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Abstract Usually, the governing equations of the
numerical manifold method (NMM) are derived from
the minimum potential energy principle. For many
applied problems it is difficult to derive in general
outset the functional forms of the governing equations.
This obviously strongly restricts the implementation of
the minimum potential energy principle or other vari-
ational principles in NMM. In fact, the governing
equations of NMM can be derived from a more gen-
eral method of weighted residuals. By choosing suit-
able weight functions, the derivation of the governing
equations of the NMM from the weighted residual
method leads to the same result as that derived from
the minimum potential energy principle. This is dem-
onstrated in the paper by deriving the governing
equations of the NMM for linear elasticity problems,
and also for Laplace’s equation for which the gov-
erning equations of the NMM cannot be derived from
the minimum potential energy principle. The perfor-
mance of the method is illustrated by three numerical
examples.

Keywords Numerical manifold method Æ
Method of weighted residuals Æ Galerkin method Æ
Manifold element Æ Finite covers

1 Introduction

The numerical manifold method (NMM) (Shi, 1992,
1996 and 1997) is a newly developed computational
approach for blocky systems that is applicable to
general continuous and dis-continuous media. The
method is derived from the finite cover approximation
theory and gains her name after the mathematical
notion of manifold. It demonstrates a good consis-
tency with both the conventional finite element method
(FEM) and the discontinuous deformation analysis
(DDA) (Shi, 1988). Because of this discrete element
root and the unified mathematical framework, the
manifold method can be used both in integrating the
continuum and in discrete analysis .Due to its unique
mathematical features as detailed in the next section,
the manifold method is more suitable than other
numerical methods for problems with discontinuous
and moving boundaries such a crack development and
free surface flow.

Usually, the governing equations of the numerical
manifold method are derived from the minimum po-
tential energy principle (Shi, 1996). For many applied
problems, e.g. heat conduction and potential flow, it is
very difficult to derive in general outset the functional
forms of the governing equations. This obviously
strongly restricts the implementation of the minimum
potential energy principle or other variational principles
in NMM. In fact, the governing equations of the NMM
can be derived from a more general method of weighted
residual (MWR).

The MWR is a numerical method for solving partial
differential equations (Xu, 1987). At the same time, the
method unifies the mathematical foundation of many
numerical methods, such as finite element method (Zie-
nkiewicz, 1977), boundary element method (Ji, 1997;
Cheng, 1996) and element-free Galerkin method (Bely-
tschko, 1994). Due to its nature of generality the MWR
enriches the mathematical foundation of the numerical
methods and extends their fields of application.
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In the paper, the governing equations of the numer-
ical manifold are derived by the method of weighted
residuals. The derivation leads to the same result as that
derived from the minimum potential energy principle by
choosing suitable weight functions. This is demonstrated
by the derivation of the governing equations of the
NMM for two typical cases in the paper: 1) linear
elasticity problem; and 2) the Laplace’s equation for
which the NMM cannot be derived from the minimum
potential energy principle. The method developed in this
paper is more general than that of the minimum po-
tential energy principle. The work developed in this
paper enriches the mathematical foundation of the
NMM and extends its field of application.

2 The theory of numerical manifold method

The basic structure of the NMM (Shi, 1997 and Ku,
2001) is shown in Fig. 1, which shows that NMM con-
sists of three main parts: block kinematics, finite cover-
ing systems, and the simplex integration method.

NMM inherits the block kinematics and contact-
detection techniques from DDA method. The contact
detection has two constrains: no penetration and no ten-
sion between blocks, which are described by inequalities.
Using block kinematics, NMM can deal with the
mechanical response of a block system under general
loading and moving boundary conditions when body
movement and large deformation occur simultaneously.

In NMM, numerical integration such as Gauss inte-
gration method is not needed. Mapping to convert an
arbitrary shape into a regular pattern is not required.
Therefore, the physical boundary of a manifold element
can take any shape. The NMM uses the simplex integ-
ration method, in which an arbitrary domain of inte-
gration of a function is converted into many triangles in
which the integration can be calculated analytically to
ensure high precision (see Fig. 2).

The finite cover system is one of the most innovative
features of the manifold method. Details of the system
are described in the following section.

2.1 The finite cover systems

The finite cover systems are made up of the mathemat-
ical meshes and the physical meshes in the NMM. The

physical mesh is a unique portrait of the physical do-
main of a problem. It defines the integration fields. The
physical mesh includes the boundary of the material
volume, joints, blocks and the interfaces of different
materials zones. It represents material condition that
cannot be chosen arbitrarily. The mathematical mesh
defines the fine or rough approximation of unknown
functions. It can be a mesh of some regular pattern, or a
combination of some arbitrary figures. This mesh is
chosen according to the problem geometry, solution
accuracy requirements, and the physical property zon-
ing. The mathematical mesh is used for building math-
ematical covers that present small regions of the whole
field and can be any shape and sizes. They can overlap
each other and need not coincide with the physical mesh.
However, the whole mesh has to be large enough to
cover every point of the physical mesh. Overlapping
these two meshes provides a manifold description. The
intersection of the mathematical cover and the physical
mesh, or the common region of the two systems, defines
the region of physical covers. A common area of the
overlapped physical covers corresponds to an element in
the manifold method. Piecing together all the common
areas produces a complete cover of the whole field
without overlapping. The mathematical mesh and the
physical mesh are generally independent. The mathe-
matical covers reflect the physical mesh through the
application of weight functions. It is worth mentioning
that the covers of the manifold method can span dis-
continuity boundaries. In addition, the manifold method
does not require a mathematical mesh to conform to the
physical boundary of a problem, and the mathematical
cover can be partially out of the material volume.
Therefore, the same size and shape to all the covers can
always be used for the complicated geometric shapes of
the material volumes and joint distributions. Further
details of the geometrical aspect of manifolds can be
found in the works by Shi (1997) and Terada (2003).

The above concept of cover systems is illustrated in
the example shown in Fig. 3. The circle and the hexagon
mesh are arbitrarily selected as the mathematical mesh,
as shown in Fig. 3a. Fig. 3b shows the structure con-
taining a crack that defines the physical mesh. TheFig. 1 Basic structure of the numerical manifold method

Fig. 2 Orientation of a triangle oij in the integration
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common region of the mathematical cover MI and the
physical mesh X½a� forms the physical covers, and is
denoted by P ½a�I in Fig. 3. These two meshes provide a
covered manifold of the problem.

Based on the concept of covering systems, the
approximation method by means of finite covers can be
formulated that is described in the next section.

2.2 Covers and weight functions

Theoretically any shape of covers can be used in NMM.
However integration ofmanifold elements is related to the
cover shape, a reasonable choice of cover shape is very
important (Chen, 1998). It is very convenient to use tri-
angular meshes as shown in Fig. 4, where each intersec-

tion point of themeshes is the center point of a cover and is
called a star. All the triangles around the star form a
hexagonal cover. A triangle is exactly the common area of
three hexagonal covers as shown in Fig. 4. The stars in the
three hexagonal covers form the three vertices of a trian-
gle. The triangle is called a manifold element.

The schematic configuration of the weight function
for a hexagonal cover is shown in Fig. 5. The weight
function equals to 1 at the center point and declines
linearly to 0 at all the sides of the cover as shown in
Fig. 5a. The weight function is a piecewise function of
six linear functions corresponding to six triangles of the
cover, see Fig. 5b. The weight function wiðx; yÞ is the
partition of unity function that satisfies

wiðx; yÞ � 0 ðx; yÞ 2 Ci ð1Þ

wiðx; yÞ ¼ 0 ðx; yÞ =2Ci ð2Þ
Xm

i¼1
wiðx; yÞ ¼ 1 ðx; yÞ 2 E ð3Þ

where Ci is a cover; E is a manifold element; and m is the
number of covers that form the manifold element.

Suppose that three covers i, j and k form a manifold
element E, the three weight functions of the three covers
are

weð1Þðx; yÞ
weð2Þðx; yÞ
weð3Þðx; yÞ
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Fig. 3 Mathematical and physi-
cal covers

Fig. 4 Covers and manifold element formed from triangular meshes
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where

and

D ¼
1 xeðiÞ yeðiÞ
1 xeðjÞ yeðjÞ
1 xeðkÞ yeðkÞ

������

������
ð6Þ

2.3 The approximation functions

Supposing that m overlapped covers (Ci; i ¼ 1; . . . ;m)
form a manifold element E, the test functions uðx; yÞ can
be obtained by taking the weighted average of the m
cover functions ui,

uðx; yÞ ¼
Xm

i¼1
wiðx; yÞuiðx; yÞ; ðx; yÞ 2 E ð7Þ

Since the whole field is completely covered by the
manifold elements without overlapping, the overall
approximation functions can be expressed by joining the
piecewise functions uðx; yÞ defined in each element.

According to Eq. (7), for a two-dimensional dis-
placement field problem, the displacement functions in
an element E can be written as

uðx; yÞ ¼ wiðx; yÞuiðx; yÞ þ wjðx; yÞujðx; yÞ
þ wkðx; yÞukðx; yÞ

ð8aÞ

vðx; yÞ ¼ wiðx; yÞviðx; yÞ þ wjðx; yÞvjðx; yÞ
þ wkðx; yÞvkðx; yÞ

ð8bÞ

where ulðx; yÞ; vlðx; yÞ; l ¼ i; j; k are cover displacement
functions; wlðx; yÞ; l ¼ i; j; k are weight functions given
by Eq. (4).

The cover displacement functions can also be
expressed as

ulðx; yÞ ¼ Plðx; yÞUl ð9Þ

vlðx; yÞ ¼ Plðx; yÞVl ð10Þ
where Plðx; yÞ; l ¼ i; j; k are the basis functions,

Plðx; yÞ ¼ 1 (Constant basis functions) ð11aÞ

Plðx; yÞ ¼ ð1; x; yÞ (Linear basis functions) ð11bÞ

Plðx;yÞ ¼ ð1;x;y;x2;xy;y2Þ (Quadratic basis functions)

ð11cÞ

Ul and Vl are unknown coefficients of the basis func-
tions.

Considering Eq. (4, 8–11a), the cover displacement
function from constant basis generates the linear dis-
placement function of the manifold element.

Fig. 5 The weight functions defined in a hexagonal cover
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uðx; yÞ
vðx; yÞ

� �
¼ Tiðx; yÞ Tjðx; yÞ Tkðx; yÞ½ �

Di

Dj

Dk

2
64

3
75

¼ Teðx; yÞDe

ð12bÞ

where

Tlðx; yÞ ¼
wlðx; yÞ 0

0 wlðx; yÞ

� �
ð13Þ

Dl ¼
ul

vl

� �
; l ¼ i; j; k ð14Þ

3 The numerical manifold method based
on the method of weighted residual

The governing equations and the boundary conditions
of linear elasticity are

rij;j þ fi ¼ 0 in X ð15Þ

rijnj ¼ �Ti on Sr ð16Þ

ui ¼ �ui on Su ð17Þ
where X is a solving domain; �ui is given displacements on
the boundary Su; �Ti is given tractions on the boundary
Sr; and Su [ Sr ¼ S, nj is the outward normal to the
boundary of X

The strain-displacement relationship can be expressed
in a matrix form as

e ¼ Luh ¼ ðLTeÞDe ¼ BeDe ð18Þ
where L is a differential operator matrix, and for two-
dimensional problems

L ¼
o
ox 0 o

oy

0 o
oy

o
ox

" #T

ð19Þ

Be ¼ LðTeÞ ð20Þ
The stress can be expressed as

r ¼ Ee ¼ EBeDe ð21Þ
where E is the elastic constant matrix.

Using the method of weighted residuals we have
Z

X
WiRidX ¼ 0 ð22Þ

where Wi is the weight function; and Ri is the residual.
Substituting the approximation functions Eq. (12b)

into the governing equation, we obtain

rij;j þ fi ¼ Ri ð23Þ
Substituting Eq. (23) into Eq. (22), we have
Z

X
Wiðrij;j þ fiÞdX ¼ 0 ð24Þ

Integrating by parts Eq. (24) can be expressed as the
following form

Z

s
WirijnjdS �

Z

X
Wi;jrijdXþ

Z

X
WifidX ¼ 0 ð25Þ

Appling the boundary condition Eq. (16), Eq. (25) gives
Z

sr

Wi �TidSr �
Z

X
Wi;jrijdXþ

Z

X
WifidX ¼ 0 ð26Þ

or
Z

X
Wi;jrijdX ¼

Z

Sr

Wi �TidSr þ
Z

X
WifidX ð27Þ

Let the weight functions Wi equal to the shape
functions Tij in the approximation functions uh

i ,
Eq. (27) is the classical Galerkin formula. Eq. (27) can
be rewritten as

Z

X
Tij;jrijdX ¼

Z

Sr

Tij �TidSr þ
Z

X
TijfidX ð28Þ

The above expressions can be expressed in a matrix
form, i.e.
Z

X
ðLTeÞT rdX ¼

Z

Sr

ðTeÞTTdSr þ
Z

X
ðTeÞT fdX ð29Þ

Substituting Eq. (18) and Eq. (21) into Eq. (29), we
obtain

X

e

Z

Xe

BT
e EBeDedXe ¼

X

e

Z

sre

TT
e Tdsreþ

X

e

Z

Xe

TT
e fdXe

ð30Þ

Eq. (30) can be rewritten as

X

e

Z

Xe

BT
e EBedXeDe ¼

X

e

Z

Sre

TT
e TdSreþ

X

e

Z

Xe

TT
e fdXe

ð31Þ
Let

Z

Xe

BT
e EBedXe ¼ Ke ð32Þ

Z

Sre

TT
e TdSse ¼ Fs

e ð33Þ

Z

Xe

TT
e fdXe ¼ fF b

e ð34Þ

Fe ¼ Fs
e þ Fb

e ð35Þ

where Ke is called the element stiffness matrix of mani-
fold element, Fe is called the loading matrix.

Eq. (31) can be rewritten as

KD ¼ F ð39Þ

where D is the coefficient matrix.
The above expressions can be written in explicit form,

i.e.
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..
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8
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>>>>>>:

9
>>>>>>=

>>>>>>;

ð40Þ

From the above process, we can see that the deriva-
tion of the governing equations of the NMM from the
weighted residual method leads to the same result as that
derived from the minimum potential energy principle by
choosing suitable weight functions.

Using Eqs. (4), (13) and (20), Be is obtained as

BeðiÞ ¼
fi2 0 fi3

0 fi3 fi2

� �T

ð41Þ

Substituting Eq. (41) into Eq. (32), we obtain

KeðrÞeðsÞ ¼ AeBT
eðrÞEBeðsÞ

¼ Ae

BT
eðiÞ

BT
eðjÞ

BT
eðkÞ

2

664

3

775 E½ � BeðiÞ BeðjÞ BeðkÞ
� � ð42Þ

where Ae is the area of manifold element e that can be
obtained by simplex integration.

Substituting Eq. (13) into Eq. (33), we obtain
Z

Sre

TT
e TdSse ¼

Z

Sre

½TeðrÞðx; yÞ�T dS
�Tx
�Ty

� �

¼ fi1Se þ fi2Se
x þ fi3Se

y 0
0 fi1Se þ fi2Se

x þ fi3Se
y

� �
�Tx
�Ty

� �

ð43Þ
where Se; Se

x , and Se
y are obtained by integration on the

boundary, i.e.

Se ¼
Z

S
dS ð44Þ

Se
x ¼

Z

S
xdS ð45Þ

Se
y ¼

Z

S
ydS ð46Þ

For a point load vector, if it is applied at coordi-
nateðx0; y0Þ, Eq. (43) can be rewritten as

TT
e T ¼ ½TeðrÞðx0; y0Þ�T

Fx

Fy

� �
¼ FeðrÞ ð47Þ

For body forces, Eq. (34) can be rewritten as
Z

Xe

TT
e fdXe ¼

Z

Xe

½Teðx; yÞ�T dXe
fx

fy

� �
¼ Fb

e ð48Þ

where the integration can be given as

Z Z

X
½TeðiÞ�T dxdy ¼

Z Z

X

weðiÞðx; yÞ 0
0 weðiÞðx; yÞ

� �
dxdy

¼ fi1Ae þ fi2Ae
x þ fi3Ae

y 0
0 fi1Ae þ fi2Ae

x þ fi3Ae
y

� �
ð49Þ

and Ae, Ae
x and Ae

y can be obtained by simplex integra-
tions.

The above procedure leads to the global stiffness
matrix and the loading matrix. These matrixes have the
same expression as that obtained from the minimum
potential energy principle.

4 Numerical manifold method of the laplace equation

Laplace’s equation is the governing equation for a wide
range of physical phenomena. e.g. heat conduction and
potential flow. In this section the NMM formulation of
the Laplace’s equation is developed. Laplace’s equation
is given by

o2u
ox2
þ o2u

oy2
¼ 0 in X ð50Þ

For a two-dimensional domain X, the boundary condi-
tions are

ou
on
¼ �q on S1 ð51Þ

and

u ¼ �u on S2 ð52Þ
where the boundary conditions �u and �q define the
boundary value and flux, respectively; n is the outward
normal unit vector at the boundary; and S1 and S2 are
boundaries for essential and natural boundary condi-
tions, respectively. For the well-posed boundary value
problem,

S1 [ S2 ¼ S ð53Þ
and

S1 \ S2 ¼ / ð54Þ
in which [ and \ denote sum and intersection respec-
tively, and S is the total boundary of the domain X.

Integration of weighted residual of the differential
equation is given by

I ¼
Z

X
w

o2u
ox2
þ o2u

oy2

� �
dX ¼ 0 ð55Þ

Integrating Eq. (55) by parts and applying boundary
condition Eq. (51) give

I ¼
Z

X

o2u
ox2
þ o2u

oy2

� �
TdX

¼
Z

S1

ou
ox

TnxdS þ
Z

S1

ou
oy

TnydS �
Z

X

ou
ox

oT

ox
þ ou

oy
oT

oy

� �
dX

¼
Z

S1

ou
ox

nx þ
ou
oy

ny

� �
TdS �

Z

X

ou
ox

oT

ox
þ ou

tialy
oT

oy

� �
dX

¼
Z

S1

�qTdS �
Z

X

ou
ox

oT

ox
þ ou

oy
oT

oy

� �
dX ð56Þ
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Substituting Eqs. (13) and (56) into Eq. (55) gives

X

e

Z

S1

�qTeðiÞdS�
Z

Xe

oTeðiÞ
ox

oTeðjÞ
ox
þ

oTeðiÞ
oy

oTeðjÞ
oy

� �
DedXe

� �

¼0

ð57Þ
Let
Z

S1

�qTeðiÞdS ¼ FeðiÞ ð58Þ

Z

Xe

oTeðiÞ
ox

oTeðjÞ
ox
þ

oTeðiÞ
oy

oTeðjÞ
oy

� �
dXe ¼ KeðiÞeðjÞ ð59Þ

The following governing equations is obtained

KD ¼ F ð60Þ
Substituting Eqs. (4) and (13) into Eq. (59), the element
stiffness matrix is written as

KeðiÞeðjÞ ¼
Z

Xe

oiT eðiÞ
ox

oTeðjÞ
ox
þ

oTeðiÞ
oy

oTeðjÞ
oy

� �
dXe

¼ Ae fijfjj þ fikfjk 0
0 fijfjj þ fikfjk

� �
; ði; j; k ¼ 1; 2; 3Þ

ð61Þ
Substituting Eq. (13) into Eq. (58) gives

FeðiÞ ¼
Z

S1

�qTeðiÞdS ¼ �q
Z

S1

TeðiÞdS

¼ fiiSe þ fijSe
x þ fikSe

y 0
0 fiiSe þ fijSe

x þ fikSe
y

� �
�qx

�qy

� �

ð62Þ
where Se, Se

x , and Se
y are obtained by integration on the

boundary.

5 Simplex integration

Direct integration over each simplex in the chain is
suggested (Shi, 1992), because many functions, in
particular polynomials, can be integrated analytically on
a simplex. With a coordinate transformation, analytical
results can be obtained for integration over an arbitrary
n-dimensional Euclidean space. This scheme is explained
with an R2 example. A physical domain (i; j; k; l;m) and
a triangulation are shown in Fig. 2. For both, the ori-
ented boundaries are consisted of the same sequence
ordered edges: ði;mÞ þ ðm; lÞ þ ðl; kÞ þ ðk; jÞ þ ðj; iÞ.
A boundary preserved triangulation can easily be
achieved by connecting each pair to one single
point. The coordinate origin, oð0; 0Þ, is a desirable
choice in which a two-chain obtained equals
ðo; i;mÞ þ ðo;m; lÞ þ ðo; l; kÞ þ ðo; k; jÞ þ ð0; j; iÞ. Each
set of the three ordered vertices is a two-simplex (Lin,
2003).

With a simplex chain representation of a manifold
element E, the integration becomes a sum of simplex
integration as follows

Ae¼
Z

Xe

dK ¼
Z

E
dK ¼

X

i

Z

SEi

dKi ð63Þ

Each of the integration on a simplex can be evaluated
analytically. This is carried out in two steps. First, an
integration in terms of area coordinates, L1; L2 and L3,
over a coordinate simplex, i.e., simplex with vertices
U0ð0; 0Þ, U1ð1; 0Þ, U2ð0; 1Þ, can be evaluated analytically.
Namely,
Z Z

U0U1U2

Ln0
0 Ln1

1 Ln2
2 dL1dL2 ¼

n0!n1!n2!
ðn0 þ n1 þ n2 þ 2Þ! ð64Þ

Second, a general integration in terms of x and y over a
simplex with vertices oðx0; y0Þ, iðx1; y1Þ and jðx2; y2Þ is
evaluated by the coordinate transformation

x ¼ x0L0 þ x1L1 þ x2L2

y ¼ y0L0 þ y1L1 þ y2L2

1 ¼ L0 þ L1 þ L2

8
<

: ð65Þ

such that
Z Z

oij
xaybdxdy ¼ signðJÞ

Z Z
ðx0L0 þ x1L1 þ x2L2Þa

�ðy0L0 þ y1L1 þ y2L2ÞbdL1dL2

ð66Þ
where, sign(J) is a signed Jacobian.

Taking the case of a ¼ 2 and b ¼ 3, for example, and
by choosing x0 ¼ 0; y0 ¼ 0, an integration over an ele-
ment domain containing n vertices becomes
Z Z

Xe

x2y3dxdy ¼
Xn

k¼1
Jk �
�
5!

8!
ðx2ky3k þ x2kþ1y

3
kþ1Þ

þ 4!

7!
ð3x2ky2k ykþ1 þ 3x2kþ1yky2kþ1

þ 2xkxkþ1y3kþ1 þ 2xkxkþ1y3k Þ
�

þ 2!3!

7!
ðx2ky3kþ1 þ x2kþ1y3k þ 3x2ky2kþ1yk

þ 3x2kþ1ykþ1y2k þ 6xkxkþ1y2k ykþ1

þ 6xkxkþ1yky2kþ1Þ
ð67Þ

where Jk ¼ ðxkykþ1 � ykxkþ1Þ=2; xk, yk are the coordinates
of the kth vertex, and nþ 1 vertex is a repeat of the first
vertex.

6 Illustrative examples

6.1 Beam bending under point load at mid-span

In Fig. 6 a beam of 10 m long and 1 m high is loaded
with a point load of P ¼ 200 N at the mid-span. The
beam is simply supported with a pinned support at the
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left hand side and a roller support at the right hand side.
The Young’s modulus and Poisson’s ratio of the beam
are E ¼ 1:0� 105 N/m2 and t ¼ 0:24, respectively. The
points indicated by A;B;C;D, and E are reference points
for comparing the numerical results with the analytical
solution.

The model for the NMM calculation is shown in
Fig. 7, in which the left bottom end point is fixed and the
right end is laid on another fixed block so as to allow for
the horizontal deformation of the beam on the support.
Triangular meshes are used and a total of 15 elements
are formed in Fig. 8.The stiffness of the spring for both
normal and shear directions is 1.0 · 107 N/m. The
maximum allowed displacement ratio in a step is 0.01
per cent. Two and half thousand steps with time interval
Dt ¼ 0:01s have been calculated for the whole defor-
mation.

The analytical solution of the vertical displacement of
the problem is given by (Chen, 1998).

vðxÞ ¼ � P
12EI

x3 þ Pl2

16EI
x ð0 � x � 1

2
Þ ð68Þ

where I is the moment of inertia and l is the length of the
beam.

The analytical and numerical results of the vertical
displacements at the reference points are calculated and
listed in Table 1. Fifteen and 100 elements are used in
the numerical solution for comparison. It can be seen
from the table that the numerical results with 100
manifold elements agree well with the analytical results.
The results with the 15 elements are not satisfactory.

6.2. Tensile edge crack

A rectangular plate with an edge crack is shown in
Fig. 9. The plate is loaded in tension at the top with

Fig. 6 Beam bending problem

Fig. 7 The model of beam bending for the manifold method

Table 1 The vertical displacements of the reference points

The reference
points

Analytical
Solutions (m)

The results from NMM (m)

(15 elements) (100 elements)

A (x = 0.00 m) 0.000 0.000 0.000
B (x = 2.50 m) 0.344 0.055 0.342
C (x = 5.00 m) 0.500 0.086 0.496
D (x = 7.50 m) 0.344 0.054 0.339
E (x = 10.0 m) 0.000 0.000 0.000

Fig. 9 Edge crack problem

Fig. 8 Manifold element of the beam
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r ¼ 0:2 Gpa and essential boundary conditions are ap-
plied to the bottom of the plate. The following param-
eters are used in the example: L ¼ 52 mm, D ¼ 20 mm,
a ¼ 12 mm; Elastic modulus E ¼ 76 Gpa, Poisson’s
ratiol ¼ 0:286, and plane strain state of deformation is
assumed.

The mode I stress intensity factors corrected for finite
geometry is given by

KI ¼ Cr
ffiffiffiffiffiffi
ap
p

ð69Þ
where the correction is given by Ewalds and Wanhill
(Ewalds, 1989) as

C ¼ 1:12� 0:231ða=LÞ þ 10:55ða=LÞ2

� 21:72ða=LÞ3 þ 30:39ða=LÞ4
ð70Þ

The analytical stress intensity factor KI normalized by
r
ffiffiffiffiffiffi
ap
p

is calculated to be C ¼ 1:34.
The manifold elements used in the numerical calcu-

lation are shown in Fig. 10. The numerical result of the
normalized stress intensity factor is calculated to be
C ¼ 1.36. It agrees with the analytical solution very well.
Fig. 11 and Fig. 12 show the comparison between the
analytical and numerical results of the singular stress
field near the crack tip. The y-displacement distributions
are shown in Fig. 13. From Figs. 11, 12 and 13, we can
see that the numerical solutions agree with the analytical
solution very well at the crack tip.

Fig. 10 Manifold elements of the edge crack problem

Fig. 11 Stresses rx ahead of the crack tip for the edge crack problem

Fig. 12 Stresses ry ahead of the crack tip for the edge crack problem

Fig. 13 Y-displacements behind the crack tip for the edge crack
problem
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6.3 Groundwater modeling

An example from the literature (Smith, 1998) is used to
show the effectiveness of the proposed method in mod-
eling problems of ground water flow. The two-dimen-
sional groundwater flow system is shown in Fig. 14. The
total water head is 100 m, and permeability coefficient of
the soil is 1 m/day.

The problem is governed by the equation

o2/
ox2
þ o2/

oy2
¼ 0; ðx; yÞ 2 ½0; 12� � ½0; 6� ð71Þ

Due to symmetry, only half of the field on the left
hand side is modeled. The NMM model is shown in
Fig. 15, where 100 triangular meshes and 1st order
displacement approximation are used in the model.
The spring stiffness for both normal and shear
directions is 1.0 · 107 N/m. The maximum allowed
flow ratio in a step is 0.01 percent.and 3000 steps with

time interval Dt ¼ 0.01 s have been used in the calcu-
lation.

The results from the numerical manifold method
are compared with that from the finite element method
(Smith, 1998) in Table 2. By comparing the manifold
element solutions to the finite element solutions using
linear triangular elements, it can be seen that the
manifold element is more accurate than the finite ele-
ment in the example. The reason is that the 1st order
approximation functions of the triangular element in
the NMM have the same precision as that of qua-
dratic approximations of the triangular element in the
FEM.

7 Conclusions

The derivation of the governing equations of the NMM
from the weighted residual method leads to the same
result as that derived from the minimum potential en-
ergy principle by choosing suitable weight functions.
This is demonstrated in the paper for the linear elasticity
problem.

Formany applied problems, the governing equation of
NMM cannot be derived from the minimum potential
energy principle. One typical example is the case of La-
place’s equations. The NMM formulation for Laplace’s
equation is developed in this paper by the method of
weighted residual. Laplace’s equation is a general equa-
tion governing various physical natures. These differential
equations can represent heat conduction and potential
flow, etc. Therefore, the manifold element formulation of
the Laplace equation paves the way for the application of
the NMM to a wider range of problems.

In the MWRs, the choice of weight function Wi is
abundant and convenient. Using different weight func-
tion, different governing equations of NMM can be
formed. The method developed in this paper enriches the
mathematical foundation of the NMM and extends its
field of applications.
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