. (4)

dφ(x, t)

dt
= S(x, t)

→ ∂φ(x, t)

∂t

∣
∣∣
∣
χ

+ grad φ(x, t) · c = S(x, t),
(6)

where the vector φ consists of the scalar quantities �, vi , e
and αi

φ = {
�, vi , e, αi

}T (7)

for the material density �, the components of the material
velocity vi , the internal energy e and a set of n history vari-
ables αi (i = 1, . . . , n). The general vector S denotes a
source term that describes the local changes of the quantities
φ and is derived from the governing equations.

In a finite element analysis, the coupled set of non-linear
field equations (6) is transferred into a variational form by
multiplication with a test function δφ ∈ V̄φ and integration
over the computational domain B
∫

B
δφ · (φ̇|χ(x, t)+ grad φ(x, t) · c) dv =

(8)∫

B
δφ · S(x, t) dv.

The function space Vφ is associated with the function φ,
while the test function space V̄φ is associated with the test
function δφ and fulfills the homogeneous Dirichlet bound-
ary conditions. In a Bubnov–Galerkin approach, δφ ∈ V̄φ is
usually expected to fulfill the same smoothness requirements
as the solution variable φ ∈ Vφ itself.
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2.4 Global solution approach for the coupled ALE
equations

Equations (6) represents a coupled set of equations for the
material velocity v and the convective velocity c, or their
discrete displacement increment counterparts 	u and 	t c,
respectively. The convective velocity is usually prescribed by
an appropriate mesh motion scheme that minimizes the mesh
distortions and retains a uniform mesh geometry throughout
the deformation process. A summary of such mesh motion
schemes can for instance be found in [5, 38, 49] or [25] and
should not be referred here in more detail. The coupled equa-
tions describe two different phenomena. First the motion of
the material is prescribed by the Lagrangian governing equa-
tions, while simultaneously the relocation of the mesh nodes
leads to a flux of the material and the current solution state
through the mesh. The fractional-step or operator-split solu-
tion approach (see e.g. [20, 61] or [10]) directly considers
these two phenomena by dividing the coupled equation into
two subproblems. The first subproblem considers a purely
Lagrangian approach and determines the physical material
deformations according to the balance laws and the constit-
utive equations. Neglecting the convective effects, Eq. (6)2
reduces to

∂φ(x, t)

∂t

∣∣
∣∣
χ

= S(x, t). (9)

To account for the relative motion of the mesh configuration
with respect to the material, an additional transport step is
performed afterwards. Here first the mesh nodes are relo-
cated to their new position and subsequently a transport of
the solution is performed that finally results in the solution
of the homogeneous, linear advection equation

∂φ(x, t)

∂t

∣
∣∣
∣
χ

+ grad φ(x, t) · c = 0. (10)

Note that this approach can be seen as an explicit solution pro-
cedure where no direct interactions between both steps are
considered. Indeed the operator-split method enables the use
of special-purpose solution algorithms for both parts. For the
Lagrangian step [Eq. (9)], standard finite element procedures
can be applied with slight modifications, while the advection
step can be implemented very efficiently using the exten-
sive experiences of the fluid dynamics community, where
the advection equation is a common problem to solve. The
remainder of the paper will mainly deal with an efficient and
accurate implementation of this transport step.

2.5 Single- and multi-material ALE methods

Another important decision concerning the implementation
of the ALE approach and the advection step is the handling
of the material boundaries in a computational domain with
multiple materials. Generally, two approaches are conceiv-
able (cf. Fig. 2). In the first approach, the material boundaries
are resolved directly by the finite element mesh, where the

Fig. 2 2D illustration of the basic idea of the single-material ALE ap-
proach (SALE – top) and the multi-material ALE approach (MMALE
– bottom) using a micromechanical, single inclusion system

mesh nodes remain aligned to the boundaries throughout the
whole deformation process in a Lagrangian sense. There-
fore, each element consists of only one type of material and
no material fluxes over element boundaries have to be con-
sidered during the advection process. This approach is also
denoted as the SALE method, is relatively easy to implement
and represents the most common strategy in the recent ALE
literature (see e.g. [3, 57] or [6], amongst others).

However this approach restricts the mesh motion scheme
considerably and for some applications, e.g. large deforma-
tion micromechanical problems, it is advantageous to apply
so-called MMALE approaches, where the material bound-
aries can run freely through the finite element discretization
(cf. e.g. [10, 12, 49]). This implies that special elements have
to be incorporated that are able to deal with multiple material
properties. In the remainder, these elements will be referred
to as mixed elements and the material occurrences will be
accounted for using the VOF [32], where each material phase
k is considered only by its element volume fraction f k ∈ R,
defined by
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f k = 1

V

∫

�k
dvk = V k

V

and
∑

k

V k = V,
∑

k

f k = 1.

(11)

�k represents the portion of the elements region �, associ-
ated with material k, while V and V k are the total element
volume and the volume of material k, respectively. Material k
completely fills the element if f k = 1.0, adopts only a partial
element volume if 0.0 < f k < 1.0 and is not present within
the element if f k = 0.0. In the VOF approach, effective ele-
ment properties are computed by applying so-called mixture
theories on the element level, based on averaging theorems
for the element variables (see e.g. [10] or [12]). In the discrete
case, these effective element properties φ̄ are computed as a
weighted sum of the different material-associated properties
φk

φ̄ =
∑

k

φk f k

e.g. σ̄ =
∑

k

σ k f k or �̄ =
∑

k

�k f k,
(12)

for the averaged Cauchy-stresses σ̄ and the averaged material
density �̄, respectively. Subsequently, these effective proper-
ties are inserted into the governing equations to compute the
finite element matrices and vectors. However, one restriction
in this approach is the assumption of a uniform distribution
of the solution variables, which leads to an element-wise
spatially constant gradient and allows the application of the
element mixture theories. This uniform distribution can for
instance be achieved by a reduced integration scheme of the
element integrals and linear ansatz spaces for the displace-
ments and velocities, where the element matrices are eval-
uated only in the element center. This reduced integration
scheme leads to a rank deficiency of the element stiffness ma-
trix and special stabilization techniques have to be applied,
which is indeed not a topic of this work and the reader is
referred to the corresponding literature (e.g. [7, 53] or [14]).

2.6 Finite element discretization

The governing equations in the variational form, given by Eq.
(8), specify a coupled system of partial differential equations.

Fig. 3 Two- and three-dimensional finite element with node, edge and
surface definitions

Since a closed-form solution is usually not applicable, a spa-
tial discretization with finite elements is performed, where
the continuous body B is discretized by a set of ne non-
overlapping finite elements �e ⊂ Bh . Thus Bh is a spatial
approximation of the physical body B. Similarly, the physical
boundary ∂B is approximated by the discrete boundary ∂Bh

of the finite element discretization that is a subset of the union
of all element boundaries ∂�e. Finally, the boundary of one
finite element can be separated into n f element surfaces 
s

B ≈ Bh =
ne⋃

e=1

�e resp.

∂B ≈ ∂Bh ⊂
ne⋃

e=1

∂�e and ∂�e =
n f⋃

s=1


s .

(13)

The following derivations should be restricted to 2D quad-
rilateral and 3D hexahedral elements with bi- and tri-linear
ansatz spaces, respectively. Generally these elements consist
of four vertices and four straight edges in the two-dimen-
sional case, whereas the three dimensional elements consist
of eight vertices, twelve straight edges and six ruled surfaces
that do not necessarily lie in a plane if the element is arbi-
trarily distorted (cf. Fig. 3).

As mentioned before, only linear shape functions will be
considered, where in the isoparametric concept the spatial
coordinates xe and the displacement ue and velocity ve are
likewise interpolated using the same shape functions NI(ξ),
defined for each element node I

xe =
∑

I

NI(ξ) xI and

ue =
∑

I

NI(ξ) uI, resp. ve =
∑

I

NI(ξ) vI.
(14)

xI denote the nodal coordinates, while uI and vI refer to the
nodal displacements and velocities, respectively.

In the following derivations, the volume- and surface inte-
grals are required. To obtain an efficient approach, especially
for the three dimensional hexahedral elements, analytic solu-
tions rather than numerical approximations are preferred.
These can be derived using the divergence theorem div(φ ψ)
= grad φ ·ψ +φ div ψ for a vector-valued function ψ ∈ Rn

and a scalar φ ∈ R. Integrating over the element volume and
choosing φ = 1 and ψ = x gives
∫

�e

div x dv =
∫

∂�e

x · n da =
ns∑

s=1

∫


s

x · ns d
s, (15)

with div x = 2 for the two dimensional and div x = 3 for the
three dimensional case. The integral over the element surface
is divided into the integrals over each surface s of the element
with outward unit normal vector ns . For the two dimensional
case, the surface integration is trivial and can be performed
by choosing the center point xs of each polygon edge with
length ls , multiplied with the constant normal vector ns

A = 1

2

∫


s

x · ns d
s = 1

2
xs ns ls . (16)
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xs = 1
2

(
xs

1 + xs
2

)
gives the coordinates of the center point of

the element edge, while xs
1 and xs

2 are now the vectors of the
local vertices, defining the element edge. The normal vector
can be given directly as

ns = 1

ls

(
ys

2 − ys
1−xs

2 + xs
1

)
(17)

with edge length ls = ||xs
2−xs

1||2. The total two-dimensional
element volume, defined by n f edges, can then be written as

Ae = 1

2

n f∑

s=1

(
xs

1 ys
2 − xs

2 ys
1

)
. (18)

For the three-dimensional case, the solution of Eq. (15) is
much more complicated (cf. [24] or [39]). It is based on the
parameterization of each ruled hexahedral surface s using the
tri-linear shape functions that reduce to bi-linear functions on
the surface in terms of the local coordinates ξ and η

xs =
∑

I

NI(ξ, η) xs
I . (19)

Again, xs
I are the vertices of the ruled surface s (cf. Fig. 4).

To simplify the equations, the superscript s will be omitted
for the coordinates of the considered surface. The surface
element in the local ξ − η plane can then be given as

d	s = ns d
s =
(

∂x
∂ξ
× ∂x

∂η

)
dξ dη. (20)

Inserting the parameterization Eq. (19) into the above form
and integrating over the local coordinates −1 ≤ ξ ≤ 1 and
−1 ≤ η ≤ 1, the surface element can be analytically inte-
grated and we obtain
∫


s

d	s = 1

2
k, (21)

with k = (x3 − x1) × (x4 − x2). Subsequently, using Eq.
(15), the element volume can be given as

V e = 1

6

n f∑

s=1

x0 · k and x0 = 1

n p

n p∑

i=1

xI, (22)

where x0 denotes the center point of the surface s at ξ = 0,
n f the number of element surfaces and n p the number of
surface nodes.

Fig. 4 Ruled surface element and surface parameterizations
(ξ, η)/(α, β)

For the following three-dimensional observations, the
introduction of an alternative parameterization (α, β)∈ [0, 1]
(cf. Fig. 4) is advantageous, which is indeed equivalent to
Eq. (19)

x = x1 + α (x2 − x1)+ β (x4 − x1)+ α β d. (23)

The vector d = x1−x2+x3−x4 characterizes the deviation
of the surface from the plain parallelogram (d = 0). Intro-
ducing the cross-vectors Xi , defined for each vertex of the
surface element

Xi = (x′′′i − xi )× (xi − x′i )
with x′1 = x2, x′2 = x3 and x′′′1 = x4,

(24)

with the successor and predecessor nodes x′i and x′′′i , respec-
tively, the surface element can also be given as

d	s = [X1 + α (X3 − X4)+ β (X3 − X2)] dα dβ. (25)

Performing the integration over the parameters α and β the
same results are obtained as in Eq. (22). Incidentally, the
determination of the advection volumes in Chapt. 4.3 requires
an efficient evaluation of surface integrals of the form

F s =
∫


s

c · n da, (26)

where c is the vector-valued convective velocity and n is the
outward unit normal to the surface s. Using the above results,
the integral can also be written as

F s = 1

2
c0 · k and c0 = 1

n p

n p∑

i=1

ci , (27)

with the convective velocity c0, evaluated in the center of the
surface s.

3 The advection problem

Physically, the advection process describes a transport of the
material and the current solution state through the mesh along
the streamlines of the advective flow, provided by the con-
vective velocity c. In an ALE finite element framework this
corresponds to a relocation of the finite element nodes by
the mesh motion scheme, while the material is held fixed in
space. Since an exact solution generally cannot be obtained
for an arbitrary distribution of the solution variables in a dis-
crete domain, again we seek a numerical solution procedure
that is able to provide a sufficient accurate solution for the
advection problem

In the following sections, we consider different solution
procedures for the scalar advection problem, where φ in
Eq. (10) is exchanged by a general scalar-valued quantity
φ. Here, several approaches have been published in the last
decades, mainly in the fluid dynamics community. They are
based on different ideas, where for example finite element,
finite difference and finite volume approaches are applied.
In the remainder, solely the latter two approaches should be
referred to.



Advection approaches for SALE and MMALE Procedures 159

3.1 Basic equations for the advection problem

Mathematically, the transport process is entirely described
by the solution of the linear, homogeneous advection equa-
tion (10) that can be written for a general space and time
dependent scalar field φ(x, t) as follows

∂φ

∂t

∣∣
∣∣
χ

+ grad φ · c = 0 with φ(x, t0) = φ0(x). (28)

The latter equation specifies a set of initial conditions in form
of an initial distribution φ0 of the unknown field φ at a spe-
cific reference time t = t0 which is provided by the preceding
Lagrangian step in an ALE finite element method. The exact
solution of the above problem can be given as

φ(x, t) = φ(x − t c, t), (29)

where the lines (x − t c) are called characteristics and φ is
constant along these lines.

For the derivation of efficient solution procedures it is
often advantageous to rewrite Eq. (28) in a more general rep-
resentation using the conservative form, also known as the
Euler equation for the scalar quantity φ

∂φ

∂t

∣
∣∣∣
χ

+ div f (φ) = 0 with φ(x, t0) = φ0(x). (30)

f (φ) now describes the flux of the variable φ with the con-
vective velocity c which is generally a non-linear function of
φ, whereas in its simplest case, f (φ) is linear in φ and we
obtain the linear advection equation with

f (φ) = φ c. (31)

Subsequently, Eq. (30) can also be rewritten as

∂φ

∂t

∣∣
∣∣
χ

+ grad φ · c = −φ div c. (32)

Comparing the above form with Eq. (28)1, the divergence of
the convective velocity must vanish to conform, i.e. the con-
vective flow has to be incompressible. This certainly makes
sense, since during the advection process, the material re-
mains fixed in space and only the mesh nodes are relocated
to their new positions. No deformation of the material oc-
curs and Eq. (30) reduces to Eq. (28). As a consequence the
advection step can be performed by solving either of these
two equations.

3.2 General requirements to the advection scheme

Unfortunately, none of the existing numerical approaches
provide a solution scheme that solves the advection equa-
tion “exactly”, in a numerical sense. Therefore, restrictions
concerning the quality of the solution have to be accepted. A
proper classification of these schemes can be obtained, con-
sidering some basic requirements to the solution algorithm.
The most important are connected to questions of efficiency,
stability and the capability to retain the original shape of the
solution distribution throughout the advection process. More
extensive details can be found in e.g. [9, 26, 47] or [23].

– Conservatism of the advection scheme
In the Lagrangian solution step, some of the solution vari-
ables, like the density, the internal energy and the momen-
tum are governed by conservation equations that conserve
the quantities during the deformation process. To main-
tain the magnitudes of these solution variables over the
transport step, the advection schemes are required to be
conservative in the sense that the value of the solution
variable, integrated over the domain �, remains constant
throughout the advection process, i.e.

�+ :=
∫

�+
φ+ dv =

∫

�−
φ− dv =: �−, (33)

where φ− and φ+ denote the values of the scalar-valued
and volume-specific solution variable φ before and after
the advection step, respectively. Furthermore it is highly
recommended that also those solution variables that are
not governed by a conservation law directly, like strains
and stresses fulfill the conservation property.

– Efficiency, stability and robustness of the advection
scheme
Within a finite element framework, the domain of interest
is decomposed into single elements. Therefore the advec-
tive flow of the solution variables can be replaced by dis-
crete fluxes over the element boundaries, i.e. by determin-
ing the amount of the solution variables and the material,
transported in the downstream direction between adjacent
elements within a certain time interval. The computation
of the flux has only local support and is thus restricted to
a small patch of adjacent elements in the direction of the
flow. Interactions between non-adjacent elements should
be excluded to limit the numerical effort and the accuracy
of the advection process. Thus, explicit solution schemes
in time can be preferred with respect to implicit schemes.
This certainly reduces the numerical effort and influences
the efficiency of the numerical scheme considerably. How-
ever, explicit schemes are only conditional stable and re-
quire the fulfillment of the Courant–Friedrich–Levy (CFL)
condition

Cr := |c|	t

h
≤ 1, (34)

where h denotes a characteristic element size and Cr the
Courant number. This criterion implies that the material
is not allowed to pass an element within one advection
step and is thus consistent with the local view of the flux
computation.

– Sufficient order of the approximation
Another important feature is the approximation order or
the consistency error that measures the error arising from
the numerical approximation of the original partial differ-
ential equation and indicates the degree of the polynomial
that is advected by the scheme without error. The error is
estimated independently for the time and space discreti-
zation, usually by calculating the difference between the
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exact and the approximated solution using a Taylor series
expansion

e = φex. − φappr.. (35)

In [26] extensive analyses of different schemes are per-
formed. While the temporal approximation of explicit
schemes is limited to only first-order, the spatial approxi-
mation accuracy of the advection scheme should at least be
of second order, to obtain an accurate solution algorithm.

– Monotonicity of the advection scheme
The requirement for monotonicity of the advection sche-
me demands that the value of the advected variable φ+
remains within the solution range of the original value φ−.
This avoids over- and undershots of the solution that are
often produced in common advection schemes. It is obvi-
ous that non-monotonic solution schemes are not advis-
able in advection schemes for finite element procedures,
since variables, required to retain within a specific solution
range, can violate this requirement. This, for instance, can
lead to unphysical negative deformation gradients, densi-
ties or energies.

– Control of the numerical diffusion of the advection
scheme
Most advection schemes, especially the classical first-order
methods, show highly numerically diffusive properties, i.e.
the solution value decreases and widens in the flow direc-
tion or perpendicular to the streamlines (crosswind diffu-
sion). The effect of numerical diffusion or numerical dissi-
pation is independent of the above mentioned criteria, i.e.
a stable and conservative scheme can be extremely diffu-
sive. Physically, the numerical diffusion is described by
terms containing the second-order spatial derivative of the
advected variable φ. Especially within the linear advection
equation, terms containing the second derivative with re-
spect to time can be transformed into pure diffusion terms

∂φ

∂t
= −∂φ

∂x
· c → ∂2φ

∂ t2 = c
∂2φ

∂x2 c. (36)

This observation suggests that almost all explicit advection
schemes are expected to be numerically diffusive, since
the second derivative of φ with respect to the time occurs
in the consistency error. In particular, it can be observed
that in case of first-order accurate advection schemes, the
second-order spatial derivatives lead to large numerically
dissipative results.

Concerning advection approaches, applicable for an ALE
finite element simulation, next to the mandatory stability,
the two most important properties are probably the require-
ment for conservatism and monotonicity. These properties
are responsible for a physically meaningful solution that ful-
fills the conservation requirements of the governing equa-
tions and thus retains the total value of the solution variables
throughout the advection process. The effect of the numeri-
cal diffusion is important to consider if the Courant number
exceeds a critical value. Since the stability of the scheme
cannot be guaranteed any more, the transport step has to be

splitted into multiple advection steps, based on intermediate
mesh configurations. In such case, an advection scheme with
only a small amount of diffusion is preferable to retain the
spatial shape of the solution variable properly.

3.3 Volume- and material-associated quantities

In a conventional Lagrangian-based finite element frame-
work or a SALE analysis, the material boundaries are prop-
erly resolved by the finite element mesh during the whole
deformation process. Therefore no fluxes of different mate-
rial phases across element boundaries have to be considered
for. This implies that only homogeneous materials and solu-
tion variables have to be dealt with in the advection step, the
material distribution does not have to be taken into account
and all solution quantities can be treated as volume-associ-
ated variables.

However, in a MMALE framework materials are allowed
to flow arbitrarily through the finite element discretization
and thus fluxes of different material phases can occur over
certain element boundaries. This requests the distinction be-
tween two different kinds of variables. The first kind is again
not associated with a certain material phase and is therefore
independent of the material distribution. Here, mostly elastic
strain-like variables, like the deformation gradient F or the
right and left Cauchy-Green tensors C and b, respectively,
are referred to. On the contrary, material-associated quanti-
ties are directly associated with a certain material phase k
and thus the material distribution within a mixed element be-
comes very important in the advection step. Examples for
those quantities are e.g. the stresses σ k , the density �k , the
volume fraction f k or special, material-associated internal
variables (e.g. plastic strains). To account for the material-
associated conservation properties, the amount of material,
and thus of the solution variable, transported between adja-
cent elements has to be determined. This leads to a different
treatment of volume- and material-associated quantities and
two different advection algorithms will be considered in the
following that are both based on the solution of the conser-
vation form of the advection problem, given in Eq. (30).

In the following two sections, first the advection process
for purely volume-associated variables is reviewed, where
the material distribution is not relevant. Subsequently, the
advection process for the material-associated variables is pre-
sented, based on the VOF as a special algorithm to trace the
motion of the materials and their interfaces.

4 Advecting volume-associated quantities

As pointed out before, volume-associated variables are vari-
ables occupying an arbitrary distribution within the compu-
tational domain without direct connection to the different
material phases. In a hyperelastic ALE finite element method
these quantities can for instance be strain-like variables, like
the deformation gradient or the left Cauchy-Green tensor.
To avoid the computation of the total deformation map on
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the element level, these quantities can be treated as history
variables to store the deformation history of the referential
configuration (cf. Eq. (3) and [57]). To advect these quanti-
ties accurately, special care has to be taken concerning the
choice of the corresponding advection algorithms. In partic-
ular the effect of the numerical diffusion has to be minimized
and the fulfillment of the monotonism properties are highly
recommended (cf. Sect. 3.2).

In this context, a huge number of different solution sche-
mes in one and multiple spatial dimensions and of differ-
ent orders of accuracy has been published. However within
the fractional-step method, the transport step is usually per-
formed frequently after a sequence of Lagrangian steps to
smooth the deformed mesh. Therefore an efficient imple-
mentation of this step is of fundamental importance to avoid
a stagnation of the overall analysis progress. In the follow-
ing, two types of general approaches, applicable for an ALE
finite element method, will be discussed in more detail. The
first approach is based on a direct and point-wise solution of
the advection equations using a C0 continuous approxima-
tion of the generalized solution variable φ, while the second
approach represents a more general class of solution schemes
and is based on finite volume methods. For comparisons to
other schemes, found in the literature, the reader is referred
to publications like e.g. [10, 26, 23, 58, 64, 66] or [19].

4.1 A simple test problem

A convenient strategy for the analysis of advection meth-
ods, especially of finite-difference and finite-volume-based
schemes, is first to develop the scheme for a simple one-
dimensional problem, where a wave or a discontinuity is
transported through a fixed mesh with equidistant grid nodes
and a uniform velocity. In this case, dimensional effects and
influences arising from non-orthogonal mesh topologies can
widely be excluded. In the following, the different advec-
tion schemes are therefore first applied to a pseudo-2D test
example, depicted in Fig. 5, where the advection schemes
are implemented for the general 2D case, while the flow is
only one-dimensional on an equidistant finite element grid.
The extension to multiple spatial dimensions can be done in
several ways and is referred to in Sect. 4.6.

Fig. 5 Pseudo two-dimensional system with a square wave traveling
with the convective velocity c

4.2 Direct solution scheme for the advection equation

A simple and straight-forward method to solve the advection
equation (28) for the scalar quantity φ is the direct evaluation
of the hyperbolic part on the integration point level of a finite
element. Therefore, Eq. (28) is integrated in time using an
explicit time-integration scheme

φ̇|χ ≈ φ+ − φ−

	t
→ φ+ = φ− −	t grad φ · c, (37)

where φ− and φ+ are the values of φ at the integration points
before and after the advection process, respectively. Since no
physical time is associated with the advection step, 	t acts as
a pseudo time, such that 	uc = 	t c refers to the convective
displacement increment, prescribed by the node relocation
scheme.

As discussed before, φ is usually a derived element-based
variable, stored at the integration points and is consequently
discontinuous over the edges of adjacent elements. However
the evaluation of the spatial gradient of φ requires an – at
least – C0 continuous approximation of the quantity φ that
for instance can be obtained by a least-squares interpolation
(see e.g. [69]). The vector of nodal values φ̂ = [φ̂I ] is deter-
mined from the values at the integration points φ̄ according
to the following implicit equation

V φ̂ = R (38)

with V = [VI J ] =
∫
�

Nφ
I Nφ

J dv representing a consistent
volume matrix and the corresponding right-hand side R =
[RI] =

∫
�

Nφ
I φ̄ dv, containing the discrete values φ̄. Gener-

ally, Nφ
I can be chosen to be identical with the isoparametric

shape functions of the finite element displacement interpo-
lation. To obtain an efficient, explicit approach, the volume
matrix can further be lumped, for instance by using the row-
sum criterion. Subsequently, a C0-continuous interpolation
and the discrete gradient gradh φ can be obtained element-
wise according to

φ̂ =
∑

I

Nφ
I φ̂I → gradh φ̂ =

∑

I

φ̂I ⊗ grad Nφ
I . (39)

The application of this advection scheme represents an easy
to implement procedure, since no fluxes over the edges of
adjacent elements have to be computed and thus no
information about the element neighborhood is required.
Unfortunately, it can be observed that this formulation shows
numerical instabilities, depending on the size of the convec-
tive displacement increment. Fig. 6 (above) shows the result
for the problem, depicted in Fig. 5, where an initial square
wave is transported along a spatially fixed bar with a uniform
mesh, consisting of 30 × 1 elements. The Courant number
is chosen to be Cr = 1/2. The square wave already dis-
perses after a few time steps and the solution degenerates
considerably. As reported in [34], these spatial instabilities
can mostly be avoided using a local and global smoothing
procedure [31]. The local smoothing procedure implies an
initial smoothing of φ on the element level by using the
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Fig. 6 Solution of the advection problem using the direct advection
approach (Courant number Cr = 1/2, 60 advection steps), top: direct
solution of the advection equation, bottom: local and global smoothing
procedure (mesh density: 30 elements in x-direction)

element average value for the computation of the right-hand
side R in Eq. (38)

φ̄ ← 1

V

∫

�

φ̄ dv, (40)

with the element domain � and the element volume V . Note
that in case of a reduced integration procedure in the multi-
material ALE framework, this step is certainly obsolete. The
global smoothing procedure implies the substitution of φ−
in Eq. (37)2 with the interpolated value NI φ̂I

φ+ =
∑

I

Nφ
I φ̂−I −	t

∑

I

φ̂−I ⊗ grad Nφ
I · c. (41)

The evolution of the solution with time is shown in Fig. 6
(bottom). Although this stabilization scheme reduces the spa-
tial instability considerably, the distribution of the solution
variable shows over- and undershots that lead to unphysical
values of φ. Additionally, the square is rounded off, while the
peak value decreases with time, i.e. the solution is numerical

diffusive. Indeed, if Cr exceeds the value of 1/2, the solution
is dominated by extremely large over- and undershots and is
not comparable to the exact solution any more.

More improved results can be obtained using a weigh-
ted global smoothing procedure, where the integration point
values are computed by a weighted sum of Eqs. (37)2 and
(41)

φ+ = (1− α) φ− + α
∑

I

Nφ
I φ̂−I

−	t
∑

I

φ̂−I ⊗ grad Nφ
I · c.

(42)

Note that the weighting factor α is not necessarily expected
to be between 0 and 1. Figure 7 shows the solution of the
square wave for Courant numbers of 1/3 and 7/10, while the
weighting parameter is chosen to be 0.56 and 1.7, respec-
tively.

Unfortunately, this approach implies a number of prob-
lems. First of all, the range of α that leads to an accurate

Fig. 7 Solution of the advection problem with weighted global smooth-
ing top: Cr = 1/3 with α = 0.56 and 100 advection steps, bottom:
Cr = 7/10 with α = 1.7 and 43 advection steps (mesh density: 30
elements in x-direction)
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solution is very small. Therefore, only small perturbations of
α suffice to deteriorate the solution considerably. In [34] a
broad range for the weighting factor is proposed, based on
the local Courant number Cr

Cr ≤ α ≤ 2 Cr . (43)

Indeed, this choice is not sufficient to obtain an accurate solu-
tion for the advection problem. But even if α is estimated
correctly, the shape of the initial square wave is not main-
tained, rather it is deformed considerably, especially at a –
numerically diffusive – low Courant number. In case of a high
Courant number, slight undershots in front of the steep gra-
dient still occur. Furthermore, it is highly recommended that
the volume-associated advection approach can be extended
to the material-associated advection approach to maintain the
efficiency and limit the numerical effort of the total advection
process. Hence, this approach does not consider explicitly
the distribution of different material phases since they are
only given implicitly as discrete quantities at the integration
points. During the smoothing process, the material properties
are distributed to the contiguous elements and the C0-contin-
uous representation accounts for the different materials only
in a very rough and smeared sense.

4.3 Finite-volume based methods

Another solution approach is given by a class of finite volume
methods that are usually constructed for the solution of the
conservative Euler equation, given in Eq. (30). In practical
numerical solution algorithms, this equation is discretized
element-wise in a volume-integrated form. The resulting ap-
proach guarantees global conservation of the variable φ with-
in the control volume. Using the divergence theorem, the
integration over the element domain � gives
∫

�

∂φ

∂t

∣∣∣
∣
χ

dv = −
∫

�

div f (φ) dv = −
∫

∂�

fφ · n da, (44)

where ∂� is the boundary of the element domain with unit
normal vector n. In the latter relation, the flux f is exchanged
by the surface flux vector fφ associated with the variable φ
that is an approximation of the value of f (φ) on the bound-
ary of the domain �. Furthermore, the boundary integral can
be divided into the sum of the integrals over the n element
surfaces 
 and we obtain
∫

�

∂φ

∂t

∣
∣∣
∣
χ

dv = −
n∑

s=1

∫


s

f s
φ · ns da. (45)

In the case that multiple integration points are considered
within the element, the distribution of φ is non-constant. This
leads to some difficulties to account – numerically – for the
conservation of the quantity. Therefore, instead of the dis-
crete values at the integration points, the volumetric average
φ̄ of the variable φ in the element domain is used

φ̄(t) = 1

V

∫

�

φ(x, t) dv. (46)

To obtain an efficient solution procedure, again an explicit
solution in time of the advection equation is pursued. This
can be achieved using an explicit forward-Euler time-integra-
tion scheme for the approximation of the local time derivative
[cf. Eq. (37)]

∂φ̄

∂t

∣∣
∣∣
χ

≈ φ̄+ − φ̄−

	t
. (47)

Again, − and + denote the values of φ before and after the
advection step, respectively, and 	t is the pseudo-time incre-
ment of the advection step. To avoid unphysical oscillations
of the solution, an upwinding procedure has to be included
for the evaluation of the volume integrals and the numeri-
cal fluxes (see e.g. [35]), where the informations to compute
the numerical flux fφ and the volume integral on the right-
hand side of the above equation are taken from the upstream
elements. Thus, a volume-weighted update rule is obtained

φ̄+ V+ = φ̄− V− −	t
∑

s

F s
φ

with F s
φ =

∫


s

f s
φ · ns da.

(48)

Here the surface integral term f s
φ in Eq. (45) is substituted

by the numerical flux value F s
φ associated with the variable

φ over the surface s. A special case of F s
φ is the volume flux

value F s which describes the rate of volume transported from
the current to the adjacent elements over the element edge s
and is defined to be positive for outflow material transports
in the direction of the normal n

F s =
∫


s

cs · ns da. (49)

The total (downstream) volume V+ can then be updated from
the upstream volume V− according to

V+ = V− −	t
∑

s

F s . (50)

Volume-weighted advection procedures, as given in Eq. (48),
ensure the volumetric conservation of the variable φ during
the advection step, provided that the flux is determined in a
conservative manner. A mass-weighted advection procedure
can be obtained by applying the following, modified update
scheme

φ̄+ M+ = φ̄− M− −	t
∑

s

F̃ s
φ, (51)

with M− and M+ being the element masses before and
after the advection step, respectively (down- and upstream
masses). F̃ s

φ is now a mass-associated numerical flux of the
variable φ. The mass flux can be computed similar to Eqs.
(49) and (50)

M+ = M− −	t
∑

s

F̃ s

with F̃ s =
∫


s

� cs · ns da.
(52)
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Depending on the type of the advection variable, the volume-
and mass-weighted advection schemes can be applied.

It is clear that the above mentioned advection strategy
is only first-order accurate in time and is thus limited in
the time step size, i.e. since no physical time is associated
with the advection step, the convective displacement incre-
ment 	t c has to be limited by the Courant stability criterion
Cr = 	t |c|/h ≤ 1. This limits the size of the advection
volumes with respect to the total element size. Furthermore,
the distribution of the variable φ within the current element is
usually non-linear. Essential for the spatial approximation or-
der and accuracy of the advection method is the determination
of the numerical flux value F s

φ . Here methods of first-order
accuracy, where the flux value is assumed to be constant and
higher-order methods, where a non-linear distribution of φ is
reconstructed, are possible. The determination of the numer-
ical flux values will be the main topic of the next sections.

4.4 Determination of the numerical flux values in the finite
volume approach

The global approximation properties of advection schemes,
based on finite volumes, essentially depend on the determi-
nation and approximation of the numerical flux value F s

φ

of the variable φ over the partial element boundary s. Al-
most all properties, summarized in Sect. 3.2, are strongly
influenced by the flux value. A large number of different
schemes has been published, mainly with respect to fluid
dynamics applications. In general, these schemes can be sep-
arated into the classical linear advection schemes, like e.g.
the upstream difference scheme, the Lax-Friedrich scheme,
the QUICK scheme or the Lax-Wendroff and the Beam-Warm-
ing schemes and in the so-called high-resolution, non-linear
advection schemes, where the flux-corrected transport (FCT)
scheme and the total variation diminishing (TVD) scheme are
probably the most widely used approaches (see e.g. [66, 16]
or [18]).

The classical first- and second-order advection schemes
are usually linear schemes in the sense that the solution pro-
cedure does not depend on the solution itself and can be given
directly in a closed-form. The distribution of φ within each
element is assumed to be constant (first-order accurate advec-
tion schemes) or of higher order (at least second-order accu-
rate advection scheme). Unfortunately, these schemes show a
couple of drawbacks that make them unusable in a finite ele-
ment framework, where the solution variable φ highly influ-
ences the approximation behavior and the solution quality of
the overall analysis. Therefore, high-resolution, non-linear
advection schemes promise a better solution quality for the
advection problem.

In the remainder of this section, the first-order accurate
upstream and the second-order accurate Lax-Wendroff advec-
tion scheme, as classical examples for linear schemes, will
first be analyzed in more detail. Subsequently, a special class
of TVD schemes is presented that will be applied to solve the
present advection problem.

4.4.1 Classical first- and second-order flux calculations

Generally, the classical procedures to determine the flux val-
ues are based on the approximation of the temporal and spatial
derivatives in the finite-volume advection equation Eq. (45)
using finite differences. This results in first and second-order
accurate advection methods. Representative for these classi-
cal approaches, the first-order upstream and the second-order
Lax-Wendroff scheme are discussed. These schemes are also
used in an ALE framework by different authors (e.g. [9] or
[57]).

The first-order accurate upstream difference scheme, also
known as the donor-cell algorithm (see e.g. [56] or [10]), is
based on a forward or backward difference approximation
for the spatial derivative, depending on the flow direction.
The distribution of the fundamental unknown φ is assumed
to be constant within each element. If an element contains a
higher-order distribution of φ, the element mean value φ̄ is
determined according to Eq. (46), prior to the application of
the advection scheme.

A meaningful advection scheme requires that the infor-
mations for the finite difference approximation of the spa-
tial gradient is performed by only using informations from
the upstream direction of the flow, i.e. the new value φ̄+ is
computed by tracing the characteristics back in the upstream
direction, passing through φ̄+. Therefore, the computation of
the gradient depends on the direction of the convective veloc-
ity c. This process is also known as upwinding (cf. Fig. 8 for a
simple description). Using the total volume flux F s over the
element edge s (with s = 1, . . . , n(edges)), defined in Eq. (49),
the numerical flux value F s

φ on the boundary s of element j
can then be written as

F s
φ =

1

2
F s (

φ̄ + φ̄s)+ 1

2
|F s | (φ̄ − φ̄s). (53)

Here φ̄ is the averaged value of φ in the current element,
while φ̄s is the averaged value in the adjacent element over
the element edge s. The method is stable if the Courant cri-
terion is fulfilled, i.e. Cr = 	t |c|/h ≤ 1. Furthermore,
the scheme is first-order accurate in space and time, con-
servative and monotone. Unfortunately, the problem with all
first-order linear advection schemes, based on finite differ-
encing, is that they are highly numerical dissipative, i.e. the
numerical diffusion leads to a strong flattening and widen-
ing of the distribution of φ, especially in regions with steep
gradients (see Fig. 9). This effect gets worse, if the Courant

Fig. 8 Concept of upwinding; the gradient can only be computed using
informations from the upstream direction of the flow
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Fig. 9 Solution of the advection problem using the first-order accurate
donor advection method top: Cr = 1/3 and 100 advection steps, resp.
bottom: Cr = 7/10 and 43 advection steps (mesh density: 30 elements
in x-direction)

number is reduced and the number of advection steps, needed
for the transport problem, is increased. Nevertheless, due to
its simplicity and efficient implementation possibilities, the
first-order donor-cell or upwind method is used in different
ALE codes (see e.g. [57] or [49]). In the case that only one
advection step is needed for the transport of the solution vari-
ables, the dissipative effects of the method are very small and
a sufficient accurate solution can be obtained in most cases.
However if the material deformation is very localized or if an
implicit time integration with large time steps is applied, sev-
eral advection steps may be required in the remap step and,
due to a degeneration of the internal variables, the numerical
dissipation can lead to large inconsistencies in the numerical
algorithm.

The second class of classical advection schemes, is based
on a second-order accurate approximation of the derivatives
in the advection equation, where the most used scheme is
probably the Lax-Wendroff approach (see e.g. [40]). The key
point of the Lax-Wendroff method is to replace the time
derivatives with spatial derivatives, using the advection equa-
tion (φ̇|χ = − grad φ · c). Therefore, first a Taylor series

expansion of φ in time is performed, where terms of third-
and higher order are neglected

φ+ = φ− + ∂φ−

∂t
	t + 1

2

∂2φ−

∂t2 	t2 +O(
	t3). (54)

Inserting the advection equation recursively, the update equa-
tion of the Lax-Wendroff scheme is obtained as follows

φ+ = φ− −	t grad φ− · c
+1

2
	t2 c · grad(grad φ−) · c. (55)

In a finite difference framework, the spatial derivatives are
usually approximated using a first-order forward-difference
and a second-order central difference scheme. The flux term
in Eq. (48) can then be represented as

F s
φ =

1

2
F s (

φ̄ + φ̄s)+ 	t

2 h
F s2 (

φ̄ − φ̄s), (56)

where again, φ̄s is the volume averaged value of φ in the
adjacent element over element edge s and h denotes a char-
acteristic element length. In Fig. 10 the solutions of the 2D
example of the propagating square wave are depicted. As

Fig. 10 Solution of the advection problem using the second-order accu-
rate Lax-Wendroff advection method top: Cr = 1/3 and 100 advection
steps, resp. bottom: Cr = 7/10 and 43 advection steps (mesh density:
30 elements in x-direction)
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expected, the numerical diffusion is smaller, compared to
the first-order upstream advection scheme. Indeed, the shape
of the initial square wave is not retained accurately, rather
it is broadened at the bottom and sharpened at the top of
the wave. It can be shown that the method is neither mono-
tone nor conservative. Especially the absence of monotonism,
characterized by the typical unphysical oscillations of a lin-
ear, second-order advection scheme, violates the permitted
range of the solution variable φ deeply and the application
of the Lax-Wendroff advection scheme within an ALE finite
element approach can cause serious problems.

In the finite element framework of ALE methods, a Galer-
kin-type approach for the approximation of the higher-order
spatial derivatives, required for the solution of Eq. (55), is
sometimes applied (see e.g. [8] or [56]). This approach is
based on a least-squares approximation for the first-order
gradient γ = grad φ− at the mesh nodes γI using the diver-
gence theorem
∫

�

N γ
I γ dv = −

∫

�

φ grad N γ
I dv +

∫

∂�

N γ
I φ n da, (57)

where n is the outward normal on the boundary of the domain
� in the current configuration and N γ

I is a set of shape func-
tions. After insertion of the approximation γ ≈ ∑

I N γ
I γI

and assemblage, the following linear system is obtained

V γ γ = � with

� = [�I] = −
∫

�e

φ grad N γ
I dv +

∫

∂�e

N γ
I φ n da.

(58)

Again, V γ is a consistent volume matrix that can be diagonal-
ized by a lumping procedure to obtain an explicit approach.
Subsequently, the second derivative of φ can be computed
in the element center using the shape functions N γ

I and the
following expression is obtained for the update of φ

φ+ = φ− −	t c · γ + 1

2
	t2 c · grad γ · c. (59)

The update scheme can easily be applied to higher-order ele-
ments, where more than one integration point is present, by
applying Eq. (59) Gauss point-wise for all internal variables.
Further information and a comparison to a two-dimensional
extension of the first-order upwind scheme are given in [56].

The general problem of almost all linear advection meth-
ods is that they are either highly numerical dissipative, like the
first-order advection schemes, or that they are disturbed by
large, unphysical oscillations, like the higher-order advection
approaches. Both numerical effects influence the evolution of
the solution while the analysis proceeds. Since the accuracy
and the stability of the underlying finite element approach
highly depends on the accuracy of the advection approach
other, more reliable methods have to be taken into account.
A characteristic statement, concerning this phenomenon, is
given by Loehner ([44])

“For these linear schemes, the choice is between high-
order, oscillatory and ‘noisy’ solutions or low-order,
overdiffusive and ‘smooth’ solutions.”

4.4.2 Higher-order, non-linear flux calculations

Based on the idea to construct higher-order advection
schemes that fulfill the monotonicity and conservation
requirements simultaneously, different higher-order, non-lin-
ear advection schemes, based on finite difference or finite-
volume methods were developed in the past. Among these
methods are for instance essential non-oscillatory schemes
(ENO), FCT schemes and TVD schemes, where the two lat-
ter ones are probably the most popular approaches.

The basic idea of the FCT techniques is first to apply
a spatially higher-order scheme, like e.g. the Lax-Wendroff
scheme, as far as possible. If large gradients or discontinuities
in the solution distribution occur, artificial diffusion is added
to eliminate the production of oscillations and to smooth the
spatial distribution of the solution variable. This adaptive
dissipation property is the challenging point of these high-
resolution schemes and has to be implemented carefully to
ensure that enough dissipation is introduced to preserve the
monotonicity without affecting the final solution. This is real-
ized through the concept of flux-limiters (see e.g. [16]). For
a finite-volume-like approach, this process can for instance
be written as

φ+ V+ = φ− V− −	t
∑

s

F s,h
φ

︸ ︷︷ ︸
second−orderadvection

+	t
∑

s

lim
(F s,h

φ − F s,l
φ

)

︸ ︷︷ ︸
limitedcorrection

, (60)

where F s,l
φ denotes the lower-order and F s,h

φ the higher-order
flux term, whose difference is restricted by the limiter to
avoid the oscillatory over- and undershots. Obviously, FCT
schemes are second-order accurate in smooth regions and
reduce to almost first-order accuracy in the vicinity of steep
gradients. Since the limitation operation itself depends on the
solution variable φ and thus the diffusion coefficient depends
on the local behavior of the solution, such procedures are
basically non-linear.

The TVD schemes are constructed in a similar way, where
again second-order approaches are applied in smooth regions
that reduce to only first-order accuracy in regions with steep
gradients. In contrast to the FCT approaches, only element
averaged values φ̄ are considered to ensure the conservation
properties of the scheme. To obtain a second-order approach,
the distribution of φ is reconstructed, based on gradients,
computed from informations of the adjacent elements, such
that no spurious oscillations near a discontinuity occur. Again
this is obtained by the limiter approach. A characteristic prop-
erty of these schemes is the limitation of the so-called total
variation, introduced by [30].

A comparison of the numerical solution provided by both
algorithms shows that, depending on the choice of the higher-
order advection scheme, the FCT approach does not neces-
sarily conserve the solution variable during the advection
step. Furthermore, if the artificial diffusion to be added is
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overestimated, FCT schemes can still show high numerical
diffusion, while this effect can mostly be eliminated for the
TVD schemes, depending on the choice of the limiter. Prac-
tical implementations and comparisons are given in e.g. [23],
[66] or [64]. The remainder of this section will be restricted
on a detailed description of a special class of TVD schemes,
based on finite volume techniques, that serves as a direct
higher-order extension of the first-order upstream approach.

Basic concept of the TVD advection scheme The basic con-
cept of the TVD advection schemes was derived in [30],
where two basic requirements for this kind of advection scheme
were formulated

1. no additional oscillations shall occur during the advection
approach and

2. existing oscillations are not allowed to increase.

Formally, these requirements can be described by a non-oscil-
latory property, where the total variation of the general vari-
able φ in the domain �, defined by

T V [φ] =
∫

�

| grad φ| dv ≤ C <∞ (61)

is bounded and does not increase with time. In a one-dimen-
sional, discrete sense, this means that the total variation of the
advected element variable φ̄+, denoted by TVh[φ̄+], is not
larger than the total variation of the original element variable
φ̄−, denoted by TVh[φ̄−]

TVh[φ̄+] :=
N−1∑

i=0

|φ̄+i+1 − φ̄+i |

≤
N−1∑

i=0

|φ̄−i+1 − φ̄−i | =: TVh[φ̄−].
(62)

N is the number of nodes and TVh is a discrete, finite diff-
erence-like approximation of the total variation, while φ̄ de-
scribes the element-averaged quantity of φ [cf. Eq. (46)]. The
total variation limits the differences of φ̄ in two adjacent ele-
ments, prevents the development of over- and undershots, i.e.
the development of new local extrema, and results therefore
in a monotonic, non-oscillatory scheme. Thus, if oscillations
occur, they are truncated using the limiter concept. In the past,
several different TVD approaches have been published (see
e.g. [18, 30] or [60]). The scheme that will be applied here
is a direct, second-order accurate extension to the first-order
upstream technique, described in the last section, where the
TVD numerical flux value is computed according to

F s
φ =

1

2
F s (

φ̂ + φ̂s)+ 1

2
|F s | (φ̂ − φ̂s). (63)

In contrast to the first-order method, a piecewise linear recon-
struction φ̂ of the volume-averaged quantity φ̄ in each local
direction of the element is assumed, based on informations
from the adjacent elements. In Eq. (63), φ̂ is the reconstruc-
tion near the boundary s of the current element, while φ̂s

denotes the reconstruction over the boundary s of the adja-
cent element (cf. Fig. 11). If the linear reconstruction of φ̂ is
performed around the centroid of the current element i , the
conservation requirement of the advection scheme is fulfilled
a priori. For the local element direction ξ we obtain

φ̂
ξ

i (ξ, t) = φ̄i (t)+ sξ

i (t) (ξ − ξi ), (64)

where ξi is the centroid coordinate of the current element i
and sξ

i is the slope in the local ξ -direction that has to be deter-
mined in accordance with the TVD condition. In the multidi-
mensional case and assuming a structured mesh geometry, the
advection can be performed in so-called directional sweeps.
Here the reconstruction is determined for all local directions
of an element and ξ corresponds to the coordinate of the local
element coordinate system that is aligned with the direction
of the current advection sweep. The values φ̂ and φ̂s at the
element edge s in Fig. 11, required for the evaluation of Eq.
(63), are subsequently computed according to

φ̂ = φ̄i − 1

2
lξ

i sξ

i and φ̂s = φ̄i−1 + 1

2
lξ

i−1 sξ

i−1, (65)

respectively.
The computation of the numerical flux values over the

edges s of the current element i requires the determination
of the slopes in the current element and also in the first-order
adjacent elements, i.e. the elements sharing an edge with ele-
ment i . Therefore, the distribution of φ in the first- and sec-
ond-order adjacent elements is required. In the vicinity of a
boundary, this information is certainly not available and the
advection process reduces to a first-order Donor advection
scheme, where the slope vanishes (si = 0). In the practical
implementation of the advection scheme, it is advantageous,
only to compute the outflow fluxes of the current element to
limit the support of the local flux calculation. In this case,
only the slope si in the current element is required and the
determination of the flux values is simplified considerably.

The concept of slope limiters The slope for the reconstruction
of φ̄ in the current element is computed using informations
from the adjacent elements. To account for the monotonic-
ity requirement, given by the TVD condition in Eq. (62), the
slope has to be limited, such that over- and undershots in the

Fig. 11 Schematic representation and naming conventions for the lin-
ear reconstruction process of φ̄ for the “donor” element i in the local
ξ -direction
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reconstructed distribution of φ̄ are widely avoided. This can
be achieved by a comparison of the maximum difference of
adjacent element values φ̄, which is generalized by the con-
cept of slope limiters. Here, the slope sξ

i of φ in the current
element i and in the local element direction ξ is computed
using the element-averaged quantities φ̄ as follows

sξ

i =
Li

lξ

i

(φ̄i+1 − φ̄i ), (66)

where lξ

i is the length of element i in the local ξ -direction, i.e.
the distance of the center nodes of opposite element edges,
while the slope limiter Li is defined as a function of the ratio
of consecutive gradients

Li = L(θi ) with θi = φ̄i − φ̄i−1

φ̄i+1 − φ̄i
. (67)

φ̄i−1, φ̄i and φ̄i+1 are the average values of the current and
the first-order adjacent elements in the considered advection
direction. For reasons of stability, the limiter function L(θi )
is required to fulfill the TVD condition which finally leads
to the restriction 0 ≤ L(θi ) ≤ 2. However, the choice of the
limiter Li (θ) is not unique and several different limiters are
possible.

A first limiter, for instance, leads to the smallest slope,
connecting the center point with the adjacent element vari-
able (see Fig. 12a). This Superbee-Limiter can be formalized
as

LSB(θ) := MAX
(
0, MIN(1, 2 θ), MIN(θ, 2)

)

with 0 ≤ LSB ≤ 2.
(68)

The limiter was introduced by [48] and also used by [21]
for their advection schemes based on discontinuous Galerkin
approaches. The min-functions choose the minimum value of
the two possible slopes, while the leading 0 ensures that in
case of a local extremum of φ̄, i.e. if the gradients are of
different signs, a zero slope value is achieved. However, in
practical advection problems, this limiter can lead to advec-
tion slopes that are too steep and oscillations can still occur
in the vicinity of the element, depending on the local Cou-
rant number. A more diffusive limiter can be given in terms
of the MinMod-Limiter, depicted in Fig. 12b. The MinMod
limiter was introduced by van Leer [41] in the framework of
his MUSCL schemes (monotone upwind schemes for con-
servation laws)

LMM(θ) := MAX
(
0, MIN(1, θ)

)

with 0 ≤ LMM ≤ 1.
(69)

[10] and [49] applied this slope in their MMALE codes, while
the first author also extended the choice of the slopes by add-
ing a second-order polynomial fit through three adjacent ele-
ment values. The MinMod limiter leads to advection slopes
that are approximately half of he slopes, generated by the Su-
perbee limiter. Since the maximum values cannot be recon-
structed by the MinMod limiter, in contrast to the Superbee
limiter, it shows a very diffusive behavior. A limiter that leads

a

b

c

Fig. 12 Schematic representation of three example limiters. The empha-
sized line is the linear reconstruction of the distribution of φ

to an advection slope between the above mentioned ones is
the Woodward-Limiter, depicted in Fig. 12c

LWW(θ) := MAX

(
0, MIN

(
2, 2 θ,

1

2
(1+ θ)

))

with 0 ≤ LWW ≤ 2.

(70)

Generally, the Superbee limiter defines an upper bound of
all possible limiters that are able to suppress the unphysical
oscillations, while the MinMod and the Woodward limiter
lead to less restrictive slopes. The choice of the limiter con-
siderably influences the determination of the numerical flux
values, i.e. the amount of the variable transported in the down-
stream direction and thus influences the final distribution of
the advected value φ̄+. If the slope limiter is chosen too large,
oscillations will still occur, while in case of a slope limiter
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that is too small, the advection will result in a dissipative
solution distribution.

The choice of the correct limiter can be made in depen-
dence of the advection volume F s resp. the local Courant
number. If the advection volumes are relatively large, emerg-
ing from high Courant numbers (Cr ≥ 1/2), large limiter
values lead to an overestimation of the advective flux F s

φ

and thus over- and undershots can occur in the downstream
solution. In this case, a more restrictive limiter has to be cho-
sen for the determination of the advection fluxes. This can for
instance be formalized on the basis of the MinMod limiter. To
account for the advection behavior at different Courant num-
bers, a scaling factorα is introduced that scales the slope, used
for the advection process. Figure 13 shows the distribution of
the optimal scaling factor α for different Courant numbers.
α = 1 corresponds to the diffusive MinMod limiter, while
α = 2 corresponds to an approximation of the less-diffusive
Superbee limiter that is applied in the case of small advection
fluxes. Until a Courant number of Cr = 1/2 is reached, this
limiter leads to satisfying results. If Cr exceeds this value,
the scaling factor has to be reduced non-linearly. To estab-
lish the curve shown in Fig. 13, the pseudo two dimensional
example was used, where a homogeneous distribution of the
convective velocity and equidistant grid nodes was assumed.
In this case, the Courant number can be computed exactly
using Eq. (34). However, in practical advection problems,
usually a distorted mesh and a non-homogeneous distribu-
tion of the convective velocity emerges. Thus the Courant
number cannot be computed exactly and a rough, second-
order approximation of the curve for values Cr > 1/2 will
be sufficient, i.e.

α(Cr ) =
{

2 for Cr ≤ 1/2
5.75 C2

r − 12.6 Cr + 6.9 for Cr > 1/2
. (71)

The check is performed element-wise to determine the advec-
tion limiter during the advection process. Subsequently, the
advection fluxes are determined by evaluating the MinMod
limiter Eq. (69) and using the modified slope

sξ

i =
α(Cr ) LMM(θi )

lξ

i

(φ̄i+1 − φ̄i ), (72)

Fig. 13 Distribution of the optimal factor α for the TVD slope calcula-
tion for increasing Courant numbers

where the scaling factor α now ensures the monotonicity of
the solution and the limitation of the numerical diffusion.

Redistribution to the integration points By construction, the
TVD advection scheme is designed for the transport of ele-
ment-averaged values of φ and thus φ̄ is piecewise con-
stant within each element. In a multidimensional finite ele-
ment simulation, multiple integration points are usually used
within one element and the distribution of φ becomes non-
constant. The assumption of a constant distribution leads to
inaccurate results of the advected quantities and a linear redis-
tribution of φ̄ within each element is performed to improve
the quality of the advection process. This redistribution can
be based on the TVD-limited slopes defined in Eq. (72). How-
ever, due to the new element geometries and distributions of
φ after the advection step, the slopes si have to be recalculated
for each element, e.g. using a linear interpolation according
to

φ+i (ξ) = φ̄+i + si ·
(
ξ − ξi

)
. (73)

si = (sξ

i , sη

i , sζ

i )
T is the vector of the reconstructed slopes of

φ̄ in the three local element directions ξ = (ξ, η, ζ )T. The
determination of the redistribution slopes is performed with
respect to a local element coordinate system (see Fig. 14)
that is usually not aligned with the global Cartesian coordi-
nate system x. Therefore, the coordinate differences (ξ−ξi ),
(η − ηi ) and (ζ − ζi ) in Eq. (73) have to be computed with
respect to this element coordinate system. Considering the
length of the element axes lξ

i , lη

i and lζ

i the differences can be
sufficiently approximated by

(ξ − ξi ) ≈ 1

2
ξg lξ

i , (η − ηi ) ≈ 1

2
ηg lη

i

and (ζ − ζi ) ≈ 1

2
ζg lζ

i ,

(74)

where ξg = (ξg, ηg, ζg)
T are the local coordinates of the eval-

uation point g and are formally identical with the integration
points.

Fig. 14 Redistribution of the bi-linear shape of φ using limited slopes
sξ and sη in two dimensions
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4.5 Global advection algorithm

The global advection algorithm for the second-order advec-
tion of the element-based quantity φ using the TVD advection
scheme is summarized in Alg. (4.1). Clearly the advection
process, based on finite volume methods requires extensive
knowledge about the element neighborhoods, especially for
the determination of the advection volumes between adjacent
elements over a specific edge s. These informations have to be
constructed from the global mesh topology, which requires a
relatively high numerical effort. Since the element topology
remains constant throughout the analysis, the element neigh-
borhoods need only to be established once and can be stored
in the global data base.

Algorithm 4.1 Schematic global TVD advection algorithm
for the quantity φ

Requires: upstream geometry x− and variable to be advected φ−;
convective displacement increment uc = 	t c; element
connectivity list

Provides: advected, downstream quantity φ+

1. setup neighbor informations of adjacent elements from element
connectivity list (only first time)

2. compute and store element averaged quantities φ̄− = 1
V

∫
�

φ− dv
3. loop all elements with prescribed convective velocity c �= 0 at the

vertices
(a) determine adjacent elements, compute element lengths/vol-

umes and localize the advection data for the current sweep
direction

(b) loop element edges
– compute advection volume flux

(
	t F s

)
due to Eq. (49);

cycle inflow volume fluxes
– update total element volume flux→ 	t

∑
s F s ; subtract

from current, add to adjacent element
– reconstruct distribution of φ̄ and determine TVD advec-

tion fluxes for each quantity φ̄
– update total element variable flux → 	t

∑
s F s

φ ; sub-
tract from current, add to adjacent element

4. second loop over all elements to perform global variable update
(a) compute upstream volumes V− and update downstream vol-

umes V+ = V− −	t
∑

s F s

(b) update downstream quantities φ̄+ using the transport volumes
φ̄+ V+ = φ̄− V− −	t

∑
s F s

φ

5. update global variable arrays and redistribute average quantities φ̄
to the integration points

The solution of the advection problem for the pseudo
2D system is given in Fig. 15 for different Courant numbers
ranging from Cr = 1/5 to Cr ≈ 1. Clearly, if the Cou-
rant number takes the value Cr = 1.0, the shape is retained
exactly on the uniform mesh. For the whole range of Cou-
rant numbers Cr < 1, the initial shape of the square wave is
reproduced rather accurately using the dynamic limiting as
described above. Indeed, a slight flattening of the square, due
to the changing distribution of evaluation points, i.e. integra-
tion points, with respect to the position of the wave, cannot
fully be prevented.

a

b

c

d

Fig. 15 Solution of the advection problem using the second-order Total
variation diminishing TVD scheme and Courant numbers ranging from
Cr = 1/5 to Cr ≈ 1 (mesh density: 30 elements in x-direction)

4.6 Generalization of the advection scheme to the
multidimensional case

In case of a multidimensional advection problem, material
is transported arbitrarily through the finite element mesh,
according to the direction of the convective velocity, pre-
scribed at the mesh nodes. Essential for the advection of the
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element variables is the accurate determination of the advec-
tion volumes that specify “the amount of the variable” to
be transported to the downstream element. Furthermore, the
multidimensional advection volumes have to be determined
accurately to maintain a coherent distribution of the variable
φ. Here generally two strategies are conceivable that should
be discussed in the following.

The numerical, multi-dimensional advection simulations
are performed for a circular wave propagating with the con-
vective velocity c in the diagonal direction of a square region
(see Fig. 16). Physically, the gradient at the boundary of the
wave is infinite and reduces to a finite gradient for the discrete
case, where the wave informations are only given at the 2×2
integration points of each finite element. As in the pseudo-
2D examples of the last section, the convective velocity is
chosen to be constant and only the Courant number is var-
ied in terms of different time step sizes. The computational
domain is discretized using 30 × 30 equal-sized finite ele-
ments, where first, a homogeneous mesh is considered and
additionally, the advection behavior on a distorted mesh is
examined.

Isotropic advection methods The first strategy is based on
an isotropic advection approach, where Eqs. (48) and (51),
for volume-specific and mass-specific advection variables,
respectively, are evaluated simultaneously for all element
edges and the volume fluxes 	t F s (s = 1, . . . , n f ) in resp.

Fig. 16 Two dimensional advection problem: a circular wave traveling
in the diagonal direction of a structured, undistorted and distorted finite
element mesh

out of the current element over all n f element faces are com-
puted in one single step (cf. Fig. 17).

Indeed, the problem with this advection approach is that
the flux over diagonal element connections, i.e. elements that
share only one node, is not accounted for directly and the
advection process is primarily processed into the direction of
the orientation of the structured mesh. This leads to a strong
dispersion of the solution, where the discontinuity mainly ex-
pands in the direction perpendicular to the advection direction
(crosswind diffusion). Another problem occurs especially in
the case of large Courant numbers (Cr > 0.5), where the
advection volumes can overlap (cf. Fig. 17). In this case,
the total volumes, advected from the donor element to the
adjacent elements, are overestimated and lead to a further
dispersion of the solution. Moreover, the local conservation
properties are not fulfilled any more. For these reasons, the
isotropic advection approach is found to be only a first-order,
multidimensional extension of the one-dimensional advec-
tion scheme. In Fig. 18, the evolution of the circular discon-
tinuity during an incompressible advection process and using
the second-order TVD advection approach is depicted. The
Courant number is chosen to be relatively small (Cr = 0.3)
to minimize the effect of overlapping advection volumes. Al-
though the peak value of the discontinuity is maintained and
no diffusion in the advection direction occurs, the effect of the
crosswind diffusion can obviously be observed. Note that the
quality of the solutions during the advection process is very
similar on the homogeneous and the distorted mesh, since
the above mentioned effects occur likewise on both meshes.

One-dimensional advection sweeps The second strategy is
based on a spatial operator split technique that can advanta-
geously be applied in the case of structured meshes. In this
case, one-dimensional, alternating advection sweeps are per-
formed ([55]), where in each advection step, the propagation
of the wave into the direction of the convective velocity c is
separated into one-dimensional sweeps, each aligned to the
axes of the global Cartesian coordinate system (cf. Fig. 19).
The material flux between diagonally connected elements is
therefore considered indirectly, using a redirection of the flux
through an intermediate element (cf. Fig. 20).

Fig. 17 Illustration of the isotropic, multidimensional generalization
for the one-dimensional advection procedure
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Fig. 18 Two-dimensional TVD advection process of a circular wave using the isotropic approach on a (left) homogeneous mesh and a (right)
distorted mesh with 30× 30 elements and a convective velocity c at Cr ≈ 0.3. Depicted are the isolines and a 3D contour plot

Fig. 19 Illustration of the multidimensional generalization for the one-dimensional advection procedure using one-dimensional advection sweeps

Fig. 20 Concept of one-dimensional advection sweeps; the total, mul-
tidimensional volume flux is separated into 2/3 flux-steps, aligned with
the global coordinate axes

This approach provides a straight-forward construction
of higher-order spatially accurate advection methods with
multiple sweeps in each spatial direction and accurately ad-
vects the variables over diagonal connected elements. Indeed,
numerical experiments show that the extension obtained by
considering only one sweep per direction leads to consid-
erably improved results, compared to the isotropic advec-
tion approach. To eliminate the directional dependence, the

sequence of the advection sweeps is altered in each time step
and an alternating scheme is obtained. The above mentioned
example is depicted in Fig. 21 for a two-step approach in two
dimensions and Courant numbers of approximately Cr = 0.3
and Cr = 0.7. Apart from a slight smoothing of the steep
gradients, due to the discrete distribution of the evaluation
points, the quality of the shape of the circular wave is prop-
erly retained during the whole advection process.

Higher-order extensions can for instance be obtained us-
ing a three-step approach in 2D, where the advection is first
performed in x-direction with half of the advection volumes,
then in y-direction with the full advection volumes and finally
again in x-direction, using the remainder of the advection vol-
umes. Again, the alternation of the advection sweeps can be
used to eliminate the directional dependence. Certainly, the
numerical effort is increased about 50% in the 2D case, where
one full additional advection sweep has to be performed and
even more are required in the 3D case. Since the accuracy
of the advection shapes is not increased considerably using
this three-step approach, the following simulations will be
restricted to two and three advection sweeps for the two and
three dimensional case, respectively.
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Fig. 21 Two-dimensional advection process of a circular wave using the two-step approach on a left: homogeneous mesh and right: distorted
mesh with 30× 30 elements and a convective velocity c at (top) Cr ≈ 0.3 and (bottom) Cr ≈ 0.7. Depicted are the isolines and a 3D contour plot

For the practical implementation in a multidimensional
ALE method, the mesh nodes are relocated particularly for
each spatial dimension and the advection process is per-
formed subsequently. Clearly, for the case of a distorted mesh,
this approach is strictly speaking an isotropic advection pro-
cess, since due to the different orientations of the element
edges the fluxes over all edges have to be considered. Indeed,
the directional split minimizes the inaccuracies stemming
from the overlap of the advection volumes that can safely be
neglected.

4.7 Advecting nodal-based quantities

All advection schemes, described previously, are basically
constructed for element-centered variables, where the fluxes
between adjacent elements over the common edge can be
determined directly. However, in practical problems also ver-
tex-centered variables, like the total material displacement or
the velocity, may also be required to be transported through
the moving finite element mesh

To minimize the computational effort, it is highly rec-
ommended that the vertex-centered advection algorithm can
directly be incorporated into the element-centered advection
scheme of the last section. Hence, two different approaches
can be constructed that use the volume fluxes and advection
stencils, already determined for the element-based advection.
The first approach, denoted as the SALE algorithm (not to be
confused with the SALE algorithm), is based on an averaging
process, where the vertex-centered quantities are first aver-
aged to the element, advected and finally redistributed to the
new element nodes ([2]). However, as outlined in [10], this

algorithm is very diffusive and not monotone, i.e. unphysical
oscillations are produced in the vicinity of steep gradients.
Furthermore, the original quantities will not be retained, if
the convective velocity approaches zero.

Another vertex-centered advection method that can like-
wise be incorporated into the element-based advection scheme
is the half index shift (HIS) algorithm, developed in [11].
Here, the upstream vertex-centered variables�− are first pro-
jected to the element centroids using the projection operator
P . These element-centered quantities φ− can subsequently
be advected using the element-centered framework of the
TVD scheme to obtain the downstream element-centered val-
ues on the new mesh φ+. Finally, φ+ is projected back to the
vertices by repetitively using the inverse projection operator.
The three main steps can be summarized as follows

1. vertex-to-element proj.:

φ− = P �−

2. advection phase:

φ− advection−−−−−→
step

φ+ (75)

3. element-to-vertex proj.:

�+ = P−1 φ+,

where φ and� are now vectors, containing the element-cen-
tered and vertex-centered values of the quantity φ, respec-
tively. Since the TVD advection scheme is of second-order
accuracy in space, the HIS algorithm is also second-order
accurate. Concerning the monotonicity properties of the
advection scheme, the projection operator has to be chosen
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Fig. 22 Solution of the vertex-centered advection scheme for a typical heterogeneous material sample, consisting of five inclusions on a homo-
geneous and a distorted mesh; left: velocities in the vertical direction, right: overlay of the isolines of both meshes

properly, i.e. monotonicity has to be maintained in both pro-
jection directions, what is usually only fulfilled, if all coeffi-
cients of P have the same sign and the transformation matrix
is diagonal. The simplest form that fulfills these requirements
is the identity matrix P = I .

For the practical implementation, this means that each
component of the vertex-centered variables at each vertex is
assumed to be element-centered. Subsequently, the advection
process is performed using Eq. (48) for a volume weighted
advection, resp. Eq. (51) for a mass-weighted advection.
Finally, the new element centered quantities are redistributed
to the element nodes using the vertex-centered volume matrix
V+node resp. mass matrix M+node of the downstream mesh

�+ = 1

V+node

∑

n

φ+ V+

resp. �+ = 1

M+node

∑

n

φ+ M+,

(76)

where n is the number of elements, surrounding the current
node, V+node and M+node are the downstream nodal volumes and
masses, while V+ and M+ are the downstream element vol-
umes and masses, respectively. Fig. 22 depicts a typical dis-
tribution of the velocities in a heterogeneous material under
certain loads before and after the advection process, where
a comparison of the isolines shows that both distributions
generally match.

5 Advecting material-associated quantities

In contrast to volume-associated quantities, material-associ-
ated quantities are persistently connected to a certain mate-
rial phase. As mentioned before, these material phases are
distinguished by their respective volume fractions f in the
VOF. The major advantage of the volume-of-fluid method in
the Lagrangian step is that it can efficiently be incorporated
into the governing equations using so-called mixture the-
ories, where the contributions of the different materials are
accounted for on the basis of these volume fractions (cf. Sect.
2.5). During the advection process in a MMALE method,
different materials within a mixed element have to be trans-
ported over the corresponding element boundaries. For an
accurate transport of the volume fractions and other material-
associated variables, the material distribution and therefore

the knowledge of the deformation of the material interfaces is
of fundamental importance. Since only the volume fractions
are stored, so-called interface reconstruction methods have to
be applied within the advection step, where a mathematical
parametrization of the boundary is determined.

Depending on the type and accuracy of these interface
reconstruction algorithms, first- and second-order accurate
approaches can be constructed. An extensive overview about
classical reconstruction methods and other new developments
can for instance be found in [59, 63] or [15]. In this context,
the simplified line interface calculation (SLIC) method [46])
or the piecewise linear interface calculation (PLIC) method
([67]) should be mentioned due to their simplicity and effi-
cient implementation capabilities. While the first approach
assumes material boundaries which are aligned to the global
Cartesian coordinate axes, the second approach allows an
arbitrary orientation of the material interfaces within one
element. With the knowledge of the position of the material
interfaces, the volume fractions can be advected very effi-
ciently by applying the finite-volume-based advection scheme
described in Sect. 4.3.

The process of the interface reconstruction within the
PLIC method and the transport of the material-associated
quantities, especially the transport of the volume fraction,
during the advection process will be described in the follow-
ing sections.

5.1 Basic assumptions in the VOF method

The material distribution in the VOF method is represented
by the volume fractions of each material k characterized by
[cf. Eq. (11)]

f k = V k/V

with 0 ≤ f k ≤ 1 and
∑

k

f k = 1,
(77)

where V is the total volume, while V k represents the coher-
ent volume of material k within a mixed element. For mixed
material elements, f k is between zero and one and sums to
one for the union of all materials. The evolution equation
for f k can be derived from the balance of mass, included in
the general form of the governing equations (6). Specifically,
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Fig. 23 Solution of the advection problem for the volume fraction for a single circular disk, advected in the diagonal direction of a 30 × 30
distorted, quadrilateral mesh (Cr = 0.3)

we obtain the following expression for the evolution of the
density �k of material phase k

d�k

dt
= ∂�k

∂t

∣∣
∣∣
χ

+ grad �k · c = −�k div vk = −�k div v,

(78)

where the last term follows from the fact that the deforma-
tion of the different materials within one mixed element is
governed by the same velocity field, i.e. v = vk . Inserting
�k = Mk/V k , dMk/dt = 0 and V k = f k V , with the mass
Mk of material phase k, we obtain the evolution equation of
the material-associated volume fraction

d f k

dt
= ∂ f k

∂t

∣
∣∣
∣
χ

+ grad f k · c = 0. (79)

Thus, the volume fraction is a so-called Lagrangian invari-
ant, i.e. during the Lagrangian step, the volume fraction f k

of material k does not change within the element. The finite
element matrices can therefore be computed by only using
the knowledge of the volume fractions in each element. This
leads to a very efficient implementation of the Lagrangian
step, where the volume fractions can be accessed directly as
internal element variables.

In the simplest approach, the solution of the above evolu-
tion equation for the volume fractions can be obtained using
either of the advection approaches, described in the preceding
section, e.g. the first-order donor or the second-order TVD
advection scheme. Figure 23 shows the advection process of
a single two-dimensional disk in the diagonal direction of a
squared computational domain on a distorted mesh. Unfor-
tunately the initially coherent material phases disperse after

only a few time steps since the material distributions are not
accounted for during the advection process. Due to the diffu-
sive properties, this effect gets worse for the first-order advec-
tion approach and it is obvious that these approaches are not
applicable in an ALE finite element method, where the final
solution would deteriorate considerably.

5.2 Interface reconstruction in the VOF method

During the advection step, the volume fractions and the mate-
rial-associated quantities have to be advected by considering
the material distribution and the position of the material inter-
face to conserve the different phase volumes. Since the VOF
method implies that the material interfaces are not traced
explicitly in time, the interfaces have to be reconstructed on
demand, based on the volume fractions in a small patch of
adjacent elements.

In the following, the second-order accurate PLIC method
should be applied, where the material interfaces are approx-
imated with straight lines or plane surfaces in two and three
spatial dimensions, respectively. In contrast to the SLIC
approach, the orientation of the surface normals can be cho-
sen arbitrarily to account for an accurate orientation of the
material interfaces. Therefore, each material surface 
 is rep-
resented element-wise by the following implicit equation (cf.
Fig. 24)

 : n̂ · x − d = 0, (80)
where n̂ ∈ Rn is the surface normal of unit length in n spatial
dimensions, d ∈ R is a surface constant with−∞ < d <∞,
representing the shortest distance of the surface from the ori-
gin and x can be any point on the surface. The key point of the



176 D. Fressmann, P. Wriggers

Fig. 24 Linear approximation of a 2D material interface 
 and defini-
tion of the surface parameters n̂ and d

interface reconstruction method is the proper determination
of the surface parameters, i.e. the normal n̂ and the constant
d . In general, the advection process of the volume fractions
can be divided into three main steps:

1. First, an approximation of the surface normal is computed
from the information of the adjacent elements. To improve
the interface reconstruction, a post-smoothing procedure
for the normal can optionally be applied using an iterative
process.

2. In a second step, the material boundary is reconstructed,
according to the volume fraction of the corresponding ele-
ment and material using the normal, obtained from the first
step. In case of a linear, first-order reconstruction (line in
2D; plane surface in 3D) this problem is unique and can
be solved by determining the truncation volumes.

3. Finally, the advection volumes of each material are com-
puted and updated element-wise in the material advection
phase.

In the following the algorithms, necessary for these three
steps will be presented and discussed in more detail. An over-
view of different methods and recent developments in VOF
interface tracking algorithms is given in [15] or [54].

5.2.1 Determination of the surface normal

The determination of the surface normal n̂ within the
mixed-material elements is the most important aspect of the
interface reconstruction process, since it highly influences
the final accuracy and quality of the reconstructed material
shape. Unfortunately, this process is not unique and there-
fore approximations have to be accepted. Much effort has
been made by different researchers to develop accurate sur-
face normals even for the geometrically more complex three
dimensional case. Most of these methods are based on fi-
nite difference stencils, least-squares fits, error minimization
and other geometric constructs. Second-order methods can
be obtained by combining these methods, e.g. computing an
approximation of the normal and improve the normal using
a local least-squares procedure. In the following, use should
be made of the structure of the finite element mesh, where
logical mesh directions exist and a transformation from the
local to the global coordinate axes are avoided.

Fig. 25 Numbering of nodes and elements and approximation of the
surface normal in element

(
i, j (, k)

)
for the two and three dimensional

case in a 9/27 element patch

Probably the most promising approach to get an approx-
imation of the normal was proposed by [67] and is based on
the spatial gradient of the volume fractions

n̂ ≈ grad f k

| grad f k | , (81)

which is normalized to unit length. Since the gradient is not
a smooth function in space, it can clearly not be computed
exactly and different schemes of first- and second-order accu-
racy can be used to approximate the gradient using the dis-
crete distribution of the volume fractions. A very accurate
approach was derived by [68]. The method is based on a
nine-point finite difference stencil in two dimensions, resp. a
27-point stencil in three dimensions, formed by the volume



Advection approaches for SALE and MMALE Procedures 177

fractions of a patch of adjacent elements (sketched in Fig. 25).
Using a finite difference notation, the three spatial compo-
nents of the gradient of f k in the current element can be
approximated as

∂ f k

∂x1
= f̄ k

i+1, j,k − f̄ k
i−1, j,k

2 hξ

∂ f k

∂x2
= f̄ k

i, j+1,k − f̄ k
i, j−1,k

2 hη

,

and
∂ f k

∂x3
= f̄ k

i, j,k+1 − f̄ k
i, j,k−1

2 hζ

,

(82)

where f̄ k
i+1, j,k is a weighted average of the volume fraction

of material k and hξ , hη and hζ are the characteristic ele-
ment lengths in the three corresponding local element coordi-
nate directions. The weighted difference f̄i+1, j,k for element
(i, j, k) is computed according to

f̄ k
i+1, j,k =

1

16

(
f k
i+1, j−1,k−1 + f k

i+1, j−1,k+1

+ f k
i+1, j+1,k−1 + f k

i+1, j+1,k+1

+2 ( f k
i+1, j−1,k + f k

i+1, j+1,k + f k
i+1, j,k−1

+ f k
i+1, j,k+1)+ 4 f k

i+1, j,k

)
.

(83)

For the two-dimensional case, the above form simplifies to

f̄ k
i+1, j =

1

4

(
f k
i+1, j−1 + 2 f k

i+1, j + f k
i+1, j+1

)
. (84)

In Figs. 26 and 27, some examples of Youngs normal recon-
struction method for the two and three dimensional case are
depicted. A circle/sphere with diameter 7 that is embedded in

Fig. 26 Results of the interface reconstruction using the surface normal
following [68] for a circular disk and a square on a homogeneous and
a distorted (15×15) grid in two spatial dimensions

Fig. 27 Results of the interface reconstruction using the surface nor-
mal following [68] for a sphere and a cube on a homogeneous and a
distorted (15×15×15) grid in three spatial dimensions

a discrete domain with dimensions 10×10(×10) is depicted,
where the mesh density is chosen to be 15 elements per spa-
tial direction. The reconstruction is performed on both, an
undistorted and a distorted grid. Even though the reconstruc-
tion of the circular shapes shows some unsmooth transitions
between adjacent elements that are due to a deterioration of
the quality of the finite difference approximation for the nor-
mal gradient in case of a distorted element geometry, the
reconstructed shapes are very accurate. Indeed, this is not
the case for the cubic shapes, since the unsmooth corners
and edges cannot be represented by a linear approximation
of the surfaces within each element. In this case, the mesh
has to be refined, to resolve the sharp edges with sufficient
accuracy (cf. Fig. 28, where the number of elements has been
increased from 15 to 30 elements per spatial direction).

An improvement of the normal determination in the two-
and three-dimensional case can often be achieved using a
least-squares volume-of-fluid interface reconstruction algo-
rithm (LVIRA – [52]), based on the minimization of the fol-
lowing potential in each 3× 3/3× 3× 3 element patch

G(n̂) = 1

2

(
V f − V (n̂)

)2 → MIN!, (85)
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Fig. 28 Results of the interface reconstruction using the surface normal
following [68] for a cube on an undistorted and a distorted grid in three
spatial dimensions for two different mesh densities

where V f = f V is the inclusion volume in the element patch
computed from the volume fractions, while V (n̂) is the vol-
ume under the straight surface line n̂ ·x−d , in dependence of
the surface normal n̂ of the center element. While V f can eas-
ily be computed using the volume fractions, no closed-form
can be given for V (n̂). Thus an iterative minimizer for the new
surface normal n̂ has to be applied. This improvement works
fine on homogeneous meshes for arbitrary surface geome-
tries, whereas for a general distorted mesh, several local min-
ima can possibly occur for the above minimization problem
and a stable solution can often not be attained, depending on
the deformed element-shapes in the patch.

Fig. 29 Improvement of the surface normal for the two-dimensional case; left: element patch for the application of the Schwartz algorithm and
right: comparison of the quality of the reconstructed surface normal for a circular and a rectangular material sample on a distorted grid

Indeed, another method, referred to as the Schwartz algo-
rithm, works fine even on distorted meshes. This method first
predicts the surface normal n̂ for the center element of a
patch, using the gradient-based method mentioned above.
Subsequently, the surface constants d are determined in the
current and the adjacent elements, assuming the normal n̂ for
all elements in the patch. In a third step, the center points of
the reconstructed interfaces are connected with straight lines
in the two-dimensional case and the normals n̂1 and n̂2 are
obtained (cf. Fig. 29). The improved normal n̄ can then be
obtained by averaging the two normals n̂1 and n̂2 of the con-
nection lines as n̄ = 1

2

(
n̂1+ n̂2

)
. Note that this step requires

the proper determination of adjacent elements containing the
material boundary.

The reconstructed shape using Youngs interface normal
calculation and the above mentioned improvement are
depicted in Fig. 29 (right) for the circular shape on a distorted
grid in two spatial dimensions. As expected, the interface
shows a very smooth transition between adjacent elements
that is superior to the shapes, depicted in Fig. 26. Addition-
ally, the reconstruction was performed for the rectangular
material sample, where again in the vicinity of the sharp
edges, the quality of the surface transitions deteriorates con-
siderably, but still shows an improved shape, compared to
Fig. 26. Note that this problem only occurs if sharp edges of
different materials are accounted for. In this case, the mesh
has to be refined appropriately. However, in a micromechan-
ical problem, where usually only spherical or approximately
spherical inclusions are considered, this problem is not sig-
nificant.

Unfortunately, these above mentioned improvement gets
much more complicated in three spatial dimensions, since
the choice of the elements required for the determination of
the adjacent normals n̂1 and n̂2 is not unique. Furthermore,
the surface constants have to be determined for all mixed
elements in the patch. As will be outlined in the following
paragraph, this step requires an iterative procedure and the
numerical overhead increases considerably. For this reason,
Youngs approximation is found to be sufficient for the three
dimensional case.

5.2.2 Determination of the surface constant

In the second step, the position of the material surface in
space has to be determined by choosing the surface parameter
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Fig. 30 Dependence of the surface constant d from the volume fraction f for different shaped elements. The surface is moved along the local
coordinate s and the surface constant is evaluated. The resulting non-linear distribution is depicted on the right

d based on the given surface normal n̂. In contrast to the
determination of n̂, which can only be done approximately,
the surface constant can be determined exactly as a function
of the surface normal, using the volume fraction f k of the
current element and material phase to conserve the differ-
ent material volumes. The general approach is to compute
the truncation volumes arising from the intersection of the
approximated surface with the element volume. In the fluid-
mechanics community, the current element is often mapped
onto a reference element, and a certain number of possible
intersection cases are distinguished and compared (see e.g.
[29] or the overview paper of [15]). However, this approach
is only accurate and applicable for undistorted or uniformly
distorted meshes, where the spatial mapping to the refer-
ence element is constant. For the general case of a distorted
element, this mapping is non-constant and has to be approx-
imated using an iterative process, where the computational
effort is increased considerably. Therefore, another approach
should be used here that determines the truncation volumes
directly using the divergence theorem (see [54]). In the fol-
lowing, these truncation volumes will be denoted as Atr for
the two-dimensional case and Vtr in the three-dimensional
case. With the knowledge of the truncation volumes, the
surface constant can be obtained using an efficient iterative
process. Starting with an initial guess for d , Eq. (80) is eval-
uated, the truncation volume of the planar surface with the
element is computed and subsequently, compared with the
volume fraction of the current element. The error in the vol-
ume of material k is then given by the following expression

ek
v(d

k) = V (dk)− V k = V (dk)− f k V, (86)

where V (dk) = Vtr(dk) is the truncation volume of material
k as a function of the surface constant dk , while V k = f k V
is the aspired volume of the inclusion material, prescribed by
the volume fraction f k . If the error is not zero, the surface
constant has to be adapted iteratively.

Generally, the dependence of the surface constant d from
the volume fraction f is a non-linear function, even in the
two dimensional case. This is depicted in Fig. 30, where a
selection of different shaped elements has been examined
for a prescribed example surface normal vector n̂. The above

problem leads to a one-dimensional minimization problem to
minimize the non-linear error function ev(d). The function
minimization is performed using Brent’s method (see e.g.
[51]) that is based on a gradient-free minimization scheme.
Each iteration step fits a quadratic polynom through three
consecutive evaluation points. The minimum of the quadratic
polynom is computed and chosen as an improved solution
point. The iteration proceeds, unless an accurate minimum
is achieved. Although the function evaluation to compute
the truncation volumes V (d) is relative expensive, Brent’s
method leads to a relatively fast convergence, since only one
function evaluation per iteration step is required.
Convergence is usually achieved after approximately 6–11
iterations, depending on the volume fraction.

The main effort for the determination of the surface con-
stant is the proper determination of the truncation volumes,
that originate from the intersection of a straight line or plane
surface, described by n̂ and d , with the distorted quadrilateral
or hexahedral element. This process is based on the diver-
gence theorem, described in Sect. 2.6 [Eq. (15)]. In the fol-
lowing, the computation of the truncation volumes in two and
three spatial dimensions should be addressed.

Determination of the polygon volumes in two spatial dimen-
sions The determination of the polygon area Atr in two spa-
tial dimensions can easily be performed on the basis of the
divergence theorem, where the area integral in Eq. (15) is
separated into a sum of surface integrals

Atr =
∫

�tr

dv = 1

2

ns∑

s=1

∫


s

x · ns d
s (87)

that reduce to line integrals. ns denotes the number of straight
polygon edges, ranging from 3 to 5 and ns is the (constant)
normal of edge s (Fig. 31). The line integration is performed
analogous to the approach given in Sect. 2.6 and we obtain
the total truncation area of the polygon to

Atr = 1

2

ns∑

s=1

(
xs

1 ys
2 − xs

2 ys
1

)
, (88)
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Fig. 31 Determination of the truncation polygon using the polygon
edges in 2D

with the start and end coordinates of each polygon line xs
1

and xs
2, respectively. The above form requires the determi-

nation of the vertices of the truncation polygons in a proper
order. This can be obtained by looping the element edges,
generating the element edge vectors x(ξ) = xi + ξ vi with
vi = x′i − xi (the node x′i is the successor node to xi ) and
inserting the element edge vectors into the surface equation
(80). The current edge has an intersection point with 
, if
0 ≤ ξ ≤ 1.

Determination of the polygon volumes in three spatial dimen-
sions In the three dimensional case, the determination of the
truncation volumes is much more complicated. The founda-
tion for the approach is again the divergence form Eq. (15),
where the truncation volume can be represented as

Vtr =
∫

�tr

dv = 1

3

∫

�tr

div x dv

= 1

3

∫

�tr

div(x − n̂ d) dv.

(89)

The last form follows from the condition that the normal of
the material interface n̂ is constant on the plane surface and
thus div n̂ = 0. The volume integral can now be converted
into a surface integral, where the surface of the truncation
volume is splitted into n f element surfaces 
s

tr and the recon-
structed material interface 
tr

3 Vtr =
∫


tr

(x − n̂ d) · d	

=
n f∑

s=1

∫


s
tr

(x − n̂ d) · ns d
s

+
∫


tr

(x − n̂ d) · n̂ d
.

(90)

Since the dot product in the second part of the right-hand side
vanishes for each point on the material interface, the equa-
tion can be reduced to the solution of the following surface
problem

Vtr = 1

3

n f∑

s=1

V s

with V s =
∫


s
tr

(x − n̂ d) · ns d
s .
(91)

Note that the integration process is only performed over the
truncation surface 
s

tr , defining the part of the element face
s that lies under the material surface 
s [grey-shaded region
in Fig. 32 (right)].

An analytic approach to solve the above integral is given
in [39]. Each surface 
s

tr of an arbitrary deformed brick ele-
ment is defined by four vertex points that are connected with
straight lines in the three-dimensional space (Fig. 32). The
intersection lines of 
s with the element surfaces are in gen-
eral curved lines. Each of these ruled surfaces can be param-
etrized by a local coordinate system (α, β), as introduced in
Eq. (23)

x = x1 + α (x2 − x1)+ β (x4 − x1)+ α β d. (92)

Subsequently, the ruled surface element is given by Eq. (25)

d	s=ns d
s=[X1 + α (X3 − X4)+ β (X3 − X2)] dα dβ,

(93)

with the cross vectors Xi , defined in Eq. (24). Insertion of the
parametrization and the above surface element into Eq. (91)
and performing some vector algebra, the following expres-
sion can be obtained

V s = (
x1 − n̂ d

) · [X1 K00 + (X3 − X4) K10

+ (X3 − X2) K01] − νtet K11
(94)

Fig. 32 Top: arbitrary deformed brick, composed of eight vertices, six
ruled surfaces and truncation surface 
s ; bottom: surface (2−3−7−6)
with local vertex labels 1∗, 2∗, 3∗ and 4∗, curved surface intersection
of 
s and intersection points of the surface with the element edges 3∗∗
and 4∗∗
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with

νtet = 1

2
d · k = (x1 − x2)× (x2 − x3) · (x3 − x4)

and Knm =
∫


s
tr

αn βm dαdβ.
(95)

A closed-form solution of this problem is given in [39] and
is obtained by analytically evaluating the K-integrals

V s = 1
6

∑
i εi Yi

(d−di )
2

λi
+ νtet

2

∑
i εi [J1(wi )

− 2 J2(wi )+ J3(wi )] (d − di )
4

λ2
i

(96)

where d is the current surface constant, di = MIN(d, µi )
and µi = n̂ · xi denote the parameters of a parallel surface
through the four vertex nodes xi (i = 1,. . .,4). Subsequently,
using ε1 = ε3 = +1 and ε2 = ε4 = −1 the remaining
parameters can be defined as follows

Yi = (x′′′i − d n̂) · (xi − d n̂)× (x′i − d n̂),

λi = εi (µi − µ′i ) (µi − µ′′′i )

wi = ν

λi
(d − di ), and ν = n̂ · B.

(97)

The bracketed term [J1− 2 J2+ J3] can further be specified
by

[J1(w)− 2 J2(w)+ J3(w)]

= 2
∞∑

n=0

(−w)n

(n + 2) (n + 3) (n + 4)
.

(98)

This analytical solution is very efficient and can mostly
be used. However, there are two special cases, where this
direct solution fails

1. in the first case, the surfaces with normal n̂ through two
adjacent surface nodes xi have the same distance from
the origin, i.e. µi = µ′i . Therefore, following Eq. (97)2,
the parameter λi vanishes and the corresponding terms in
Eq. (96) cannot be properly computed,

2. the second case addresses severely distorted elements,
where the series in Eq. (98) is not necessarily defined.
Here, the absolute value of wi in Eq. (97)3 may exceed 1,
i.e. if ABS (wi ) ≥ 1.0 and the series approaches infinity.

Unfortunately, the above mentioned publication does not give
any results for these specific cases and a fall-back solution has
to be applied for the integration of the corresponding surface
integrals, if one of these cases is detected during the integra-
tion process. In the following, a simple numerical integra-
tion procedure of Eq. (91)2 will be performed for the surface
element. Here, first the intersection points of the material
interface with the edges of the surface element have to be
determined [points 3∗∗ and 4∗∗ in Fig. 32 (right)]. This leads
to a certain number of n points, defining the truncation sur-
face. If n ≤ 4, the integration can simply be performed by
approximating the region with a triangular or a quadrilateral

element and applying a standard Gauss integration procedure,
resp. the analytical solution, given in Eq. (27). However, if
more than four points are detected, a submeshing procedure
has to be applied, where the resulting surface is approximated
using multiple triangular or quadrilateral elements. However,
since the straight edges of this submesh are not able to cap-
ture the exact geometry of the ruled intersection surface, an
approximate solution has to be accepted. Indeed the errors
introduced by this procedure are relatively small and further
improvements, like e.g. the use of higher-order elements, are
not required.

5.2.3 Advecting material-associated volumes

In the last step, the advection approach of the material-asso-
ciated variables in terms of the volume fraction f k is presented
that accounts for the evolution of f k during the transport step

∂ f k

∂t

∣
∣∣∣
χ

+ grad f k · c = 0. (99)

As seen before, the application of a TVD advection sche-
me would lead to a dispersion and a loss of coherence of
the considered material phases. Since the volume fractions
are directly associated with a certain type of material, the
transport volumes of the different materials have to be con-
sidered to fulfill the local balance of mass after the advection
step. This requires the determination of the correct advec-
tion volumes of each material during the advection process
to prevent the disintegration and dispersion of the coherent
material phases. As before, the advection process for the vol-
ume fractions is based on the volume-weighted advection
scheme, given in Eq. (48)

f k+ V+ = f k− V− −	t
∑

s

F s
f

with V+ = V− −	t
∑

s

F s,

(100)

where the flux rate F s
f over the boundary s is computed

according to the current material distribution. Here, four main
steps have to be considered (cf. Fig. 33)

1. In the first step, the material interface of the current ele-
ment is reconstructed from the volume fractions. Clearly,
this is only necessary, if the current element contains more
than one type of material → material interface given
by: 
 : n̂ · x − d = 0.

2. In the second step, the total flux volumes are determined
from the flux polygon by back-tracing the characteristics
−	t c1 and −	t c2 in the upstream direction. The poly-
gon consists of the two edge nodes x1 and x2 and the two
additional nodes x3 = x2 −	t c2 and x4 = x1 −	t c1.
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Fig. 33 Material-volume based advection process of the volume frac-
tions; computation of the advection volumes; the overlapping advection
volume in the lower center is considered by the advection approach,
while the overlapping volume on the lower right is not accounted for

3. In step three, the truncation volumes 	t F s
f are computed

from the truncation polygons of the material surface that
is constructed from the total flux polygon using the algo-
rithms described in the last section.

4. The last step finally provides the computation of the new
volume fractions using the accumulated sum of the fluxes
	t

∑
s F s

f according to the above equation.

In case of a homogeneous, undistorted mesh, aligned to the
global Cartesian coordinate axes, the material advection vol-
umes are determined exactly, if the multidimensional sweep
approach is chosen, where the sweeps are performed in the
direction of the Cartesian axes. Unfortunately, in a finite
element ALE framework, the advection process is usually
performed on a distorted mesh. In this case, the advection vol-
umes of different edges within one element can interact and
overlap with adjacent elements. Depending on the distribu-
tion of the material surfaces, special cases can be constructed,
where the material advection volumes are not determined cor-
rectly [cf. Fig. 33 (right)]. These influences get worse in case
of large local Courant numbers, i.e. advection volumes.

With slight modifications, the above material advection
scheme can directly be incorporated into the element-based
TVD advection procedure, as was presented in Alg. (4.1),
where the multidimensional advection process can again be
accurately performed using the one-dimensional sweep pro-
cess. The final global VOF advection algorithm is given in
Alg. (5.1). Since the above described advection process is
not exact on distorted meshes, some rough corrections are
applied at the end of each advection sweep to ensure a

Algorithm 5.1 Schematic global advection algorithm for the
volume fractions f k

Requires: upstream geometry x− and volume fractions f k−; con-
vective displacement increment uc = 	t c; element con-
nectivity list

Provides: advected material-associated volumes and new volume
fractions f k

schematic VOF advection algorithm showing the steps necessary for
each spatial advection sweep:

1. setup neighbor informations of adjacent elements from element
connectivity list (only first time)

2. loop all elements with prescribed convective velocity c �= 0 at the
vertices
(a) determine the number of materials within the current element
(b) reconstruct the material surface for each material k with

0 < f k < 1 → (n̂, d)k

(c) loop element edges
– determine advection volume flux

(
	t F s

)
due to Eq. (49)

and nodal advection values; cycle inflow volume fluxes
– update total element volume flux→ 	t

∑
s F s ; subtract

from current, add to adjacent element
– if 0 < f k < 1 setup total flux polygon for current out-

flow element edge and calculate the truncation volume
	t F s

f , otherwise set 	t F s
f = 	t F s

– update total material-associated volume fluxes →
	t

∑
s F s

f for each element; subtract from current, add
to adjacent element

3. second loop over all elements to perform global variable update
(a) determine total upstream volumes V− and update downstream

volumes V+ = V− −	t
∑

s F s

(b) update downstream volume fractions f k using the transport
volumes f k+ V+ = f k− V− −	t

∑
s F s

f
4. perform global and local corrections to the new volume fractions

consistent distribution of the volume fractions after the advec-
tion step

1. under- and overshots of the volume fractions are cor-
rected, i.e. if ( f k > 1.0 − ε) set f k = 1.0, resp. if
( f k < ε) set f k = 0.0, where ε is chosen to be a very
small, positive number (e.g. ε = 1.0× 10−8),

2. the volume fractions are rescaled to sum to 1.0, i.e. if∑
k f k > 1.0 set f k = f k/

∑
l f l .

Numerical experiments have shown that the influence of these
rough corrections are of minor order of magnitude and the
masses of the different materials are usually conserved lo-
cally and globally. This will be examined in the following
numerical examples section.

5.3 Numerical examples for the advection problem

In the following, the above presented VOF algorithm is veri-
fied by means of some simple advection examples in the two-
and three-dimensional case. The advection of a single circu-
lar disk/sphere is performed in a region of dimensions 10n

with n = 2 (2D) or n = 3 (3D). Furthermore, the region is
discretized using a spatially fixed structured 30n quadrilateral
resp. hexahedral finite element mesh. All advection processes
are performed first on a homogeneous mesh and additionally
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Fig. 34 Velocity fields for the three material advection tests; left: purely diagonal flow, center: rotational flow and right: single vortex flow

on a distorted mesh (cf. Fig. 16 for a 2D sketch), where three
different Courant numbers, specifically Cr = 0.3, Cr = 0.5
and Cr = 0.7 are considered to examine the behavior at
different advection volumes.

In the first example a circular disk/sphere is advected
straight in the diagonal direction of the region, where the
quality of the diagonal advection using the one-dimensional
advection sweeps is verified. In the second example, the cir-
cular disc/sphere is subjected to a rotational velocity field
around a center axis of the region and advected over one rev-
olution. Note that both velocity fields lead to an incompress-
ible advection process, where the shapes of the inclusions
are physically preserved. In a third example, a compressible
vortex flow is applied to a single, eccentric arranged circular
disk in two dimensions, where the divergence term in Eq. (32)
has to be accounted for, since div c �= 0. The corresponding
velocity fields are depicted in Fig. 34 for the two-dimensional
case.

Example 1 Diagonal advection of a circular disk/sphere The
diagonal advection process is performed for a circular disk
and a sphere with diameter 3 on a discrete 10n (n = 2, 3)
domain in two and three spatial dimensions, respectively. The
domain is discretized as mentioned before. The results for the
two-dimensional case are depicted in Fig. 35 for the homo-
geneous and the distorted mesh. Generally, the alternating
one-dimensional advection sweeps to perform the advection
process over the element diagonals again work very accurate
and the effect of crosswind diffusion is almost eliminated. In
contrast to the material-associated TVD advection scheme,
depicted in Fig. 23, the circular shapes of the material sample
remain coherent and the total volumes of the two materials
are conserved during the whole advection process. For the
homogeneous mesh, the alternating direction approach pro-
vides a – numerically – exact determination of the advection
volumes and the advection process is very accurate for all
three Courant numbers. However, in case of a distorted mesh,
the solution deteriorates with an increasing Courant number
due to the partly unconsidered material advection volumes,
mentioned above. This deterioration leads to a dispersion of

the material phase, where small fragments of the disk are
detached from the initially coherent material.

The same effect can be observed in the three-dimensional
case, depicted in Fig. 36, again for the homogeneous and dis-
torted mesh. While in the homogeneous case, the material
again remains coherent, the advection process on the dis-
torted mesh leads to the material dispersion at large Courant
numbers. Nevertheless, the advection process is very effi-
cient and accurate, even on distorted meshes at small Courant
numbers, compared to the TVD advection, showed in Fig.
23. Note that in case of the undeformed mesh, the analytical
solution for the computation of the truncation volumes can
be used, while this analytical solution may fail for a distorted
element geometry in some cases and the fall-back solution
has to be applied. Therefore, also the approximative character
of the determination of the truncation volumes contributes to
the dispersion of the material volume.

Following the literature, more improved results for the
VOF method can e.g. be obtained using a combination with
a MAC (Marker and Cell) scheme, where additionally to the
volume fractions a certain number of marker points are added
that describe the surface which can now be represented by a
polygon (see e.g. [50]). However, these methods can be com-
putationally very expensive since the (Lagrangian) motion of
the marker points has to be traced during the non-Lagrang-
ian deformation process (see e.g. [4] and references therein)
and are thus not suitable in a finite element ALE framework,
where more importance is concerned with efficiency and a
small numerical overhead.

Example 2 Rotational advection of a circular disk/sphere In
the second example, a single, eccentric arranged circular disk
resp. sphere is rotated around a central axis of the computa-
tional domain. For the two-dimensional case, the solution of
the advection process is depicted in Fig. 37 for the homo-
geneous and the distorted mesh, performed again for the
three different Courant numbers Cr = 0.3/0.5/0.7. The pre-
scribed velocity field leads to an alteration of the advection
directions with respect to the orientation of the finite element
mesh. Again, for the undeformed and the deformed mesh
shape, the advection process is very accurate at low Courant
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Fig. 35 2D-VOF advection of a single disc in a diagonal velocity field c at Cr = 0.3, Cr = 0.5 and Cr = 0.7 on a homogeneous (top) and
distorted (bottom) 30× 30 quadrilateral element mesh

Fig. 36 3D-VOF advection of a single sphere in a diagonal velocity field c at Cr = 0.3, Cr = 0.5 and Cr = 0.7 on a homogeneous (top) and
distorted (bottom) 30× 30× 30 hexahedral element mesh
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Fig. 37 2D-VOF advection of a single disc in a circular velocity field at Cr = 0.3, Cr = 0.5 and Cr = 0.7 on a homogeneous (top) and distorted
(bottom) 30× 30 quadrilateral element mesh

Fig. 38 3D-VOF advection of a single sphere in a circular velocity field at Cr = 0.5 on a homogeneous and distorted 30× 30× 30 hexahedral
element mesh

numbers and the shape of the circular disk is retained suffi-
ciently correct. In the three-dimensional case, depicted in
Fig. 38, again similar results are obtained. Here the simula-
tion is limited to a Courant number of Cr = 0.5, since the
results essentially coincide with the two-dimensional advec-
tion process. The single sphere is rotated around a diagonally
arranged, horizontal axis where a diagonal advection in all
three logical element directions is accounted for.

Since the advection process within the MMALE approach
is always performed on a distorted mesh, obtained from the
Lagrangian step, the Courant number should be restricted
to e.g. Cr = 0.5, to ensure a coherent material distribution

during the advection step. Correspondingly, to account for
the required total advection volumes, the number of neces-
sary advection steps has to be increased.

Example 3 Single disk in a vortex flow Note that the preced-
ing advection tests, the diagonal and the circular advection,
are performed in an incompressible flow, where – physically
– the disc remains circular and the divergence term in Eq. (32)
vanishes. This is the common case in a finite element ALE
approach, where the mesh nodes are relocated independently
of the spatially fixed material distribution. In the follow-
ing, a more complex test with a compressible velocity field
should be applied to verify the reconstruction capabilities
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in a compressible flow. This test was applied by different
researchers (see e.g. [59] and references therein) to verify
different interface tracking methods. In this test, the advec-
tive flow is described by a vortex velocity field within the
coordinate limits (x, y) ∈ [0, π] in the two dimensional case
[cf. Fig. 34 (right)]

vx = cos(x) sin(y), vy = − sin(x) cos(y), (101)

where again an eccentric arranged circular disk is considered.
The exact solution is a helix-like distribution of the material
without separation (see Fig. 39). For the numerical analysis,
the Courant number of the flow is chosen to be Cr = 0.25 to
minimized the effects arising from the overlapping advection
volumes. A first advection test is performed with an initial
mesh density of 50 elements per spatial direction, where first,
the simulation is integrated forward in time for about 2,000
time steps, before the velocity field is reversed and another
2,000 time steps are performed. The exact solution would
certainly return to the initial configuration.

Figure 40 shows the material distribution for the pre-
scribed velocity field at the beginning, after 2,000 time steps
and after 4,000 time steps, for the homogeneous and the dis-
torted mesh. A conspicuous effect is the separation of the
material distribution in both cases. For an accurate determi-
nation of the surface normal n̂, using the finite differences
stencil, the distribution of the volume fraction is expected to
be as smooth as possible and thus a certain amount of ele-
ments is required for all spatial directions. If the mesh density
is too small, the gradient of the volume fractions can not be
computed properly, dispersion effects occur and finally the
material separates. This separation also implicates that the
initial configuration is not retained exactly after the veloc-
ity is reversed. A comparison between the homogeneous and
the distorted mesh shows very similar results, since the dis-
persion effects of the overlapping volumes are minimized,
due to the low Courant number. Moreover, the present mesh
density is not able to capture the exact material distribution,
as mentioned above.

Fig. 39 Sketch of the exact solution of the helix-like vortex flow field
after 2½ revolutions (reprinted from [4])

If the mesh density is refined, the material flow is re-
solved more accurately and less material separation occurs
as depicted in Fig. 41. The number of elements per direc-
tion is increased to 100, while simultaneously the Courant
number is increased to Cr = 0.5 to obtain the same defor-
mation velocity. The material after 2,000 time steps is still
separated, but the reversed material distribution is reproduced
more accurately, compared to the example with the lower
mesh density. Transferring these issues to applications in an
MMALE finite element context, special care has to be taken
into account to ensure that the different materials are always
sufficiently resolved by the finite element mesh. Especially,
if e.g. highly localized material deformations or crack grows
are to be considered, uncertainties due to incorrect material
interface reconstructions should be excluded and some kind
of error measure has to be included to get an idea of the qual-
ity of the material resolution. Indeed, this is not the main
objective of this work and is therefore not further considered
here.

Considering multiple material properties within one element
A special problem emerges, if more than two material prop-
erties occur within one mixed element. This is for instance
a standard problem in a micromechanical analysis, where in
addition to the matrix material, different inclusion materi-
als may appear. In the advection process, the material inter-
faces between all material phases have to be reconstructed to
account for the correct volume fluxes. Therefore the recon-
struction algorithm must first be able to distinguish between
different kinds of inclusions and furthermore, all material
interfaces have to be reconstructed, based on their respec-
tive occurrences. This is realized by storing the volume frac-
tions of all materials that possibly meet within one element or
within the first-order adjacent elements, separately as internal
element variables. The second point requires a more sophis-
ticated consideration, since special problems can occur con-
cerning the order of the materials and the maintenance of
the material coherences. More extensive discussions of this
problem are for instance given in [13] or [15].

However, in case of a micromechanical observation, this
problem can be circumvented, if the matrix material is treat-
ed as a void material that fills the gaps between the inclu-
sions. No explicit volume fraction is associated with the void
material and therefore only the volume fractions of the inclu-
sions have to be stored per (mixed-material) element. During
the advection step, first the number and type of the materi-
als within each element are determined and subsequently a
loop over all element materials is performed, including the
corresponding interface reconstructions and the determina-
tion of the material-associated advection volumes. Since each
material interface is reconstructed independently, the volume
fluxes can also be computed independently. Unfortunately,
this can lead to problems in the total volume conservation
within a mixed element, especially if the inaccuracies men-
tioned earlier arise. Therefore the corrections, described in
Sect. 5.2.3 are necessary to ensure the consistency of the
volume fractions [cf. Eq. (77)].
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Fig. 40 2D-VOF advection of a single disc in a vortex flow at Cr = 0.25; material distribution at the beginning, after 2000 time steps and after
reversed advection on a homogeneous (top) and distorted (bottom) 50× 50 element mesh

Fig. 41 2D-VOF advection of a single disc in a vortex flow at Cr = 0.5; material distribution at the beginning, after 2,000 time steps and after
reversed advection on a homogeneous (top) and distorted (bottom) 100× 100 element mesh
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Fig. 42 2D-VOF advection of seven discs in a circular flow; material distribution of the seven discs during the rotation process; homogeneous
mesh: 30 elements per spatial direction

Figure 42 shows a simple two-dimensional example, con-
sisting of seven circular discs on a homogeneous mesh. To
ensure multiple material properties within the mixed ele-
ments, the disks are in initial contact with each other, where,
additionally to the matrix material, the elements in the contact
zone contain several material phases. The prescribed veloc-
ity field corresponds to the incompressible, rotational con-
vective flow from the second example [cf. Fig. 34 (center)].
As can easily be seen, the distinction between the different
materials is ensured during the simulation and no mixture
of the material phases occurs. Thus the interface tracker is
able to distinguish between the different materials, while the
boundaries are reconstructed accurately. It should be noted
that this algorithm is completely independent of the number
of spatial dimensions and therefore also works for the three
dimensional case or distorted meshes.

6 Summary and conclusions

In the present paper, different advection approaches for the
application in a single- and multi-material ALE finite ele-
ment framework, based on the fractional step method, have
been reviewed and the basic requirements and properties for
these methods have been discussed. The arbitrary distribution
of the material boundaries in a MMALE approach addition-
ally necessitated a distinction of material- and volume-asso-
ciated solution variables which led to the implementation
of the two different advection approaches. The numerical
experiments show that the shape of the variable distribution
is reflected accurately and the material distribution remains
coherent throughout the advection process while the numer-
ical overhead remains in an acceptable limit.

Indeed, due to the explicit character of the underlying
fractional step method, the two computational steps are per-
formed independently of each other. It is well-known that, for
instance with regard to the mechanical part of the governing
equations, the balance of momentum, i.e. the equilibrium
conditions, after the advection step is usually not satisfied.
In theory, this might be a problem, especially if extremely
large material deformations have to be taken into account.

The lack of equilibrium forces the material to deform in the
following equilibrium iterations and if the distributions of
the solution variables are not properly maintained over the
advection process, additional element distortions can occur
that may lead to an abortion of the finite element method due
to negative Jacobians.

However, the presented advection algorithms are able to
reproduce the distribution of the solution variable after the
advection step very accurately and the deviation from the
solution prior to the advection process is very small and can
widely be neglected, especially if the time step size of the
Lagrangian step is not chosen to be too large (see [70]).
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