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Abstract A meshfree weak-strong (MWS) form method,
which is based on a combination of both the strong form
and the local weak form, is formulated for time depen-
dent problems. In the MWS method, the problem
domain and its boundary are represented by a set of
distributed field nodes. The strong form or the colloca-
tion method is used to discretize the time-dependent
governing equations for all nodes whose local quadra-
ture domains do not intersect with natural (derivative or
Neumann) boundaries. Therefore, no numerical inte-
gration is required for these nodes. The local weak form,
which needs the local numerical integration, is only used
for nodes on or near the natural boundaries. The natural
boundary conditions can then be easily imposed to
produce stable and accurate solutions. The moving least
squares (MLS) approximation is used to construct the
meshfree shape functions in this study. Numerical
examples of the free vibration and dynamic analyses of
two-dimensional structures as well as a typical micro-
electromechanical system (MEMS) device are presented
to demonstrate the effectivity, stability and accuracy of
the present MWS formulation.

Keywords Computational mechanics Æ Numerical
analysis Æ Meshfree method Æ Meshless method Æ Time
dependent Æ MEMS

1 Introduction

Meshless or meshfree methods have attracted more and
more attention from researchers in recent years, and are

regarded as promising numerical methods for compu-
tational mechanics, as they do not require a mesh to
discretize the problem domain, because the approximate
solution is constructed entirely based on a set of scat-
tered nodes. A detailed review of meshfree methods can
be found in the recent monograph by Liu (2002). Cur-
rent meshfree methods can be largely categorized into
two major categories: meshfree methods based on strong
forms (or short for meshfree strong-form methods) and
meshfree methods based on weak forms (or short for
meshfree weak-form methods) (Liu and Gu, 2004).

The meshfree strong-form methods usually use col-
location techniques (e.g. Zhang et al., 2001) to form the
system equations. They have been found to possess the
following attractive advantages (Liu and Gu, 2004):

� They are truly meshless methods. No mesh is used in
the whole processes.

� The procedure is basically straightforward, and hence
the algorithms and coding are very simple.

� They are computationally efficient, and the solution is
accurate when there are only Dirichlet boundary
conditions.

� Implementation of Dirichlet boundary condition is
very straightforward.

Owing to the above advantages, meshfree strong-form
methods have been studied and used in computational
mechanics. However, shortcomings of meshfree strong-
form methods are also very obvious. In the meshfree
strong-form methods, derivative (Neumann) boundary
conditions are posted by a set of separate differential
equations defined on the boundary, which is different
from the governing equations defined in the problem
domain. They are sometimes unstable and less accurate,
especially for problems governed by partial differential
equations (PDEs) with derivative boundary conditions,
such as solid mechanics problems with stress (natural)
boundary conditions. Several strategies have been
developed to overcome this problem, and these tech-
niques have been summarized in some publications (e.g.
Liu GR and Gu YT, 2004).
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The common feature of meshfree weak-form meth-
ods, such as the element-free Galerkin (EFG) method
(Belytschko et al., 1994), the point interpolation method
(Liu and Gu, 2001a), the radial point interpolation
method (RPIM) (Wang and Liu, 2002), the meshless
local Petrov-Galerkin method (MLPG) (Atluri et al.,
1999; Gu and Liu, 2001a), and the local radial point
interpolation method (LRPIM) (Liu and Gu, 2001c), is
that the PDE (strong-form) of a problem is firstly
replaced by or converted into an integral equation
(global or local) based on a principle (weighted residual
methods, energy principle etc.). Weak-form system
equations can then be derived by integral by parts. A set
of system equations of meshfree weak-form methods can
be obtained from the discretization of the weak-form
using the meshfree interpolation techniques. The mesh-
free weak-form methods have the following advantages.

� They have good stability and accuracy for many
problems.

� The traction (derivative or Neumann) boundary
conditions can be naturally and conveniently incor-
porated into the same weak-form equation.

� A method developed properly using a weak-form
formulation is applicable to many other problems.

Owning to these advantages, meshfree weak-form
methods have been successfully applied in solid and fluid
mechanics problems. However, meshfree global weak-
form methods are ‘‘meshfree’’ only in terms of the
interpolation of the field variables. Background cells
have to be used to integrate a weak-form over the global
problem domain. The numerical integration makes them
computationally expensive, and not ‘‘truly’’ meshless. In
order to remove the global integration background
mesh, meshfree methods based on the local Petrov-
Galerkin weak-forms have been proposed, such as the
meshless local Petrov-Galerkin (MLPG) method (Atluri
et al., 1999; Atluri and Shen, 2002), the local boundary
integral equation (LBIE) method (Zhu et al., 1998), the
method of finite spheres (De and Bathe, 2000), the local
point interpolation method (LPIM) (Liu and Gu, 2001b;
Gu and Liu, 2001c; Lam et al., 2004; Li et al., 2004), the
local radial PIM (LRPIM) (Liu and Gu, 2001c; Liu and
Yan et al., 2002) that developed based on the idea of
MLPG, etc.

Although the meshfree local weak-form methods
made a significant step in the direction of developing
ideal meshfree methods, the numerical integration is still
a burdensome task, especially for nodes on or near the
boundaries with complex shape. The local integration
can still be computationally expensive for some practical
problems. It is therefore desirable to minimize the need
for numerical integrations.

The meshfree strong-form methods and the meshfree
local weak-form methods both have their own advanta-
ges and their own shortcomings. Hence, the combination
of the strong-form and the local weak-form has been
used to propose a novel meshfree method, the meshfree
weak-strong (MWS) form method (Liu and Gu, 2003),

and theMWSmethod has been used for two-dimensional
elasto-statics. In this paper, a MWS formulation is
developed for time dependent problems. In this MWS
formulation, the problem domain and its boundary are
represented by a set of distributed field nodes. The strong
form or collocation method is used to discretize the time-
dependent governing equations for all nodes whose local
quadrature domains do not intersect with natural
(derivative or Neumann) boundaries. Therefore, no
numerical integration is required for these nodes. The
local weak form, which needs the local numerical inte-
gration, is only used for nodes on or near the natural
boundaries. The natural boundary conditions can then
be easily imposed to produce stable and accurate solu-
tions. The moving least squares (MLS) approximation is
used to construct the meshfree shape functions in this
study. Numerical examples of the free vibration and
dynamic analyses of two-dimensional (2-D) solids and a
typical microelectromechanical system (MEMS) device
are presented to demonstrate the efficiency, stability and
accuracy of the present MWS formulation.

2 Meshfree weak-strong (MWS) formulation
for 2-D elastodynamics

The problem of elastodynamics is an important time
dependent problem in computational mechanics. The
strong form of the initial/boundary value problem for
2-D linear elastodynamics is as follows:

rij;j þ bi ¼ m€ui þ c _ui ð1Þ
where m is the mass density, c is the damping coefficient,
€ui ¼ o2ui

ot2 is the acceleration, _ui ¼ oui
ot the velocity, rij the

stress tensor, which corresponds to the displacement
field ui, bi the body force tensor, and ðÞj denotes o

oxj
. The

auxiliary conditions are given as follows:

Natural boundary condition : rijnj ¼ �ti on Ct ð2Þ

Essential boundary condition : ui ¼ �ui on Cu ð3Þ

Displacement initial condition : uðx; t0Þ ¼ u0ðxÞ
x 2 X

ð4Þ

Velocity initial condition : _uðx; t0Þ ¼ v0ðxÞ
x 2 X

ð5Þ

in which the �ui , �ti, u0 and v0 denote the prescribed
displacements, tractions, initial displacements and
velocities, respectively, and nj is the unit outward nor-
mal to the domain X.

As shown in Fig. 1, the problem domain and
boundaries are represented by properly scattered field
nodes. The key idea of the MWS method (Liu and Gu,
2003) is that in establishing the discrete system equa-
tions, both the strong form and the local weak form are
used for the same problem, but for different field nodes.
In Fig. 1, Xq is the local quadrature domain for a field
node. If Xq does not intersect with the natural bound-
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aries, the strong form is used for this node. Otherwise,
the local weak form is used.

2.1 Strong form for 2-D elastodynamics

For an internal node or a node on the essential bound-
ary, whose local quadrature domain does not intersect
with the natural boundary, equation (1) for isotropic
materials can be written as the following standard strong
form.

E
1� m2

o2u
ox2
þ 1� m

2

o2u
oy2
þ o2v

oxoy

� �
þbx�m

o2u
ot2
� c

ou
ot
¼ 0

E
1� m2

o2v
oy2
þ 1� m

2

o2v
ox2
þ o2u

oxoy

� �
þby �m

o2v
ot2
� c

ov
ot
¼ 0

8>>><
>>>:

ð6Þ

where E and m are Young’s modulus and Poisson ratio, u
and v are displacements at x and y direction, respec-
tively. bx and by are body forces at x and y direction. The
collocation method is used directly to discretize Eq. (6).

2.2 Local weak form

If Xq of a field node intersects with the natural bound-
aries, the local weak form is used (Atluri et al., 1999;
Liu, 2002). A generalized local weak form of the partial
differential Eq. (1), over a local quadrature domain Xq
bounded by Cq, can be obtained using the weighted
residual method or the local Petrov-Galerkin method
(e.g., Atluri et al., 1999):Z
Xq

w
_

iðrij;j þ bi � m€ui � c _uiÞdX

� a
Z

Cqu

w
_

iðui � �uiÞdC ¼ 0 ð7Þ

where w
_

wi is the weight function. It should note here that
the last penalty term in (7) is to enforce the essential
boundary condition. This term is necessary because
MLS shape functions lack delta function properties.

The first term on the left hand side of Eq. (7) can be
integrated by parts to get

Z
Cq

w
_

irijnjdCþ
Z
Xq

½�w
_

i;jrij þ w
_

iðbi � m€ui � c _uiÞ�dX

� a
Z

Cqu

w
_

iðui � �uiÞdC ¼ 0 ð8Þ

The local quadrature domain Xq of a node xi is a
domain in which w

_

i 6¼ 0: An arbitrary shaped local
quadrature domain can be used. A circle or rectan-
gular quadrature domain is used in this paper for
convenience. It can be found that the boundary Cq for
the local quadrature domain usually comprises three
parts: the internal boundary Cqi, the boundaries Cqu
and Cqt, over which the essential and natural bound-
ary conditions are specified. Imposing the natural
boundary condition and noticing that rijnj ¼ ou

on � ti
into Eq. (8), the following local weak form can be
obtained.Z
Xq

ðw_ im€ui þ w
_

ic _ui þ w
_

i;jrijÞdx�
Z
Cqi

w
_

itidC

�
Z

Cqu

w
_

itidCþa
Z

Cqu

w
_

iuidC

¼
Z
Cqt

w
_

i�tidCþ a
Z
Cqu

w
_

i�uidCþ
Z
Xq

w
_

ibidX ð9Þ

It can be seen from Eq. (9), the Neumann boundary
conditions Eq. (2) have been satisfied naturally in the
local weak form.

Fig. 1 Sub-domains used in
the MWS method: the local
support domain Xs , local
quadrature domain Xq
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The test (weight) function plays an important role in
the performance of the local weak form. Theoretically,
any weight function is acceptable as long as the condi-
tion of continuity is satisfied. Many studies about the
weight functions for the local weak form in the local
meshfree methods have been performed (e.g., Atluri
et al., 1999; Atluri and Shen,2002; Liu, 2002). In order to
simplify the local weak form, we can deliberately select
the test functions such that they vanish over Cqi,
although it is not necessary. This can be easily satisfied
using the following 4th-order spline weight function.

w
_

iðxÞ ¼ 1� 6 di
rw

� �2
þ8 di

rw

� �3
�3 di

rw

� �4
0� di � rw

0 di � rw

(

ð10Þ
where di ¼ jxQ � xij is the distance from node xi to point
xQ, and rw is the size of the support for the weight
function. The support radius of weight function, rw, can
be simply selected as the same size of the local quadra-
ture domain for the local weak form. The selection of
size of the local quadrature domain will affect the
performance of the local weak form and it has been
widely studied (Atluri and Shen, 2002, Liu, 2002; Liu
and Gu, 2003).

Hence, Eq. (9) can be simplified because the inte-
gration along the internal boundary Cqi vanishes.
Equation (9) can be re-written as:Z
Xq

ðw_ im€ui þ w
_

ic _ui þ w
_

i;jrijÞdx�
Z
Cqu

w
_

itidC

þ a
Z

Cqu

w
_

iuidC ¼
Z
Cqt

w
_

i�tidC

þ a
Z

Cqu

w
_

i�uidCþ
Z
Xq

w
_

ibidX

ð11Þ

2.3 Discrete formulations and the numerical
implementations

The global problem domain X is represented by dis-
tributed nodes. In the dynamic analysis, u is the function
both of space co-ordinate and time. Only space domain
is discretized. The moving least squares (MLS) approx-
imation (Lancaster and Salkauskas, 1986; Belytschko
et al., 1994; Liu, 2002) is used to construct meshfree
shape functions. Hence, we have

uðx; tÞ ¼
uðx; tÞ
vðx; tÞ

� �
¼
Xn

j¼1

/jðxÞ 0

0 /jðxÞ

" #
ujðtÞ
vjðtÞ

� �

¼
Xn

j¼1
UjðxÞujðtÞ ð12Þ

where uðtÞ is the vector of nodal displacements at time t,
U is the matrix of shape functions. Substituting Eq. (12)
into the strong form Eq. (6) and the local weak form Eq.

(11) for all nodes leads to the following discrete equa-
tions

M€UðtÞ þ C€UðtÞ þ KUðtÞ ¼ FðtÞ ð13Þ

where U is the vector of displacements for all nodes in
the entire problem domain. M, C, K and F are defined as

Mij¼

R
Xq

mw
_ðx;xiÞUjðxÞdX Xq (xi ) \Ct 6=;

�mUjðxiÞ XqðxiÞ\Ct ¼;

8<
:

ð14Þ

Cij ¼

R
Xq

cwðx; xiÞUjðxÞdX Xq (xi) \Ct 6=;

�cUjðxiÞ Xq (xi) \Ct = ;

(

ð15Þ
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8>>>>>>>><
>>>>>>>>:

ð16Þ
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R

Cqu

w
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8>>><
>>>:

ð17Þ

with w
_ðx; xiÞ being the value of the weight function

matrix, corresponding to node i, evaluated at the point
X, Uj is the matrix of shape functions, and

N ¼ nx 0 ny

0 ny nx

� �
; BjðxÞ ¼

/j;xðxÞ 0
0 /j;yðxÞ

/j;yðxÞ /j;xðxÞ

2
4

3
5 ð18Þ

w
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v
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2
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5 ð20Þ

where (nx, ny) is the unit outward normal to the
boundary Cq;

To compute M, C, K and F, numerical integrations are
required for some field nodes. Although a part of nodes
need numerical integrations that are only performed in
regular-shaped local quadrature domains, attentions are
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still needed to obtain the exact numerical integration.
The Xq should be divided into small regular partitions
and sufficient Gauss quadrature points should be used in
each small partition. A detailed discussion of local
numerical integrations can be seen in the books by
Atluri and Shen (2002) and Liu (2002).

For nodes whose local quadrature domains Xq
intersect with the natural boundaries, the local weak
form is used. Therefore, as shown in Fig. 1, for a node
xi, there exist two local domains: the local quadrature
domain Xq of node xi (size rq) for numerical integration
and the support domain Xs of a point xQ (size rs) for
construction shape functions.

For field nodes whose local quadrature domains Xq
do not intersect with the natural boundaries, the strong
forms are used. As shown in Fig. 1, there is only one
local domain: the support domain Xs, needed.

3 Numerical examples for 2-D elastodynamics

Several numerical examples of two-dimensional elec-
trodynamics are studied to examine the efficiency and
performance of the MWS method. The units are taken
as standard international (SI) units in following exam-
ples unless specially mentioned.

3.1 A 1D truss member with derivative boundary
conditions

To demonstrate the effectivity of the MWS methods,
firstly consider now a mechanics problem of a truss
member or bar with force (derivative) boundary condi-
tions. The governing equation in the form of ODE is

EA
d2u
dx2
þ bðxÞ ¼ 0 ð21Þ

where E is the Young’s modulus, A is the cross-section
area, u is the axial displacement in the x direction, b is
the body force in x direction, and L is the length of the
truss element. For simplicity, E ¼ 1:0, A ¼ 1:0, L=1.0.
A more complex source term of non-polynomial form
bðxÞ ¼ �ð2:3pÞ2 sinð2:3pxÞ is used in this study.

Displacement (Dirichlet) and the force (derivative)
boundary condition boundary conditions are given by:

ujx¼0¼ 0; f ¼ EA
du
dx

				
x¼L
¼ �2:3p cosð2:3pxÞ ð22Þ

The exact solution of the problem can be easily
obtained, which yields

uexactðxÞ ¼ � sinð2:3pxÞ ð23Þ
For comparisons, the same problem can be solved by
imposing the displacement (Dirichlet) boundary condi-
tions at x ¼ L using the exact solution.

In seeking for an approximate numerical solution, the
1D truss member is represented using 11 regularly and
irregularly distributed nodes, respectively. To construct

meshfree shape function, 3 nearest nodes are selected in
the local support (interpolation) domain. The average
relative error is used as the error indicator, which is
defined as

e ¼ 1

N

XN

i¼1

unum
i � uexact

i

		 		
uexact

ij j ð24Þ

where unum
i and uexact

i are the displacement at the ith node
obtained using the numerical methods and the exact
solution given in Eq. (23), respectively, and N is the
number of field nodes.

Table 1 lists the error in numerical results obtained
using the different methods. From Table 1, we can make
the following remarks.

1) If the problem is subjected only to Dirichlet boundary
conditions without any derivative boundary condi-
tions, the collocation method yields very good results.

2) The presence of the derivative boundary conditions
leads to big errors in the solution. If no special
treatment for the force boundary condition (the
direct collocation method) is used, the error of the
direct collocation method becomes 11.3%. The error
magnification is more than 22 times.

3) Special treatments for handling the force (derivative)
boundary conditions can improve the accuracy of the
solution.

4) We can clearly see that the MWS method produces
the best result for both regular and irregular nodal
distributions.

This example has proven that the MWS method can
improve the accuracy of the solution for a problem with
the derivative boundary conditions. In this problem, the
local weak form is only used for two nodes at and near
the natural boundary. Although the numerical integra-
tions are, in fact, not necessary for a 1D problem, this
example can show the effectivity of the MWS method.
Liu and Gu (2003) have studied the accuracy and per-
formance of the MWS method for the 2D elasto-static
problems. Very results have been obtained.

It should be also mentioned here that to obtain the
result of the direct collocation method in Table 1, no
special treatments for the force boundary condition is
used. Hence, the computational error is relatively big.
To improve the accuracy of the collocation method with

Table 1 Relative errors e (%) in results obtained different
methods

Schemes Regular
nodes

Irregular
nodes

Only Dirichlet BC 0.51 1.36
With derivative BC
The direct collocation method 11.3 6.12
MWS 1.24 2.98

*A total of 11 regularly and irregularly distributed notes are used,
respectively. To construct meshfree shape function, three nearest
nodes are selected in the local support (interpolation) domain
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the natural boundary conditions, several strategies have
been developed (see e.g. Liu GR and Gu YT, 2004), e.g.
using the Hermite interpolation or using suitable steep
window functions (Kim and Kim, 2003) in the con-
struction of the meshless shape function, etc.

3.2 Free vibration analysis

3.2.1 Cantilever beam

A cantilever beam shown in Fig. 2 is considered. The
beam is of length L and height D subjected to a parabolic
traction at the free end. The beam has a unit thickness
and a plane stress problem is considered. The parame-
ters are taken as E ¼ 3:0� 107, v ¼ 0:3, D ¼ 12, L ¼ 48,
and P ¼ 1000gðtÞ. Where gðtÞ is the function of time t.
As shown in Fig. 2, three boundaries of the beam are
considered as natural boundaries.

The present MWS method is used for the free
vibration analysis of a 2-D structure that is a cantilever
beam, as shown in Fig. 2. The mass density of this beam
is m ¼ 1:0. Three kinds of nodal arrangements (55

regular nodes, 189 regular nodes and 189 irregular nodes
shown in Figs. 3(a)-(b) are used. In the free vibration
analyses, as ¼ 3:5 is used for the support (interpolation)
domain to construct MLS shape functions. Natural
frequencies of three nodal distributions obtained by the
MWS method are listed in Table 2. The results obtained
by the FEM commercial software package, ANSYS,
using rectangular elements with the same number of
nodes are listed in the same table. From this table, one
can observe that the results by the present MWS method
are in very good agreement with those obtained using
FEM. The convergence of the present method is also
demonstrated in Table 2. As the number of nodes
increases, results obtained by the present MWS method
approach to the FEM results with extremely fine mesh,
which serves as the reference. The first three eigenmodes
obtained by the MWS method are plotted in Fig. 4.
Comparing with FEM (ANSYS) results, almost identi-
cal results are obtained.

Frequencies results of irregular 189 nodes are also
listed in Table 2. From this table, one can observe that
very good results are obtained using the irregular
distribution nodal arrangement. The computational

Fig. 2 A cantilever beam

Fig. 3 Distribution of nodes
for cantilever beam. (a) 189
regular nodes; (b) 189 irreg-
ular nodes
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stability and high accuracy for a non-structured nodal
distribution are very significant advantages of the pres-
ent MWS method. These properties are very beneficial
for practical applications of the MWS method.

3.2.2 A variable cross-section beam

In this example the present MWS method is used for free
vibration analysis of a cantilever beam with variable
cross-sections, shown in Fig. 5. Results are obtained for
following numerical parameters: the length L ¼ 10, the
height hð0Þ ¼ 5, hðLÞ ¼ 3, the thickness t ¼ 1:0,
E ¼ 3:0� 107, v ¼ 0:3 and m ¼ 1:0. The nodal arrange-
ment is shown in Fig. 5. Results obtained by the pre-
sented MWS method and the FEM software package,
ABAQUS, are listed and compared in Table 3. Results
obtained by these two methods are in good agreement.

3.3 Forced vibration analysis by MWS

The methods of solving the Eq. (13) of the forced
vibration analysis can be largely divided into two cate-
gories: the modal analysis and the direct analysis. The
direct analysis methods are utilized in this paper. Several
direct analysis methods have been developed to solve the
dynamic Eq. (13), such as central difference method and
Newmark method (e.g., Gu and Liu, 2001b). The
Newmark method is an unconditionally stable provided

d � 0:5 and b � 1

4
ðdþ 0:5Þ2 ð25Þ

It has been found that d ¼ 0:5 and b ¼ 0:25 leads to
acceptable results for most of problems. Hence, the
Newmark method with d ¼ 0:5 and b ¼ 0:25 is used in
this paper.

The forced vibration for a 2-D structure, a cantilever
beam, as shown in Fig. 2, is analyzed. The parameters
are taken as the same as the example in section 3.2.1.
For simplification, the mass density of this beam is
m ¼ 1:0. In this numerical example for the forced
vibration analysis, the beam subjected to a parabolic
traction at the free end, P ¼ 1000gðtÞ. gðtÞ is the function
of time. Two functions of time, gðtÞ, as shown in Fig. 6,
are considered. As shown in Fig. 3 (a), 189 uniformed
nodes are used to discretize the problem domain.

Table 2 Natural frequency of
a cantilever beam with dif-
ferent nodal distributions

*DOF—degree of freedom

Mode 55 nodes 189 nodes Reference

MWS FEM MWS
(regular
nodes)

MWS
(irregular
nodes)

FEM
(ANSYS)

FEM
(4850 DOF*)
(ANSYS)

1 26.7693 28.60 27.8370 27.7909 27.76 27.72
2 141.3830 144.12 141.1300 141.3111 141.79 140.86
3 179.7013 179.77 179.9077 179.9932 179.82 179.71
4 327.0243 328.47 323.8497 323.0334 328.01 323.89
5 527.3999 523.36 522.3307 522.7783 534.23 523.43
6 539.0598 532.41 537.1464 537.4757 538.08 536.57
7 730.1131 716.35 727.2628 727.5968 751.15 730.04
8 886.5635 859.23 881.5703 881.7091 887.69 881.28
9 896.9009 875.84 896.1059 897.2380 920.36 899.69
10 1004.7952 956.34 997.7824 998.1700 1022.78 1000.22

Fig. 4 Eigenmodes for the cantilever beam by the MWS method
using 189 irregular nodes. (a) Mode 1; (b) Mode 2; (c) Mode 3

140



Displacements and stresses for all nodes are obtained.
Detailed results of vertical displacement, uy , on the
middle node at the free end of the beam are presented.

3.3.1 Dynamic relaxation

If gðtÞ is a constant 1.0, as shown in Fig. 6(a), the
dynamic analysis is so-called dynamic relaxation. In this
problem, a constant loading is suddenly loaded to this
structure, and then the loading will keep unchanged. If
the damping is neglect, it will become a steady harmonic
vibration with the static deformation (given by the static
analysis) as the equilibrium position. If the damping is
considered, the response will converge to the static
deformation. Hence, using the above properties, the
dynamic relaxation can be used to check the stability

and efficiency of a numerical method for the dynamic
analysis.

The present MWS method is used to perform the
dynamic relaxation analysis. In this analysis, the time
step, Dt ¼ 4� 10�3, is used. The response of c ¼ 0 is
firstly obtained. It has found that it is a stable vibration
with the static deformation, whose analytical solution
(Timoshenko and Goodier, 1970; Liu, 2002) is
uy ¼ 0:0089, as the equilibrium position.

Results for c ¼ 0:4 are then obtained. Table 4 lists
results of several time steps at t 	 50s. It can be found
that the MWS method gives very stable and convergent
results. Figure 7 shows the results for c ¼ 0:4. It can be
found that the response converges to uy ¼ 0:008843.
Compared with the exact static solution, the error is only
about 0.5%. Hence, it demonstrates that the present
MWS method works well for the forced vibration
analysis.

3.3.2 Transient response

The transient response of the beam subjected to a sud-
denly loaded and suddenly vanished force P ¼ 1000gðtÞ
is considered. The function gðtÞ is shown in Fig. 6(b).
The present MWS method is used to obtain the transient

Fig. 5 A cantilever beam
with variable cross-sections
and the nodal distribution

Table 3 Natural frequencies of a variable cross-section canti-
lever beam

Modes xðrd=sÞ

1 2 3 4

MWS method 263.14 924.97 954.13 1857.26
FEM (ABAQUS) 262.09 918.93 951.86 1850.92

Fig. 6 Two different time function g(t)

Table 4 Results of several time steps near t = 50s

No. of time step Time (s) Displacement uy

11750 0.470000E + 02 )0.00883283
11875 0.475000E + 02 )0.00883255
12000 0.480000E + 02 )0.00883264
12125 0.485000E + 02 )0.00882592
12250 0.490000E + 02 )0.00883220
12375 0.495000E + 02 )0.00884123
12500 0.500000E + 02 )0.00884174

Exact: uy = )0.0089

141



response with and without damping. The Newmark
method is utilized in this analysis. The result for c ¼ 0 is
plotted in Fig. 8. Many time steps are calculated to
examine the stability of the presented MWS formulation
and code. From Fig. 8, one can observe that the
response becomes a stable vibration after 1.0 s. A very
stable result is obtained by the MWS method.

The result for c ¼ 0:4 is plotted in Fig. 9. From
Fig. 9, one can observe that the amplitude of the

vibration decrease with time because of damping. Again,
a very stable and accurate result is obtained.

4 Numerical results for a MEMS device

In order to demonstrate validity of the present MWS
method, the dynamics behavior of a typical MEMS
device is simulated. The MEMS device is simplified as a

Fig. 7 Displacements uy at
the middle of the free end of
the beam for constant gðtÞ
(damping c ¼ 0:4)

Fig. 8 Transient displace-
ments uy at the middle of the
free end of the beam for gðtÞ
in Figure 6(b)
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fixed-free thick beam, shown in Fig. 10. Hence, there are
derivative boundary conditions at the free end of the
device. The MWS formulation can be easily obtained
using the governing equations of thick beam (Reddy,
1993) and the similar algorithm in Sect. 2.

The dimension size of the device is: 80 lm long,
10 lm wide and 0.5 lm thick. At the initial time, the gap
between the device and the bottom electrode is 0.7 lm.
The Young’s modulus is 169 GPa, and the mass density
is 2231 kg/m3. The work principle of the MEMS device
is: when the applied voltage imposes on the device, it will
deform. With the increasing of the applied voltage, the
deflection of the device increases. When the applied
voltage reaches one certain value defined as the critical
pull-in voltage, the device becomes unstable and the
centre of it touches the bottom electrode. Induced by the
applied voltage, the MEMS will be subjected to a non-
linear dynamic loading, f (Li et al. 2003), and it takes
the following form

f ¼ � e0 ~V 2~w
2g2

1þ 0:65
g
~w

� �
ð26Þ

where e0 is the permittivity of vacuum, ~V applied volt-
age, ~w beam width, and g the gap between the beam and
bottom electrode, g ¼ g0 � wðx; tÞ, where g0 is the dis-
tance between the beam and electrode before the beam
deflects, as shown in Fig. 10, and wðx; tÞ is the device
deflection.

Equation (26) shows that the loading is also a func-
tion of the deflection. The MWS system equation for this
problem, therefore, is a nonlinear dynamic equation. An
iteration technique is required in each time step.

In this dynamic simulation, the time step is taken as
Dt ¼ 5� 10�3ls. The peak deflection, which is at the
right end of the cantilever beam, under different applied
voltages is studied, as shown in Fig. 11. From the figure,
it is can be found that the peak deflection of the beam
increases nonlinearly as the applied voltage increases.
The fundamental frequency of the cantilever beam
decreases with the increase of the applied voltages. The
dynamic critical pull-in voltage for the cantilever beam is
2.13 volt that agrees very well with the results of 2.12
volt obtained by Li et al. (2003). This example shows
that the MWS method leads to very stable and accurate
results for the simulation of the MEMS device under the
non-linear dynamic loading.

5 Discussion and conclusions

A meshfree weak-strong (MWS) form method is devel-
oped for dynamic analyses of time dependent problems.
In the MWS method, both the strong and local weak
forms are used. The strong form or collocation method
is used for all nodes whose local quadrature domains do
not intersect with natural (derivative) boundaries. There

Fig. 9 Transient displace-
ments uy the middle of the
free end of the beam for gðtÞ
in Figure 6(b) using New-
mark method (damping,
c ¼ 0:4)

Fig. 10 The MEMS device simplified as fixed-free thick beam

143



is no requirement for numerical integrations for these
nodes. The local weak form is only used for nodes on or
near the natural boundaries. The natural boundary
conditions can then be easily imposed to produce stable
and accurate solutions. The MWS method is used for
analyses of free vibration and forced vibration of 2-D
structures as well as the non-linear dynamic perfor-
mance of the MEMS device. Numerical examples have
demonstrated the effectiveness of the present MWS
method for the time dependent problems.

It can conclude that the present MWS method takes
fully the advantages of meshfree strong-form methods
and meshfree weak form methods. Therefore, it is effi-
cient, accurate and stable. In the same time, it requires
the least mount of mesh in the entire computation pro-
cess, compared with all the meshfree weak form methods
developed so far. As an efficient meshfree method, the
present MWS method has a good potential for solving
linear and non-linear time dependent problems.
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