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Abstract We introduce a general parallel model for
solving coupled nonlinear and time-dependent problems
in soil mechanics, where we employ general purpose
linear solvers with specially adjusted preconditioners. In
particular, we present a parallel realization of the
GMRES method applied to a triphasic porous media
model in soil mechanics, where we compute the defor-
mation of unsaturated soil together with the pore-fluid
flow of water and air in the soil. Therefore, we propose a
pointwise preconditioner coupling all unknowns at the
nodal points. In two large-scale numerical experiments
we finally present an extended evaluation of our parallel
model for demanding configurations of the triphasic
model.

Keywords Parallel computing � Krylov methods �
Theory of Porous Media � Non-associated
elasto-viscoplasticity

1 Introduction

The parallel simulation of realistic finite element mod-
els in geotechnical engineering is a difficult task, since
the required resolution for reliable results yields very
large systems. Therefore, efficient iterative linear solvers
are indispensable. In particular, detailed models in soil
mechanics with several independent variables result in
coupled problems which together have a linearization
of saddle point structure, which is in addition

non-symmetric. Thus, simple solvers such as the cg-
method cannot be applied, and more advanced Krylov
methods which are well suited for the applications to
general systems are required.

Here, we show that the GMRES method as a general
purpose iterative linear solver can be applied successfully
to advanced problems in soil mechanics, provided that a
suitable preconditioner is available. In our application,
we are interested in the numerical simulation of a cou-
pled, triphasic model including the soil deformation and
the pore-fluid flow. In detail, these phases are a porous,
elasto-viscoplastic, materially incompressible solid skel-
eton uS , a viscous, materially incompressible pore-liquid
uL and a viscous, materially compressible pore-gas uG.
Note that such a complex multiphasic material model is
necessary for a realistic description of unsaturated soil
conditions [6]. It turns out, that a coupled approach for
all phases in the preconditioner leads to an efficient
numerical scheme, which is well suited for paralleliza-
tion, since it can be realized within the parallel linear
algebra module of our general model for parallel finite
elements introduced in [16].

This contribution is organized as follows: We give a
short introduction into the underlying material model
for the numerical simulation, and we comment on the
finite element realization. Then, we describe our parallel
model and the realization of parallel Krylov methods,
where we study in particular the GMRES method. Fi-
nally, we apply this scheme to the numerical simulation
of slope failure problems, which are initiated due to an
increasing ground-water table or an extremely heavy
rainfall.

2 A triphasic porous media model in soil mechanics

In this section, we summarize briefly the governing
equations of the triphasic model which we use for the
numerical experiments in this contribution. For a more
detailed derivation of the underlying triphasic porous
media model within the framework of the well-founded
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Theory of Porous Media (TPM), we refer to Ehlers et al.
[5, 6]. For a general view on the TPM, cf. the work by de
Boer [3] or Lewis and Schrefler [9]. The present model is
based on the concept of volume fractions na ¼ naðx; tÞ
which are defined as the local ratios of the constituent
volumes va with respect to the bulk volume v, where the
index a ¼ S describes the solid phase, and a ¼ F corre-
sponds to the fluid phase consisting of the constituents
uL (a ¼ L, liquid) and uG (a ¼ G, gas). Thus, the satu-
ration condition yields (in the absence of any vacant
space)

nS þ nF ¼ 1 with nF ¼ nL þ nG ; ð1Þ
where the overall fluid volume fraction nF also repre-
sents the porosity of the soil. The saturation of the fluid
constituents liquid and gas within the fluid phase is de-
scribed by

sb ¼ nb

nF
; b 2 fL;Gg ; ð2Þ

obviously satisfying the saturation constraint

sL þ sG ¼ 1: ð3Þ
Associated with each constituent ua is an effective
(realistic) or material density

qaR ¼ dma

dva

defining the local mass of the constituent ua per unit of
va. Combined with the volume fractions na ¼ dva=dv,
this gives the partial or bulk density

qa ¼ dma

dv
¼ naqaR :

Thus, it is evident that the property of material incom-
pressibility of a constituent ua (defined by qaR ¼ const.)
is not equivalent to global incompressibility of this
constituent, since the partial density can still change
through changes in the volume fractions na.

The model under study is governed by the primary
variables solid displacement uS and the effective pore-
fluid pressures pLR and pGR. Proceeding from quasi-static
conditions, the set of governing equations is given by the
vector-valued overall momentum balance corresponding
to uS , the scalar-valued fluid volume or mass balance
equations corresponding to pLR and pGR and additional
constitutive relations. Note that instead of this pressure-
pressure formulation alternatively a pressure-saturation
formulation can be used for the description of the pore-
fluid flow, cf. Helmig et al. [7, 8].

The overall momentum balance yields

div rS
E � pI

� �
þ qg ¼ 0 ; ð4Þ

where rS
E is the effective solid stress, p is the effective

pore-pressure exceeding the atmospheric pressure p0, q is
the overall density, and g is the overall gravity.

For the description of the solid skeleton deformation,
we consider the (linearized) solid strain tensor

eS ¼
1

2
ðgrad uS þ gradT uSÞ ð5Þ

(obtained from the solid displacement uS through the
kinematical compatibility condition), which is additively
split into elastic and plastic parts

eS ¼ eSe þ eSp : ð6Þ
The effective solid stress

rS
E ¼ 2lSeSe þ kSðeSe � IÞI ð7Þ

is given by the Hookean law, where lS and kS are the
bulk Lamé constants of the porous solid skeleton.
Finally, the plastic evolution of the internal variables is
given by a viscoplastic flow rule of Perzyna type [12]

ðeSpÞ0S ¼
1

g
F ðrS

EÞ
r0

� �r
oGðrS

EÞ
orS

E
: ð8Þ

Here, the material time derivative following the motion
of uS is denoted by ð�Þ0S ¼ oð�Þ=ot þ gradð�Þx0S, where x0S
is the velocity field of the solid motion function. Fur-
thermore, g is the relaxation time, r0 the reference stress,
r the viscoplastic exponent, and we use the notation
xh i ¼ maxf0; xg. Since porous soil materials are gener-
ally known as frictional materials, the concept of non-
associated plasticity has to be applied, where the yield
function [4]

F ¼ U1=2 þ bIþ �I2 � j ¼ 0;

U ¼ IIDð1þ c#Þm þ 1

2
aI2 þ d2I4;

# ¼ IIID=ðIIDÞ3=2;

ð9Þ

is different from the plastic potential [10]

G ¼ C1=2 þ w2Iþ �I2;

C ¼ w1II
D þ 1

2
aI2 þ d2I4:

ð10Þ

Here, I, IID and IIID are the first and deviatoric (nega-
tive) second and third principal invariants of rS

E. Fur-
thermore, (9) and (10) contain the material parameters
a, b, c, d, �, j, m, w1, w2, which have to be adjusted to
experimental results [11].

In the momentum balance equation (4), the effective
pressure is given by

p ¼ sLpLR þ sGpGR ; ð11Þ
and the overall density reads

q ¼ nSqSR þ nLqLR þ nGqGR : ð12Þ
Consequently, relations for the saturation sL

v of the pore-
liquid sL, for the volume fraction nS of the solid and for
the density qGR of the pore-gas have to be specified.
Following the ansatz of van Genuchten [15], the pore-
liquid saturation

sL ¼ sL
effð1� sL

res � sG
resÞ þ sL

res ;

sL
eff ¼ ½1þ ðagen pCÞjgen ��hgen ;

ð13Þ
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is expressed as a function of the capillary pressure

pC ¼ pGR � pLR ; ð14Þ
where the quantities sL

res, sG
res, agen, jgen and hgen are

material parameters, cf. Fig. 1. The integration of the
volume balance of the solid and, thereafter, the lineari-
zation around the natural state yields the relation for the
determination of the volume fraction

nS ¼ nS
0Sð1� div uSÞ; ð15Þ

with respect to the initial volume fraction nS
0S . Finally,

Boyle’s ideal gas law serves as the constitutive relation
for the determination of the density

qGR ¼ pGR þ p0
�RGh

ð16Þ

depending on the excess pressure pGR, the atmospheric
pressure p0, the specific gas constant �RG of the pore-gas,
and the absolute Kelvin’s temperature h, which is con-
stant due to the assumption of an overall isothermal
problem.

As was already mentioned above, the volume balance
of the pore-liquid and the mass balance of the pore-gas
are finally needed for the determination of the pore-fluid
pressures pLR and pGR,

ðnLÞ0S þ nL divðuSÞ0S þ divðnLwLÞ ¼ 0;

ðnGqGRÞ0S þ nGqGR divðuSÞ0S þ divðqGRnGwGÞ ¼ 0;
ð17Þ

depending on the Darcy-type filter velocities nbwb:

nLwL ¼ �
KS
0S

lLR
sL
eff

� ��gen
1� 1� sL

eff

� �1=hgen
h ihgen

� �2

� 1� nS

1� nS
0S

� �p

grad pLR � qLRg
� �

;

nGwG ¼ �
KS
0S

lGR
1� sL

eff

� �cgen 1� ðsL
effÞ

1=hgen
h i2hgen

� 1� nS

1� nS
0S

� �p

grad pGR � qGRg
� �

:

ð18Þ

Here, KS
0S is the initial intrinsic permeability coefficient,

lbR are the effective shear viscosities, �gen, cgen are addi-
tional parameters for the relative permeability functions
within the van Genuchten model, and p is a material
parameter governing the exponential behavior of the
deformation dependence of the intrinsic permeability [6].

3 Weak formulation of the triphasic model

For the numerical realization of the model, the inde-
pendent primary variables solid displacement uS and
effective pore-fluid pressures pL :¼ pLR and pG :¼ pGR are
approximated by finite elements and determined by their
values at the nodal points. They are uniquely defined by
the three balance relations (4) and (17)1;2, which we have
to provide an integrated form in order to obtain a weak

finite element formulation. This is complemented by the
flow rule determining the internal variables ep :¼ eSp
which are represented by Gauss point values.

All other quantities are determined by the constitu-
tive equations, and they can be computed directly from
the primary variables:

rS
EðuS ; epÞ solid extra stresses from ð5Þ � ð7Þ;

sLðpL; pGÞ liquid saturation fromð13Þ and ð14Þ;
sGðpL; pGÞ gaseous saturation from ð3Þ;
nSðuSÞ solid volume fraction from ð15Þ;
nLðuS ; pL; pGÞ liquid vol. frac. from ð1Þ1 and ð2Þ;
nGðuS ; pL; pGÞ gaseous volume fraction from ð2Þ;
qGRðpGÞ gaseous density from ð16Þ;
~wLðuS ; pL; pGÞ :¼ nLwL liq. filter vel. from ð18Þ1;
~wGðuS; pL; pGÞ :¼ nGwG gas. filter vel. from ð18Þ2:
For the weak formulation, we have to specify in addition
boundary conditions. Therefore, let CS � oX, CL � oX
and CG � oX be the boundary parts, where we prescribe
Dirichlet boundary conditions uS ¼ dS, pL ¼ dL and
pG ¼ dG, respectively. Using the above definitions and
the equations (11) and (12), we obtain the weak for-
mulation of the overall momentum balance (4)
Z

X

rS
E uS ; ep
� �

� sL pL; pG
� �

pL
	


þ sG pL; pG
� �

pG
�
I
�
� grad duSdv

�
Z

X

nS uSð ÞqSR þ nL uS ; pL; pG
� �

qLR
	

þ nGðuS; pL; pGÞqGRðpGÞ
�
g � duS dv

¼
Z

oX

�t � duSda

Fig. 1 Qualitative sketch of the capillary-pressure-saturation relation
according to [15]
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for all test functions duS satisfying duS ¼ 0 on CS . The
Neumann boundary condition �t (surface traction) is a
given quantity depending on the respective initial
boundary-value problem. Note that the term rS

EðuS; epÞ
includes the solution of the evolution equation (8) for
the determination of the new plastic strain ep, cf. Wie-
ners et al. [16].

Using the abbreviation _ð�Þ :¼ ð�Þ0S , the weak formu-
lation of the pore-liquid volume balance (17)1 reads
Z

X

_nL uS ; pL; pG
� �

þ nL uS ; pL; pG
� �

div _uS
	 �

dpL dv

�
Z

X

~wL uS ; pL; pG
� �

� grad dpL dv ¼
Z

oX

�vLdpL da

for all test functions dpL satisfying dpL ¼ 0 on CL. Fi-
nally, we obtain the weak formulation of the pore-gas
mass balance (17)2
Z

X

_nG uS ; pL; pG
� �

qGR pG
� �	

þ nG uS ; pL; pG
� �

_qGRðpGÞ

 �

þ nG uS ; pL; pG
� �

qGRðpGÞ div _uS
�
dpG dv

�
Z

X

qGR pG
� �

~wG uS ; pL; pG
� �

� grad dpGdv

¼
Z

oX

�qGdpGda

for all test functions dpG satisfying dpG ¼ 0 on CG.
Again, Neumann boundary conditions �vL (efflux of
liquid volume) and �qG (efflux of gaseous mass) are pre-
scribed.

For the fully discretized model, we apply an implicit
Euler method in time. As this procedure was already
described in detail for a biphasic model, the interested
reader is referred to [16].

4 A parallel preconditioned GMRES method

We shortly summarize the parallel programming model
introduced in [17], and then we explain the parallel
realization of preconditioners and Krylov methods
within this model. In the following, P denotes the
number of processors (P ¼ 1 corresponds to a sequential
program). We assume that the computational domain is
decomposed into tetrahedral cells C 2 C. The nodal
points associated to a tetrahedral cell C are denoted by
N C. Furthermore, we assign Nx degrees of freedom to a
nodal point x 2 N C, cf. Fig. 2.

Let P ¼ f0; . . . ; P � 1g be the set of processors (or,
more precisely, the identification numbers of the parallel
processes), and let

C ¼
[

p2P
Cp

be a disjoint parallel distribution of the cells. This de-
fines the set of nodal points on processor p

N p ¼
[

C2Cp

N C � R3

and the overlapping partition of nodal points

N ¼
[

p2P
N p � R3:

Let

N :¼
X

x2N
Nx

be the total number of unknowns, and let

Np :¼
X

x2N p

Nx

be the number of unknowns on processor p 2 P. Note
that for P > 1

N <
X

p2P
Np:

For the representation of the parallel distribution of
N , we introduce a partition map p: for any point
x 2 N p, the distribution defines the corresponding pro-
cessor set

ppðxÞ :¼ q 2 P : x 2 N q

 �

� P :

Note that this is consistent in parallel, i. e.,

q 2 ppðxÞ() p 2 pqðxÞ
for all x 2 N p \ N q and p; q 2 P. Thus, ðppÞp2P com-
bines to a partition map

p : N�!2P

which is represented in parallel by its distributed
restrictions ðppÞp2P . Finally, we assign a master proces-
sor lðxÞ ¼ min pðxÞ to every nodal point x 2 N .

We introduce a numbering on N p by lexicographic
ordering in R3:

x < y () x1 < y1 or

x1 ¼ y1 and x2 < y2 or

x1 ¼ y1 and x2 ¼ y2 and x3 < y3:

Based on this numbering, we can assign to any vector
up 2 RNp a sub-vector uðxÞ 2 RNx for x 2 N p.

Fig. 2 In our application, we use quardratic approximation for the
displacement and linear approximations for the pressure fields. Thus,
N C consists of all corners and edge midpoints of the tetrahedron C,
and we have Nx ¼ 5 for corners x 2 N C and Nx ¼ 3 for edge
midpoints x 2 N C

412



In parallel, we distinguish two representations of
distributed vectors, cf. [2]:

(a) Consistent vector representation

For solution vectors and correction vectors, we
require

upðxÞ ¼ uqðxÞ; x 2 N p \ N q; p; q 2 P :

This defines a global vector u 2 RN by u ðxÞ ¼ uqðxÞ
for any q 2 pðxÞ:

(b) Additive vector representation

Load vectors and residual vectors are represented
additively, i. e., the corresponding global vector r is
defined by

rðxÞ ¼
X

p2pðxÞ
rpðxÞ; x 2 N :

This corresponds naturally to the parallel integration
of load vectors. Collecting the distributed values at
the master nodal points and replacing rp by rpðxÞ ¼
rðxÞ for p ¼ lðxÞ and rqðxÞ ¼ 0 else, results in a
unique additive representation. This allows for the
parallel evaluation of the norm

ffiffiffiffiffiffiffi
rT r

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p2P
rT

p rp

r
.

The stiffness matrix is also additively represented by
matrices Ap 2 RNp ;Np . Again, Apðx; yÞ 2 RNx;Ny refers to
the block matrices corresponding to the connection of
two nodal points. Note that (for parallel iterative solv-
ers) it is not necessary to assemble the full stiffness ma-
trix entries

Aðx; yÞ ¼
X

p2pðxÞ\pðyÞ
Apðx; yÞ; x; y 2 N p:

In our model, we have Aðx; yÞ ¼ 0 for x 2 N p and
y 62 N p, since the finite element assembling results in
Apðx; yÞ 6¼ 0 only if x; y 2 N C � N p are nodal points in
one cell C on processor p.

For a given consistent vector u, we define the additive
result r ¼ A u by local matrix-vector products rp ¼ Apup
(without communication). Then, by an interface com-
munication on x 2 N : jpðxÞj > 1f g, we collect the re-
sults rpðxÞ

� �
p2P for obtaining a unique additive

representation of r on the master nodal points.
Now, we consider the linear problem

u 2 RN : A u ¼ f

for a given right-hand side f . A basic linear iteration for
solving this problem requires a preconditioner B
(approximating A�1) and runs as follows: given a start
iterate u0 2 RN , we compute for m ¼ 0; 1; 2; . . . the
residual rm ¼ f � Aum, the correction cm ¼ Brm, and the
update umþ1 ¼ um þ cm.

A parallel preconditioner is an operator B which
transforms additive residual vectors r into consistent
correction vectors c :¼ B r. Here, we consider two
examples:

(a) Point-Block Jacobi preconditioner

First, by an interface communication, we construct
the consistent point-block diagonal entries

Aðx; xÞ ¼
X

p2pðxÞ
Apðx; xÞ 2 RNx;Nx

(where point-block objects collect the degrees of
freedom corresponding to a single nodal point
x 2 N ). We make the general assumption that Aðx; xÞ
is regular for all x 2 N . Then, independently on all
p 2 P for a given additive part rp, we define

caddp ðxÞ ¼ Aðx; xÞ�1rpðxÞ

for x 2 N p, followed by an interface communication

cpðxÞ ¼
X

q2pðxÞ
caddq ðxÞ; x 2 N p ð19Þ

defining the consistent correction vector c ¼ Bjacr.

(b) Block Jacobi preconditioner with Gauss-Seidel blocks

Here, we also construct the consistent point-block
diagonal entries Aðx; xÞ, and then we perform (inde-
pendently on every processor) a point-block Gauss-
Seidel iteration on every block (corresponding to
N p): for a given additive part rp, we define the local
Gauss-Seidel correction by

caddp ðxÞ ¼ Aðx; xÞ�1 rpðxÞ �
X

y<x

Apðx; yÞcaddp ðyÞ
 !

for x; y 2 N p, followed by the interface communica-
tion (19). This defines c ¼ Bgsr.

For the basic linear iteration, we observe that the
error satisfies the identity

um � u ¼ ðid � B AÞmðu0 � uÞ:
Thus, the iterate um is the affine space

um 2 u0 þ B w : w 2 Km
 �
; ð20Þ

where

Km ¼ span A Bð Þkr0 : k ¼ 0; . . . ;m� 1
n o

is the corresponding Krylov vector space of dimension
m. There exist several Krylov methods to construct
iterations satisfying (20) such that the error um � u is
minimal with respect to some norm, e. g., the cg-method
is a Krylov method minimizing the error in the energy
norm. Note that the cg-method is restricted to sym-
metric positive definite matrices A and B.

GMRES (generalized minimal residual, cf. [1]) is an
acceleration of the basic iterative solver which is defined
by the following property: given the start iterate u0 and
the first residual r0 ¼ f � A u0, we define the iterates

um 2 u0 þ B w : w 2 Km
 �
such that they satisfy the

minimization property
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kB f � A um
� �

k ¼ min
w2Km

kB f � A u0 þ B w
� �� �

k

with respect to the Euclidian norm k � k. Note that
this method is designed for general regular matrices A
and B without requiring symmetry or positive defi-
niteness.

For an efficient computation of the minimal residual,
the Krylov basis r0; A B r0; . . . ; ðA BÞm�1r0 is transformed
by Givens rotations into v0; . . . ; vm�1 such that the inner
products

H ¼ vi � vj
� �

i;j¼0;...;m�12 Rm;m

build a matrix of Hessenberg form.
In order to restrict the required memory for storing the

Krylov basis, the algorithm runs up to some fixed number
m ¼ M (typically M < 100), and the minimization is re-
started again, until the residual norm is smaller than an
absolute tolerance krkk � e, or until a reduction
krkk � hkr0kby a prescribed reduction factor h is reached.

In detail, the parallel algorithm is explained by the
source code shown in Fig. 3. The solution vector u and
the correction vector c are represented consistently, and
the residual vector r, the Krylov basis vectors vk, and a
auxiliary vector w are represented additively. The par-
allelization is included in the operations with the stiff-
ness matrix A and the preconditioner B, and in the inner
product and the norm computations of additive vectors.
All other parts in the algorithm can be performed
without any further parallel communication.

In our implementation, the template class GMRES is
derived from a base class IterativeSolver providing
the interface for a virtual member function Solver and
the iteration parameters eps, theta and max�iter. The
restart parameter M is a template parameter. In general,
this algorithm (and other iterative solver such as
BiCGstab) can be included directly from suitable tem-
plate libraries, provided that all vector operations
(including inner product and norm evaluation) and the
application of the stiffness matrix and the preconditioner
can be overloaded with the parallel operations of our
programming model.

5 Numerical experiments

We present two 3-dimensional boundary-value problems,
both dealing with failure mechanisms of natural slopes.
There, the modeled soil is assumed to behave like a clayey
silt. The characterizing material parameters are given in
Table 1 taken from the triphasic model of Ehlers et al. [6].
Note that in contrast to [6], the value for the intrinsic
permeability KS

0S was chosen to 10�9 m2, which is a very
large value for realistic soils. This is due to the fact that the
current version of the parallel iterative solver is very sen-
sible with respect to small values of KS

0S . This motivates
further development on the parallel preconditioner to
achieve more robustness. Nevertheless, the obtained re-
sults from the parallel simulations showa similar behavior

Fig. 3 C++ source code of the parallel GMRES method based on
parallel operators A, B, and parallel inner products and norms of
vectors
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concerning the failuremechanisms of the respective slopes
in comparison with the results of [6].

In both examples, the coarse mesh is generated with
the mesh generator NETGEN [13] which allows for an
appropriate mesh grading near material interfaces
(where we expect interesting effects and where we need a
finer mesh resolution). Then, we distribute the mesh
onto the processors by a simple lexicographic ordering
of the cell mid-points, which is sufficient for our exam-
ples. Note that this load balancing minimizes the num-
ber of neighboring processors, but for more complex
geometries it is not optimal with respect to the size of the
processor interfaces.

Themain emphasis in the following discussion is put on
the convergence behavior of the chosen spatial discreti-
zation and the performance of the parallel code, in par-

ticular the presented GMRES solver from the previous
section.

5.1 Excavation problem

The first example concerns a standard excavation
problem carried out at a natural slope shown in Fig. 4:
the top figure describes the total geometrical situation
after the excavation process has been realized, and the
lower figure shows a perspective image of half of the
problem (due to the symmetry of the configuration, it is
sufficient to consider only half of the geometry in the
numerical computations).

It was shown in [6] that the slope under study results
in a stable configuration under gravitational load as long
as the ground-water table is so low that the pore-liquid
does not leak at the slope. If this situation is changed by
an increase of the ground-water table, cf. Fig. 5 (top),
the failure of the slope is initiated, thus leading to a
development of a shearing domain with a certain
thickness, cf. Fig. 5 (bottom). Furthermore, the stream
lines presented in Fig. 6 show clearly that the pore-liquid

Table 1 Material parameters of the triphasic model

Lamé constants lS ¼ 5583 kN/m2, kS ¼ 8375 kN/m2

effective densities qSR ¼ 2720 kg/m3, qLR ¼ 1000 kg/m3

gas phase �RG ¼ 287:17 J/(kg K), h ¼ 283 K,
p0 ¼ 105 N/m2

solid volume fraction nS
0S ¼ 0:54

gravitation g ¼ 9:81 m/s2

fluid viscosities lLR ¼ 10�3 N s/m2,
lGR ¼ 1:8 � 10�5 N s/m2

intrinsic permeability KS
0S ¼ 10�9m2, p ¼ 1:0

van Genuchten model agen ¼ 2 � 10�4, hgen ¼ 1:5
jgen ¼ 2:3, �gen ¼ 0:5, cgen ¼ 0:333

residual saturations sL
res ¼ 0:1, sG

res ¼ 0:1

yield criterion a ¼ 1:0740 � 10�2, b ¼ 0:1196,
c ¼ 1:555
d ¼ 1:377 � 10�4 m2=kN,
� ¼ 4:330 � 10�6 m2=kN
j ¼ 10:27 kN/m2, m ¼ 0:5935

plastic potential w1 ¼ 1:33, w2 ¼ 0:107
viscoplasticity g ¼ 500s, r0 ¼ 10:27 kN/m2, r ¼ 1

Fig. 4 Excavation problem: sketch of the whole slope (top) and
perspective view on half of the excavated slope (bottom)

Fig. 5 Excavation problem: liquid saturation sL [-] (top) and
accumulated plastic strains jjepjj [-] (bottom) after the excavation
process (deformation scaled 3 times)

415



leaks at the surface of the slope. Note that this fact is
important for a realistic modeling of the underlying
problem, as the leaking of the pore-liquid prevents the
development of a positive pressure (excess pressure) for
pL at the boundary surface of the slope, which would
lead to unrealistic results. The leaking of the pore-fluid is
realized within our calculation by a flexible setting of the
Dirichlet boundary conditions dL, i. e., if the capillary
pressure pC falls below a critical value at a certain node
on the boundary surface due to an increase of the liquid
saturation sL, cf. Fig. 1, the value for pL at this node is
set to the ambient pressure. At the beginning of the
calculation, the values of pL are not specified at the
boundary surface of the slope, since we want to prevent
a predefined distribution of the liquid saturation
sL ¼ sLðpL; pGÞ on this boundary surface. Such a prede-
fined distribution would occur within our model as we
already set pG ¼ dG (Dirichlet boundary condition) to

the ambient gas pressure at the boundary surface of the
slope.

For a proper discussion of the convergence behavior
of the underlying spatial discretization, the described
boundary-value problem was calculated on four differ-
ent FE meshes, where the coarsest mesh, cf. Fig. 7 (top),
contains 964 tetrahedra. Starting from this mesh
(refinement level 0), three uniform refinements result
into the finest spatial discretization (refinement level 3)
with altogether 493 568 cells, cf. Fig. 7 (bottom). Using
generalized Taylor-Hood elements with quadratic ansatz
functions for the displacement uS and linear ansatz
functions for the pressure terms pL and pG (cf. Fig. 2),
the convergence behavior depicted in Fig. 8 is obtained.
Thereby, the development of the displacements u1 and u2

Fig. 6 Excavation problem: stream lines of the pore-liquid flow
starting from 3 different lines at x3 ¼ 1m, x3 ¼ 36m and x3 ¼ 49m

Fig. 7 Excavation problem: initial finite element mesh (top) and final
mesh after three uniform refinement steps (bottom)

Fig. 8 Excavation problem: convergence behavior; displacement u1

[m] and u2 [m] plotted along line 1 and liquid saturation sL [-] plotted
along line 2
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along line 1 (x1 ¼ 29m, x2 ¼ 21m; cf. Fig. 4) and the
liquid saturation sL along line 2 (x1 ¼ 29m, x3 ¼ 0m; cf.
Fig. 4) are shown exemplarily for the four different
meshes. In these three figures, an excellent convergence
behavior can be identified for the regularly refined FE
meshes.

Note that the number of cells increases by the factor 8
with every uniform refinement step, i. e. each tetrahe-
dron is subdivided into 8 tetrahedra per refinement (cf.
Table 2). Furthermore, for a stable numerical integra-
tion, we have to use a quadrature formula of fifth order
[14], which leads to 15 integration points per element,
and, thus, to a huge number of internal variables.

In order to be able to compare the computing times
of the different FE meshes, all calculations were carried
out on 24 processors of a Linux cluster (Xeon 2.4 GHz).
In Table 2, we observe that from level 0 to 1 and from
level 1 to 2 the computing time increases by a factor
smaller than 8, which indicates that we have a large
parallel overhead for less than 100 000 degrees of free-
dom. For large problems, 24 processors can be used
efficiently, and we observe that the computing time of
the level 3 problem is c. approx. 15.3 times longer than
those of the level 2 problem, which is nearly twice as big
as the increase of the degrees of freedom (DOFs). Thus,
we have a loss of efficency which corresponds well to the
increase of Newton steps and GMRES steps (cf. Table 3
and Table 4), and it is therefore not caused by some
overhead in the parallel communication.

Note that the scaling properties can be improved by
smaller time steps on the finest mesh. For simplicity of
the comparison of the results, we fix a common time

series for all refinement levels, which results in a mod-
erate increase of the required number of Newton steps,
cf. Table 3. Thus, the behavior of the GMRES method
within the level 3 computation is associated with too
large time steps, which result in some more iterations for
the solution of the linear systems, cf. Table 4. On the
other hand, this does not affect the accuracy of our re-
sults, since our numerical experiments indicate that the
spatial error is dominating and that a further reduction
of the time steps is not changing the results substantially.

5.2 Slope failure

In the second example, a slope failure problem is dis-
cussed, which is caused by an extreme rainfall event.
Therein, the slope under study is assumed to consist of
three different soil strata, cf. Fig. 9. The soil stratum at
the bottom of the model (stratum 3) should behave
purely elastic, whereas the other two strata can show
plastic material behavior if the elastic range of the soil is
exceeded. Furthermore, the small soil stratum in the
middle (stratum 2) obtains an intrinsic permeability
coefficient KS

0S , which is lower by the factor 1000 than
the intrinsic permeability coefficient of the other two soil
strata, cf. Table 1. Therefore, pore-liquid within the
partially saturated soil is prevented from streaming
through this ‘‘impermeable’’ stratum.

The slope under study is in a stable situation before
the rainfall starts with an infiltration rate (negative
efflux) of �vL ¼ �10�5 m3=ðm2sÞ corresponding to
36 l=ðm2hÞ. In this example, the heavy rainfall event is

Table 2 Excavation problem: computational expense for the full
simulation of 270 time steps on different refinement levels

cells DOFs Gauss points time [h]

level 0 964 5 436 14 460 00:09:50
level 1 7 712 38 185 115 680 00:48:34
level 2 61 696 285 893 925 440 06:14:47
level 3 493 568 2 211 941 7 403 520 95:42:45

Table 3 Excavation problem: average number of Newton itera-
tions per time increment and average computing time for one im-
plicit Euler step on different meshes

refinement level 0 1 2 3
Newton iterations (avg.) 2.5 3.1 3.3 4.9
computing time [s] (avg.) 1.9 10.5 82.5 1142.9

Table 4 Excavation problem: performance of the GMRES solver
(average number of iterations per Newton step, average computing
time for the solution of one linear problem, and total number of
linear problems for the full simulation of 270 time steps)

refinement level 0 1 2 3
GMRES iterations (avg.) 26.5 43.9 79.8 233.7
computing time [s] (avg.) 0.2 2.0 16.3 193.3
number of linear problems 676 810 882 1280 Fig. 9 Slope failure: perspective view (top) and side view (bottom) on

the slope
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assumed to last for 2:5 hours, which gives altogether
90mm rainfall. Due to this heavy rainfall, pore-liquid is
accumulated at the top of the impermeable soil stratum,
cf. Fig. 10 (top) and 11. Thus, as a result of buoyancy,
failure of this part of the slope is initiated, whereas the
backward part of the slope remains in its initial stable
state, cf. Fig. 10 (bottom) and 12.

The calculation of this problem is again carried out
on four different, uniformly refined FE meshes, where
the finest mesh (level 3) is shown in Fig. 13. Note that it
is essential for obtaining reasonable results, that already
the coarse mesh has a sufficient mesh resolution near the
impermeable stratum. Like in the previous example, the
convergence behavior of the spatial discretization shows
very good results. In order to illustrate this statement,
the distribution of the effective liquid pressure pL is
plotted along line 1 (x1 ¼ 21:68m, x2 ¼ 14:26m; cf. Fig.
9) and the development of the displacement u1 and the
accumulated plastic strains jjepjj are plotted along line 2
(x1 ¼ 22m, x2 ¼ 9m; cf. Fig. 9).

For a reasonable comparison of the computing times
of the four different calculations, all computations were
again carried out on 24 processors of the same Linux
cluster from the previous example. In Table 5, the
number of cells and integration points, the degrees of
freedom, and the total computing time for the four FE
meshes are shown. Therein, it can be observed that the
four FE meshes result in similar problem sizes like for
the excavation problem. In contrast to the previous

Fig. 10 Slope failure: liquid saturation sL [-] (top) and accumulated
plastic strains jjepjj [-] (bottom) due to a heavy rainfall (scaled 3 times)

Fig. 11 Slope failure: distribution of the pore-liquid saturation sL [-] in
the cutting plane shown in Fig. 9 (top)

Fig. 12 Slope failure: development of the accumulated plastic strains
jjepjj [-] in the cutting planes shown in Fig. 9 (top)

Fig. 13 Slope failure: FE mesh (refinement level 3)
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example, the increase of computing time between the
different levels is almost constant for the first three lev-
els, i. e., there is approximately a factor of 14.5 between
the computing times of the levels 0 and 1 and the levels 1
and 2. Although the total computing time of about 27.5

days for the solution on the finest mesh is rather long,
the increase of computing time with respect to the cal-
culation on the level 2 mesh is only around 11.1, which is
smaller than for the coarser meshes.

In this example, the time step sizes were chosen in an
appropriate manner for all four FE meshes such that no
time step has to be repeated because of a non-converging
Newton method, cf. Table 6. Furthermore, Table 7
shows a moderate increase of average computing time
for the solution of the linear systems.

6 Conclusion

In the present contribution, we showed that the GMRES
method together with a suitable preconditioner is a
powerful tool for solving the large linear systems
occurring in the parallel computation of coupled multi-
phasic problems. In particular, we briefly presented the
underlying triphasic model for the description of par-
tially saturated soil as the basis for the numerical
experiments. The material model is treated numerically
within the framework of the finite element method.
Based on our parallel programming model, we discussed
the usage of a parallel preconditioned GMRES method.

The efficiency of the presented parallel solver was
shown in two demanding numerical simulations con-
cerning typical geotechnical problems, where the con-
vergence behavior of the spatial discretization as well as
the performance of the parallel code was studied in de-
tail. In both numerical experiments, the spatial discret-
ization with generalized Taylor-Hood elements led to an
excellent convergence behavior during a regular refine-
ment of the FE meshes. The application of the presented
GMRES method turned out to be well suited for the
solution of the saddle point problems resulting from the
linearization of the presented triphasic model. Never-
theless, further development of the iterative linear solver
is necessary for the application to more general multi-
phasic material models, for the improvement of the
overall performance, and for the scalability to a larger
number of processors.

Table 5 Slope failure: computational expense for the full simula-
tion of 800 time steps on different refinement levels

Cells DOFs Gauss points time [h]

level 0 1 000 5 339 15 000 00:16:11
level 1 8 000 38 381 120 000 03:55:02
level 2 64 000 291 589 960 000 56:50:30
level 3 512 000 2 274 501 7 680 000 633:08:52

Table 6 Slope failure: average number of Newton iterations per
time increment and average computing time for one implicit Euler
step on different meshes

refinement level 0 1 2 3
Newton iterations (avg.) 1.6 2.2 3.5 3.7
computing time [s] (avg.) 1.2 17.3 253.8 2847.6

Table 7 Slope failure: performance of the GMRES solver (average
number of iterations per Newton step, average computing time for
the solution of one linear problem, total number of linear problems
for the full simulation of 800 time steps)

refinement level 0 1 2 3
GMRES iterations (avg.) 29.3 64.3 127.7 265.3
computing time [s] (avg.) 1.4 6.5 64.5 702.9
number of linear problems 1277 1756 2836 2987

Fig. 14 Slope failure: convergence behavior; effective liquid pressure
pL [MN/m2] plotted along line 1 and displacement u1 [m] and
accumulated plastic strains jjepjj [-] plotted along line 2
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