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Abstract In this paper a three-dimensional Voronoi cell
finite element model is developed for analyzing hetero-
geneous materials containing a dispersion of ellipsoidal
inclusions or voids in the matrix. The paper starts with a
description of 3D tessellation of a domain with ellipsoidal
heterogeneities, to yield a 3D mesh of Voronoi cells con-
taining the heterogeneities. A surface based tessellation
algorithm is developed to account for the shape and size of
the ellipsoids in point based tessellation methods. The 3D
Voronoi cell finite element model, using the assumed
stress hybrid formulation, is developed for determining
stresses and displacements in a linear elastic material
domain. Special stress functions that introduce classical
Lamé functions in ellipsoidal coordinates are implemented
to enhance solution convergence. Numerical methods for
implementation of algorithms and yielding stable solu-
tions are discussed. Numerical examples are conducted
with inclusions and voids to demonstrate the effectiveness
of the model.

Keywords Voronoi cell Finite Element Model,
Tessellation, Hybrid stress formulation, Ellipsoids

1
Introduction
Advanced heterogeneous materials are increasingly find-
ing more use in various engineering applications. The
materials may be metals or alloys with microscopic pre-
cipitates and pores or composites containing a dispersion
of fibers, whiskers or particulates. The heterogeneities in
the matrix play an important role on the overall structural
behavior. Robust analytical and numerical models are
necessary for predicting effective properties and stresses
and strains in the microstructure for these materials. A
number of micromechanical studies have been reported in
the literature on heterogeneous materials containing in-
clusions and voids. Analytical methods for determining
stress fields around a spherical cavity in an infinite domain

have been developed in Timoshenko and Goodier [1].
Sadowsky and Sternberg have analyzed stress concentra-
tion around an ellipsoidal cavity using ellipsoidal
coordinates in [2, 3], and around two spherical cavities
using bispherical coordinates in [3]. Chen and Acrivos [5]
have utilized the Boussinesq-Papkovich stress functions
for stress analysis of an infinite domain with two spherical
cavities and rigid inclusions. Chen and Young [6] have
proposed approximations using integral equations for
voids or inclusions of arbitrary shapes in an elastic med-
ium. While these analytical micro-mechanical models are
powerful, their effectiveness is generally limited to simple
geometries and low volume fractions.

Various numerical micromechanical approaches have
been developed for a more versatile evaluation of micro-
structural stresses and strains and overall behavior.
Numerical unit cell models using the finite element method
or boundary element methods, have been proposed e.g. in
[7,8]. Rodin and Hwang have numerically studied a finite
number of spherical inhomogeneities in an infinite region
[9]. Recently three dimensional multi-particle models have
been developed by Gusev [10] for elastic particle re-
inforced composites using tetrahedral finite elements, and
by Michel, Moulinec and Suquet [12] using Fast Fourier
Transform methods. Böhm et al. [13, 14], Segurado and
Llorca [15] and Zohdi [11] have developed 3D elastic-
plastic models for dispersion of multiple particles in metal
matrix composites with ductile matrix. Moes et. al. [16]
have developed an elegant XFEM model for 3D elastic
composite microstructures. A software package Palmyra
[17] has been developed to design composite materials and
to calculate physical properties of heterogeneous materials.

The 2-D Voronoi cell finite element model (VCFEM) has
been developed for elastic and elastic-plastic micro-
mechanical problems in composite and porous materials in
[18, 19, 20], and for damage initiation in reinforced com-
posites by particle cracking in [21, 20]. The model evolves
by Voronoi tessellation of the microstructure to generate a
morphology based network of multi-sided Voronoi cells,
each cell containing a heterogeneity. Each cell is treated as a
FEM element and requires no additional discretization.
VCFEM incorporates assumptions from micromechanics
theories, as well as adaptive enhancements. This model has
been shown to require significantly reduced degrees of
freedom compared to displacement based FEM models and
are hence computationally efficient.

The extension of VCFEM to 3D is a nontrivial enterprise
due to different characteristic micromechanical solutions
and differences in geometric considerations. In this paper,
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a 3D VCFEM model is developed for elastic materials with
ellipsoidal inclusions or voids. The paper starts with dis-
cussion of the Voronoi tessellation algorithm for mesh
generation, accounting for shapes, sizes and locations of
heterogeneities. The VCFEM formulation is then devel-
oped introducing special stress functions in ellipsoidal
coordinates to explicitly account for shape. Various
aspects of numerical implementation of the model are
subsequently discussed with attention on stability and
accuracy of the solutions. Finally a number of numerical
examples are solved for model validation and for modeling
multi-inclusion microstructures.

2
Three dimensional mesh generation by tessellation
into Voronoi cells
Discretization of 3D heterogeneous domains, containing
particles or voids, into a mesh of polyhedra is the first
step in the development of the 3D Voronoi cell finite
element model. Each of the Voronoi cells in this con-
struct contains a single heterogeneity at most. This sec-
tion describes a 3D tessellation algorithm from the
general definition of Voronoi diagrams. The corre-
sponding 2D algorithms have been described in [22].
Following the mathematical description given in [23], the
Voronoi diagram is used to geometrically subdivide a
region, based on a set of seed points. Let
P ¼ fp1; ::pi:::; pn; 2 � n <1g represent a set of n in-
dependent points dispersed in the 3D space with co-
ordinates xi 6¼ xj 2 <3, 8i 6¼ j; i; j 2 In. The region

VðpiÞ ¼ fx :k x� xi k�k x� xj k 8j 6¼ i; j 2 Ing ð1Þ

represents a Voronoi polyhedron associated with the point
pi � <3. Thus a Voronoi polyhedron associated with
generator pi encompasses all points whose distances to pi

are less than their distances to any other point pj. Each
polyhedron is the intersection of open half spaces bounded
by perpendicular bisectors of lines joining a generator pi

with each of its neighbors pj, a property that renders the
polytopes convex. The boundary segment Bij, common to
polyhedra for seed points pi and pj, are nearer to them
than to any other labeled point in the domain. This is
denoted as

Bij ¼ fx :k x� xi k¼k x� xj k�k x� xk k 8 k 6¼ i; jg
ð2Þ

Also the vertex Vijk of the polyhedron is equidistant from
three or more generating points pi, pj and pk

Vijk ¼ fx :k x� xi k¼k x� xj k
¼k x� xk k�k x� xl k 8 l 6¼ i; j; kg ð3Þ

The aggregate of all polyhedra, represented by the set
V ¼ fVðp1Þ; . . . ;VðpnÞg represents a Voronoi diagram or
mesh generated for the point set P in 3-dimensional
space. If the distribution of the point set is uniform in
space, the Voronoi cells reduce to uniform rectangular
hexahedrons.

2.1
Algorithm for point based tessellation
Kumar [24] has given a comprehensive account of several
algorithms to delineate 3D Voronoi tessellations based on
point generators. Kiang [25], Andrade [26] have generated
a finite number of grid points in the 3D spatial domain and
have considered grid points nearest to a generating point
(or seed) P to be a part of the Voronoi cell generated by
the point P. Mahin et al. [27] have used a recursive
algorithm, in which the information on minimum and
maximum times to reach and leave a cubic volume for
each generator, is used to assign volume to a generator or
to divide further into sub-volumes. Another algorithm,
developed by Mackay [28], Finney [29], Tanaka [30] and
others is based on finding all centers of spheres passing
through any four generators by solving a system of 4
quadratic equations. The centers of these spheres are
possible sites of the Voronoi cell vertices in the mesh.
Hinde and Miles [31], Pathak [32] and Winterfeld [33]
have proposed algorithms in which the nearest neighbors
are found such that the in-center of a sphere passing
through neighboring generators falls on the perpendicular
bisector of the plane joining the generators.

The tessellation algorithm developed in this paper is
based on Winterfeld’s algorithm [33]. The perpendicular
bisector plane Bijðr̂ijÞ between point piðr̂iÞ and pjðr̂jÞ,
depicted in the figure 1a, is described as

ðr̂i � r̂jÞ � r̂ij �
r̂i þ r̂j

2

� �
¼ 0 ; ð4Þ

where r̂ij is the position vector of any point p̂ijðx; y; zÞ in
the plane Bij. Equation (4) may be rewritten in terms of the
Cartesian coordinates as

aijxþ bijyþ cijz ¼ dij ; ð5Þ

where aij ¼ xi � xj; bij ¼ yi � yj; cij ¼ zi � zj; dij ¼ 1
2

ððxi� xjÞðxi þxjÞ þ ðyi � yjÞðyi þ yjÞ þ ðzi � zjÞðzi þ zjÞÞ.
Analysis domains of many heterogeneous materials are
prismatic in shape, often with 6 bounding planes. The
domain boundaries in these cases are described by
bisector planes that are constructed by assigning a set
of virtual neighboring generators mirrored about the
boundary planes. Basic steps in constructing the mesh of
Voronoi polyhedra from a set of generating points in 3D
space are described below.

1. Identify the neighboring points for a given generator pi.
The space surrounding the point pi is divided into eight
octants and the N points closest to pi in each octant are
selected. The number N is generally selected as 10 for
accuracy and efficiency [33]. Following this, the bisector
planes between a generator pi and each of the 8N
neighbors (pj; j ¼ 1 � � � 8N ) are constructed using Eq.
(5). These 8N bisector planes, together with the 6
bounding planes of the prism are considered as candi-
dates for faces of the Voronoi polyhedron associated
with a generator pi.

2. Construct the edges of the polyhedra in a sequential
manner, starting with pj the nearest neighbor to pi. The
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first polyhedron face is a sub-domain of the bisector
plane Bij. Point pij in the bisector plane Bij, defined by
the position vector r̂i þ r̂j=2, is utilized in realizing the
boundary of the face. The edge Lijl of the face Bij, shown
in figure 1, corresponds to a boundary of the Voronoi
cell associated with the generator pi and is constructed
from the 8N � 1þ 6 possible neighbors. Here 6 corre-
sponds to the number of bounding planes. For each
neighbor plðl 6¼ jÞ and the 6 bounding planes, the edge
line Lijlðr̂ijlÞ is formed as the intersection of the bisector
or boundary planes Bij and Bil i.e., Lijl : Bij \ Bil 8j 6¼ l.
The plane Bil that is chosen as the first face of the
Voronoi polyhedron, is the one for which the perpen-
dicular distance �rjl ¼ ðr̂ij � r̂jlÞ from the point pij to the
edge Lijl is a minimum as shown in Fig. 1a. The inter-
secting line Lijl is obtained by solving the simultaneous
algebraic equations for the bisector planes:

aijxG þ bijyG þ cijzG ¼ dij; ailxG þ bilyG þ cilzG ¼ dil

ð6Þ
The point pijl, which is the shortest distance on Lijl from
pij, is obtained by solving an additional constraint
equation:

ðn̂ij � n̂ilÞ � ðr̂ij � r̂GÞ ¼ 0 ð7Þ

Here n̂ij and n̂il are normals to bisector planes Bij and Bil

respectively and n̂ij � n̂il is the direction of the line Lijl.
This yields the relation

ðbijcil� cijbilÞðxG� xFÞ þ ðcijail� aijcilÞ
ðyG� yFÞ þ ðaijbil� bijailÞðzG� zFÞ ¼ 0 ð8Þ

The coordinates of the point PGðxG; yG; zGÞ are obtained
by solving equations (6) and (8).

3. Delineate the limits of the first edge Lijl, corresponding
to the vertices of the Voronoi cell for the generator pi.
These are the intersection of the line Lijl with neigh-
boring bisector planes, generated from neighbors pm

and pn. As illustrated in Fig. 1b, the vertices Vijln and
Vijlm, are obtained as the intersection of the line Lijl with
the bisector planes Bim and B in for m; n 6¼ i; j; l. For
any point pkðk 6¼ i; j; lÞ the vertex Vijkl is generated as
the intersection of bisector planes Bik, Bil and Bij by
solving the corresponding equations

aikxþ bikyþ cikz ¼ dik; ailxþ bilyþ cilz ¼ dil ;

aijxþ bijyþ cijz ¼ dij ð9Þ

These are constructed using the points pi, pk, pl and pj.
Points pm and pn are chosen from ð8N � 2þ 6Þ points

Fig. 1. (a) Bisector and first plane and line of polyhedron i (b)
Construction of the first edge (c) Location of the pivoting point. pI
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so that j r̂ijlm � r̂G j and j r̂ijln � r̂Gj are the minimum
distances from PG to all vertices in both directions. The
positive and negative directions along the line Lijl, from
PG to the vertices are chosen from the conditions

ðr̂F � r̂iÞ � ðr̂ijlm � r̂ijÞ � ðr̂G � r̂ijÞ
� �

<0

ðr̂F � r̂iÞ � ðr̂ijln � r̂ijÞ � ðr̂G � r̂ijÞ
� �

>0 ð10Þ
respectively. Each line Lijl, terminating with the vertices
Vijlm and Vijln constitutes an edge of a polygon desig-
nated as Eijlmn. Of the subscripts, i corresponds to the
generating point, j and l correspond to the neighboring
points contributing to the edge Lijl, and m and n cor-
respond to the generators of the limit plane.

4. Subsequently, construct the other edges in a sequential
manner. Faces are constructed to close the polyhedron
using the property, that two faces share every edge in
each closed polyhedron.

5. The bisector point pij is considered as a central point in
the construction of all edges, e.g. Eijlmn, in the plane Bij.
After constructing the first edge Eijlmn, subsequent edges
Eijlmp are constructed in the direction of right-hand rule
with the thumb pointing from pj to pi. The next vertex
Vijnp for the generator pp is chosen such that the vector
ðr̂ij � r̂iÞ � ðr̂ijnp � r̂ijÞ � ðr̂ijnp � r̂ijÞ has the same sign as
ðr̂ij � r̂iÞ � ðr̂ijlm � r̂ijÞ � ðr̂ijlm � r̂ijÞ

� �
. Furthermore, the

vertex Vijnp is selected from all 8N � 4þ 6 possible
candidate bisector planes such that the distance
r̂ijln � r̂ijnp

�� �� is a minimum. The process of generating
adjacent vertices and edges is continued until the last
vertex coincides with the starting vertex Vijlm.

6. Upon construction of the polygonal face Fij � Bij for the
point pi, other faces of the Voronoi polyhedron, e.g.
Fil � Bil, are generated by using the same algorithm.
Note that the two vertices Vijlm and Vijln and edge Eijlmn

have already been determined. The other vertices are
then determined as the intersection of the plane Bil with
another candidate bisector plane following the steps
enumerated next and depicted in figure 1c.

(a) Generate a plane F that is perpendicular to the plane
Bil (F ? Bil) and a bisector of the edge Eijlmn

(F ? Eijlmn), satisfying the condition

ðr̂m � r̂ijlmþr̂ijln

2 Þ � ðr̂ijln � r̂ijlnÞ ¼ 0 resulting in

amxþ bmyþ cmz ¼ dm ð11Þ

where

am¼ xijlm�xijln;bm¼ yijlm� yijln;cm¼ zijlm� zijln;

dm¼
1

2
ðx2

ijlm�x2
ijlnÞþ ðy2

ijlm� y2
ijlnÞþðz2

ijlm� z2
ijlnÞ

h i

ð12Þ

(b) From pi, drop a perpendicular on the plane F, in-
tersecting the latter at point pH . The point pH may
be obtained from a directional line Eq. [34], by
solving the equations

xH � xi

am
¼ yH � yi

bm
¼ zH � zi

cm
;

amxH þ bmyH þ cmzH ¼ dm ð13Þ

where am; bm; cm; dm are determined in Eq. (11)
and (12).

(c) From pH , drop a perpendicular on plane Bil to in-
tersect at the point pI .

(d) The location of pI with respect to the edge Eijlmn is
important in determining the directional sequence
of vertices of the face Fil. A reference point p

0
I on the

line containing point pI and the middle point of
edge Eijlmn is constructed very close to the edge
Eijlmn and on the same side as the point pI . The sign
of the vector operation

ðr̂I0 � r̂iÞ � ðr̂ijlm � r̂I0 Þ � ðr̂ijln � r̂I0 Þ
� �

is used to determine the directional sequence. The
rest of the construction follows steps 1� 5.

7. After the first face of polyhedron is constructed about
generator pi, the other faces are constructed from edges
of the first face till the entire polyhedron is closed.

2.2
Surface based Voronoi tessellation for ellipsoidal
heterogeneities

The VCFEM mesh is based on Voronoi tessellation of the
microstructure consisting of finite sized heterogeneities. If
the heterogeneities are equi-sized non-intersecting
spheres, the resulting Voronoi polyhedra are the same as
those generated by the point generation methods with
their centroids as generators. However, most physical
domains contain nonuniform heterogeneities of different
sizes and shapes. Intersection of the bisector planes with
heterogeneities may be a common occurrence with the
centroid-based tessellation algorithms for these cases.
Consequently, a surface-based algorithm is developed
based on bisector planes between closest points on the
surface of two neighboring ellipsoids. In this algorithm,
closest points p0iðx0i; y0i; z0iÞ and p0jðx0j; y0j; z0jÞ between two
neighboring ellipsoids are first obtained by solving a
constrained minimization problem:

Minimize : f ðx0i; y0i; z0i; x0j; y0j; z0jÞ
¼ ðx0j � x0iÞ

2 þ ðy0j � y0iÞ
2 þ ðz0j � z0iÞ

2

wrt x0i; y
0
i; z
0
i; x
0
j; y
0
j; z
0
j

such that the points belong to the ellipsoidal surfaces:

x̂2
i

a2
i

þ ŷ2
i

b2
i

þ ẑ2
i

c2
i

¼ 1;
x̂2

j

a2
j

þ
ŷ2

j

b2
j

þ
ẑ2

j

c2
j

¼ 1 ð14Þ

where

x̂i

ŷi

ẑi

8<
:

9=
; ¼ Ri½ �

x0i � xi

y0i � yi

z0i � zi

8<
:

9=
;

Here ðxi; yi; ziÞ and ðxj; yj; zjÞ are ellipsoidal centroidal
coordinates, ai; bi; ci and aj; bj; cj are the semi-axes and Ri½ �
and Rj

� �
are the coordinate transformation matrices from

global coordinate system to local coordinate systems, of
the two ellipsoids. The local coordinate system has its
origin at the centroid of the ellipsoid with the three axis
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aligned with the three principal axes. The corresponding
unconstrained minimization problem is constructed by
using Lagrange multipliers as,

Fðx0i; y0i; z0i; x0j; y0j; z0j; k1; k2Þ
¼ ðx0j � x0iÞ

2 þ ðy0j � y0iÞ
2 þ ðz0j � z0iÞ

2

þ k1

�
x̂2

i

a2
i

þ ŷ2
i

b2
i

þ ẑ2
i

c2
i

� 1

�
þ k2

�
x̂2

j

a2
j

þ
ŷ2

j

b2
j

þ
ẑ2

j

c2
j

� 1

�

The minimum distance is obtained by the solving the
minimization Equation [35,36] as

rFk ¼ 0 ¼> oFb

osk
¼ 0 ðk ¼ 1 . . . 8Þ ð15Þ

where sk is the set of 6 coordinates for the two closest
points and the 2 Lagrange multipliers.

A serious problem that may arise with surface based
algorithms is the non-concurrence of three candidate in-
tersecting edges, i.e. they do not meet at a point. This is
illustrated in Fig. 2a. The non-concurrent edges form a
small triangular region ABC in Fig. 2b, which would reduce
to a point in the point-based tessellation algorithm. Con-
sequently, the triangular domain is shrunk to a point with
coordinates determined by averaging those of the vertices
of the triangle. The method rotates the corresponding
edges slightly. The vertex merging process is done se-
quentially. Intersection of edges with heterogeneities is
subsequently checked and local perturbations are made to
avoid these intersections. An alternative to this is to allow
non-planar edges, which was avoided in this paper.

Heterogeneous domains with various spherical and
ellipsoidal inclusions are tessellated into 3D Voronoi cell
meshes using the code developed. The resulting meshes
are tested for edge intersection with heterogeneities as well
as for internal voids or overlaps. For the latter check, the
sum of the individual volumes of all Voronoi cells is
compared with the volume of the heterogeneous domain in
consideration. Selected tessellated domains, shown in Fig.
3, include: (a) 100 randomly distributed spheres of the

same size with volume fraction 15% and (b) 100 randomly
distributed ellipsoids of different sizes with 1 cluster with
volume fraction 15%, all in a 10� 10� 4 box. The results
of the tessellation are found to be satisfactory for all these
cases.

3
The 3D Voronoi cell FEM (VCFEM) formulation
Each Voronoi cell with the included heterogeneity con-
stitutes an element in the 3D Voronoi cell finite element
model. In each Voronoi element, the matrix and hetero-
geneity phases are denoted as XM

e and XI
e respectively. The

element boundary oXE
e is comprised of three mutually

disjoint parts, namely the prescribed traction boundary
Cte, the prescribed displacement boundary Cue, and the
inter-element boundary Cme. Thus oXE

e = Cte

S
Cue

S
Cme.

The interface oXI
e between the matrix and heterogeneity

has an outward normal nI , and nE is the outward normal
to oXE

e . For the VCFEM element formulation for hetero-
geneous materials, the micromechanics boundary value
problem is described as:

FindðrM;rI ;uE;uIÞ 2 T M�T I�VE�VIsatisfying

r�rMþ�f
M ¼ 02XM andr�rIþ f I ¼ 02XI ðaÞ

oBM

orM
¼ �M 2XM and

oBI

orI
¼ �I 2XI ðbÞ

uE¼ �u on Cue and rM
e �nE¼�t on Cte ðcÞ ð16Þ

The variables r, �, B and f are the equilibriated stress
fields, the corresponding strain fields, the complimentary
energy and body forces per unit volume respectively in the
element interior. uE and uI are the compatible displace-
ment fields on the boundary oXE

e and the matrix-
heterogeneity interface oXI

e. Variables with superscripts M
and I correspond to the interior of the matrix and
inclusion phases respectively, while superscript E refers to
variables on the element boundary. The superscript I is
also used to denote quantities on the matrix-inclusion
interface. T M; T I ;VE;VI correspond to Hilbert spaces

Fig. 2. (a) Problems caused by using surface based bisectors (b)
Solution obtained by merging of vertices
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containing the stress and displacement solutions
respectively. The VCFEM formulation is based on the
assumed stress hybrid finite element method, in which
stationarity conditions of the element energy functionalPN

e¼1 PeðrM; rI ; uE; uIÞ in the variational principle yields
the weak forms of the kinematic equation and traction
reciprocity conditions, as Euler equations. In the small
deformation elasticity finite element formulation, the ele-
ment energy functional Pe is defined in terms of stresses
and boundary and interface displacement fields as:

PeðrM
e ; r

I
e; uE

e ; uI
eÞ ¼ �

Z
XM

e

BMðrM
e ÞdX

�
Z

XI
e

BIðrI
eÞdX

þ
Z

oXE
e

rM
e � nE � uE

e doX

�
Z

CtE

�t � uE
e dC

�
Z

oXI
e

ðrM
e � rI

eÞ � nI � uI
edoX ð17Þ

The element complimentary energy density B is expressed
in terms of the equilibriated stresses as B ¼ 1

2 r : S : r, with
S as the compliance matrix. The element energy functional
consists of bilinear forms eaM=I , eb

M=I
E=I and the linear

functionals ef E and egM=I defined as

eaM=IðrM=I
e ; sM=I

e Þ ¼
Z

XM=I
e

oB
M=I
e

ore
M=I

: sM=I
e dX

�e aM=I : T M=I
e � T M=I

e !R

�e b
M=I
E=I ðr

M=I
e ; uE=I

e Þ ¼
Z

oXE=I
e

rM=I
e � nE=I

e � uE=I
e dX

�e b
M=I
E=I : T M=I

e � VE=I
e !R

�e f EðuE
e Þ ¼

Z
Cte

�t:uE
e dC ef E : VE

e !R

�e gM=IðrM=I
e Þ ¼

Z
XM=I

e

oB
M=I
e

ore
M=I

: rM=I
e dC

�e gM=I : T M=I
e !R ð18Þ

The (/) symbol is used to denote alternative domains, e.g.
M=I corresponds to the interior of the matrix or inclusion.
In VCFE formulation, the equilibrium conditions and
constitutive relations in both the matrix and inclusion
phases, and the compatibility conditions on the element
boundary and matrix-inclusion interface are satisfied a-
priori in a strong sense. The element kinematic equations
in the matrix and inclusion phases, i.e.

ruM
e ¼ �M

e in XM
e and ruI

e ¼ �I
e in XI

e ð19Þ
are however satisfied in a weak sense from the stationary
conditions of the element energy functional in equa-
tion(17). The weak forms are obtained by setting the first
variation of Pe with respect to stresses in individual
phases to zero as

�e aMðrM
e ; drM

e Þ þe bM
E ðdrM

e ; uE
e Þ �e bM

I ðdrM
e ; uI

eÞ
¼ 0 8drM

e 2 T M
e ; 8e

�e aIðrI
e; dr

I
eÞ þe bI

IðdrI
e; uI

eÞ
¼ 0 8drI

e 2 T I
e; 8e ð20Þ

Solution of Eq. (20) yields stresses in the constituent
phases. Furthermore, the VCFE formulation assumes weak
satisfaction of the traction reciprocity conditions on the (i)
the matrix-inclusion interface oXI

e, (ii) the inter-element
boundary Cme, and (iii) the domain traction boundary Cte ,
expressed as:

rI
e � nI ¼ rM

e � nI on oXI
eðinterfaceÞ

rM
e � nEþ ¼ �rM

e � nE� on oXE
e ðinter-element boundaryÞ

rM
e � nE ¼ �t on Cteðtraction boundaryÞ ð21Þ

In the variational principle, the weak form is obtained by
setting the first variation of the total energy functional
P ¼

PN
e¼1 Pe with respect to the displacements on the

element boundaries and interfaces to zero as:

XN

e¼1

ebM
E ðrM

e ; duE
e Þ ¼

XN

e¼1

ef EðduE
e Þ 8duE

e 2 �VE
e

¼ fvE
e 2 HoðoXE

e Þ : vE ¼ 0 on Cueg8e

�e bI
IðrI

e; duI
eÞ �e bM

I ðrM
e ; duI

eÞ ¼ 0 8duI
e 2 VI

e; 8e

ð22Þ

Fig. 3. Tessellated domains
yielding Voronoi cell meshes
for (a) 100 randomly dis-
tributed spheres of the same
size with volume fraction 15%
and (b) 100 randomly dis-
tributed ellipsoids of different
sizes with 1 cluster with vo-
lume fraction 15%
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3.1
Equilibriated stress fields in VCFEM
In the absence of body forces, three dimensional stress
fields satisfying equilibrium relations can be generated in
terms of components of an appropriately chosen
symmetric tensor stress function Uijðx1; x2; x3Þð¼ Uji

ðx1; x2; x3Þ (see [37, 38]). The resulting stresses are

r11 ¼
o2U22

ox2
3

þ o2U33

ox2
2

� 2
o2U23

ox2ox3

r22 ¼
o2U33

ox2
1

þ o2U11

ox2
3

� 2
o2U31

ox1ox3

r33 ¼
o2U11

ox2
2

þ o2U22

ox2
1

� 2
o2U12

ox1ox2

r12 ¼
o2U23

ox1ox3
þ o2U13

ox2ox3
� o2U12

ox2
3

� o2U33

ox1ox2

r13 ¼
o2U12

ox2ox3
þ o2U23

ox1ox2
� o2U13

ox2
2

� o2U22

ox1ox3

r23 ¼
o2U13

ox1ox2
þ o2U12

ox1ox3
� o2U23

ox2
1

� o2U11

ox2ox3
ð23Þ

The six scalar stress functions Uij are not independent.
Two reductions of the full matrix representation of Uij are
commonly known as the Maxwell and Morera’s stress
functions [37,38] and are expressed as

Maxwell : Uij ¼ 0 8 i 6¼ j and Morera : Uij ¼ 0 8 i ¼ j

It is possible to construct a set of Maxwell or Morera
functions for every stress distribution that satisfies the
equilibrium Eqs.[37]. Different functional forms of the
stress functions are chosen for the matrix and inclusion
phases in VCFEM implementation. Independent choices of
UM

ij ðx1; x2; x3Þ and UI
ijðx1; x2; x3Þ allow for stress dis-

continuities across the matrix-inclusion interface. It is
important to note that the stresses can vary significantly
inside of each element, depending on the choice of stress
functions. Substitution of these functions in Eq.(23) yields
stresses in terms of well defined functions of the position
[P] and unknown stress coefficients b as:

rM
e

� �
¼ PMðx1; x2; x3Þ
� �

bM
e

� �
;

rI
e

� �
¼ PIðx1; x2; x3Þ
� �

bI
e

� � ð24Þ

Convergence properties and efficiency of VCFEM are sig-
nificantly affected by the choice of Uij. These functions
should adequately account for the shape, size and location of
the heterogeneity in the element. Interface effects should be
strong in its vicinity, but should decay with increasing dis-
tance from it. Polynomial functions alone do not contribute
adequately to this requirement and hence suffers from poor
convergence [18]. Consequently, stress functions in VCFEM
are constructed from two sets of expansion functions that
have complementary effects on the solution convergence.

3.1.1
Pure polynomial forms of stress functions:
The components of the stress functions UM

ij and UI
ij are

constructed using pure polynomial expressions in terms of
the location (x1; x2; x3), as.:

ðUM
polyÞij ¼

X
p;q;r

ðbMÞijpqrx
p
1x

q
2xr

3 and

ðUI
polyÞij ¼

X
p;q;r

ðbIÞijpqrx
p
1x

q
2xr

3 ð25Þ

As discussed in [39], invariance of stresses with respect to
coordinate transformations can be ensured by a complete
polynomial representation of Uij. Stability of the algorithm
requires linear independence of the columns of basis
functions [PMðx1; x2; x3Þ] and [PIðx1; x2; x3Þ]. A special
procedure is implemented for constructing the three de-
pendent components in either the Maxwell or the Morera
stress functions that would satisfy linear independence of
[Pðx1; x2; x3Þ].

1. Stresses r
M=I
e are constructed from only the first com-

ponent U11ðx1; x2; x3Þ, using Eq. (23) and (25).
2. The next set of stresses are constructed using

U22ðx1; x2; x3Þ in Eq. (23).
3. The two sets of stresses from steps 1 and 2 are com-

pared to seek out terms with identical exponents in the
terms containing xi

1x
j
2 and xk

3. The corresponding
coefficients, e.g. ðbM=IÞ22

ijk in U22 are set to zero.
4. This procedure is repeated with all the other compo-

nents of Uij in sequence.

3.1.2
Reciprocal stress functions based on interface geometry:
It has been demonstrated with 2D VCFEM in [18] that very
high order terms are required with pure polynomials to
account for the effects of the matrix-inclusion or void
interface, leading to poor convergence. To avert this,
reciprocal augmentation functions have been developed in
[18,19] following the analytical solutions of Muskhelishvili
[40]. In 3D, a novel method of developing reciprocal stress
functions is developed to improve convergence. The
method follows displacement solutions in an isotropic
elastic domain with an ellipsoidal cavity developed by
Sadowsky and Sternberg [2, 3]. The 3D general solutions to
Navier’s equation for elastic media, as proposed by
Boussinesq, is obtained by superposition of four harmonic
solutions [1]

2G½u1; u2; u3�X1 ¼ x1
oX1

ox1
;
oX1

ox2
;
oX1

ox3

� 	

� ½ð3� 4mÞX1; 0; 0� ðaÞ

2G½u1; u2; u3�X2 ¼ x2
oX2

ox1
;
oX2

ox2
;
oX2

ox3

� 	

� ½0; ð3� 4mÞX2; 0� ðbÞ

2G½u1; u2; u3�X3 ¼ x3
oX3

ox1
;
oX3

ox2
;
oX3

ox3

� 	

� ½0; 0; ð3� 4mÞX3� ðcÞ

2G½u1; u2; u3�F ¼
oF

ox1
;
oF

ox2
;
oF

ox3

� 	
ðdÞ

ð26Þ
where G is the shear modulus, and Xiði ¼ 1; 2; 3Þ and F are
harmonic functions, satisfying the Laplace equations.
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Stress fields are generated by superposing stress solutions
(26) using the generalized Hooke’s law. The stress solu-
tions for each of the displacements are

r11

r22

r33

r12

r31

r23

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

X1

¼

�2ð1� mÞ oX1

ox1
þ x1

o2X1

ox2
1

�2m oX1

ox1
þ x1

o2X1

ox2
2

�2m oX1

ox1
þ x1

o2X1

ox2
3

�ð1� 2mÞ oX1

ox2
þ x1

o2X1

ox1ox2

�ð1� 2mÞ oX1

ox3
þ x1

o2X1

ox1ox3

x1
o2X1

ox3ox2

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

from equation (26a)

ð27Þ
r11

r22

r33

r12

r31

r23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

X2

¼

�2m oX2

ox2
þ x2

o2X2

ox2
1

�2m oX2

ox2
þ x2

o2X2

ox2
2

�2m oX2

ox2
þ x2

o2X2

ox2
3

�ð1� 2mÞ oX2

ox1
þ x2

o2X2

ox1ox2

x2
o2X2

ox1ox3

�ð1� 2mÞ oX2

ox3
þ x2

o2X2

ox2ox3

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

from equation (26b)

ð28Þ

�11
�22
�33
�12
�31
�23

8>>><
>>>:

9>>>=
>>>;

X3

¼

�2m oX3

ox3
þ x3

o2X3

ox2
1

�2m oX3

ox3
þ x3

o2X3

ox2
2

�2ð1� mÞ oX3

ox1
þ x3

o2X3

ox2
3

x3
o2X3

ox1ox2

�ð1� 2mÞ oX3

ox1
þ x3

o2X3

ox1ox3

�ð1� 2mÞ oX3

ox2
þ x3

o2X3

ox2ox3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

from equation (26c)

ð29Þ

r11

r22

r33

r12

r31

r23

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

F

¼

o2F
@x2

1

o2F
ox2

2

o2F
ox2

3

o2F
ox1ox2

o2F
ox1ox3

o2F
ox2ox3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

from equation (26d) ð30Þ

Each of the above stress fields satisfies equilibrium equa-
tions. Consequently, stress functions Uijði ¼ j ¼ 1; 2; 3Þ,
for representing equilibriated stress fields in Eq. (23), can
be derived from these stress fields. For example, stresses
from Maxwell stress functions corresponding to the dis-
placement solutions X1, can be written as

rX1
11 ¼

o2UX1
22

ox2
3

þ o2UX1
33

ox2
2

; rX1
22 ¼

o2UX1
33

ox2
1

þ o2UX1
11

ox2
3

;

rX1
33 ¼

o2UX1
11

ox2
2

þ o2UX1
22

ox2
1

rX1
12 ¼ �

o2UX1
33

ox1ox2
; rX1

13 ¼ �
o2UX1

22

ox1ox3
;

rX1
23 ¼ �

o2UX1
11

ox2ox3
ð31Þ

The functional forms of stress function components are
assumed as follows

UX1
11 ¼ �x1X1; UX1

22 ¼ UX1
33 ¼ �x1X1 þ 2ð1� mÞ

Z
X1dx1

ð32Þ
the corresponding stresses can be derived from Eqs. (31),
(32) and (26) as

rX1
11 ¼ �x1

o2X1

ox2
2

þ o2X1

ox2
3

� �
þ 2ð1� mÞ

�
Z

o2X1

ox2
2

þ o2X1

ox2
3

� �
dx1 ¼ x1

o2X1

ox2
1

� 2ð1� mÞ oX1

ox1

rX1
22 ¼ �x1

o2X1

ox2
3

� 2
oX1

ox1
� x1

o2X1

ox2
1

þ 2ð1� mÞ oX1

ox1

¼ �x1
o2X1

ox2
3

þ o2X1

ox2
1

� �
� 2m

oX1

ox1
¼ x1

o2X1

ox2
2

� 2m
oX1

ox1

rX1
33 ¼ x1

o2X1

ox2
3

� 2m
oX1

ox1

rX1
12 ¼ �

o

ox2
�X1 � x1

oX1

ox1
þ 2ð1� mÞX1

� 	

¼ � ð1� 2mÞ oX1

ox2
� x1

o2X1

ox1ox2

� 	

rX1
13 ¼

�
ð1� 2mÞ oX1

ox2
� x1

o2X1

ox1ox2

	

rX1
23 ¼ x1

o2X1

ox2ox3
ð33Þ
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These are exactly the same as stress expressions in Eqs.
(27). Stress functions from the other functions in the set
(27, 28, 29, 30), are constructed as

UX2
11 ¼ UX2

33 ¼ �x2X2 þ 2ð1� mÞ
Z

X2dx2; UX2
22 ¼ �x2X2

UX3
11 ¼ UX3

22 ¼ �x3X3 þ 2ð1� mÞ
Z

X3dx3; UX3
33 ¼ �x3X3

UF
11 ¼ UF

22 ¼ UF
33 ¼ �F ð34Þ

These stress functions should satisfy necessary displace-
ment constraints at the interface, as well as facilitate stress
concentration. To accomplish this, a set of harmonic dis-
placement potential functions X1;X2;X3 and F that vanish
at infinity is chosen. These functions are periodic and are
symmetric with respect to the principal ellipsoidal
coordinates a1, a2 and a3. In [3], displacement potentials
X1;X2;X3 and F have been expressed as Lame functions of
the first and second kind to satisfy these conditions. These
functions are expressed in terms of ellipsoidal coordinates
(a1; a2; a3) as

X1 ¼ mS1s2s3;X2 ¼ �
m

k0
C1c2c3;

X3 ¼ �
im

k2k0
D1d2d3; ð35Þ

where (sj, cj, dj) and (Sj;Cj;Dj), ðj ¼ 1; 2; 3Þ are elliptical
functions of the first and second kind respectively (see
Hobson [41]), m is a constant that depends on the

dimensions of the ellipsoid and i ¼
ffiffiffiffiffiffi
�1
p

. Let (x̂1; x̂2; x̂3)
correspond to an orthogonal coordinate system centered
at the centroid and along the principal directions of the
ellipsoid. The ellipsoidal coordinates
ajðx̂1; x̂2; x̂3Þ; j ¼ 1; 2; 3 may be derived to satisfy the
characteristic equations

x̂2
1

a2
1

þ x̂2
2

a2
1 � h2

þ x̂2
3

a2
1 � k2

¼ 1 8 k2 � a2
1 � 1 ðaÞ

x̂2
1

a2
2

þ x̂2
2

a2
2 � h2

� x̂2
3

k2 � a2
2

¼ 1 8 h2 � a2
2 � k2 ðbÞ

x̂2
1

a2
3

� x̂2
2

h2 � a2
3

� x̂2
3

k2 � a2
3

¼ 1 8 0 � a2
3 � h2 ðcÞ

ð36Þ
For a1 ¼ constant, Eq. (36a) reduces to that of an ellipsoid.
If a2 ¼ constant in Eq. (36b), it yields the equation of a
hyperboloid of 1 sheet, and if a3 ¼ constant in Eq. (36c), it
yields the equation of a hyperboloid of 2 sheets. The Eqs.
in (36) can be solved to obtain a set of possible Cartesian
coordinates (x̂1; x̂2; x̂3) in terms of the ellipsoidal
coordinates (a1; a2; a3) as

x̂1 ¼
a1a2a3

hk
; x̂2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 � h2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2
2 � h2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 � a2

3Þ
p

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � h2Þ

p ;

x̂3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 � k2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2 � a2
2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � a2

3Þ
p

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � h2Þ

p ð37Þ

Lame functions used in [3] can be expressed in terms of
the ellipsoidal coordinates (see [41]) as

s1 ¼ a1=h; s2 ¼ a2=h; s3 ¼ a3=h ðaÞ

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � h2

q
; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � h2

q
; c3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � a2

3

q
ðbÞ

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � k2

q
; d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

2

q
; d3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

3

q
ðcÞ

S1 ¼ 3a1

Z 1
a1

da1

a2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 � h2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2
1 � k2Þ

p ðdÞ

C1 ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � h2

q Z 1
a1

da1

ða2
1 � h2Þ

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 � k2Þ
p ðeÞ

D1 ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � k2

q Z 1
a1

da1

ða2
1 � k2Þ

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 � h2Þ
p ðfÞ

ð38Þ
The above functions may be expressed in terms of the
standard elliptic integrals of the first kind (eI) and the
second kind (eII), that are defined as,

eIðt;KÞ ¼
Z t

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p and

eIIðt;KÞ ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2z2
p ð39Þ

Consequently, functions in Eq. (38) can be expressed in
terms of elliptic integrals in Eq. (39) (see [42,43]) as:

S1 ¼ 3s1 ðeI k

a1
;
h

k

� �
� eII k

a1
;
h

k

� �� �
h2

¼ s1

�
A1

1 � eI k

a1
;
h

k

� �
þ A1

2 � eII k

a1
;
h

k

� �
þ A1

3

�

C1 ¼ 3s2 � 1� h2

k2

� �
eII k

a1
;
h

k

� �
þ eI k

a1
;
h

k

� ��

� h2

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � h2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

a1

� �2
s 1

A hkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � h2
p

¼ c1 A2
1 � eI k

a1
;
h

k

� �
þ A2

2 � eII k

a1
;
h

k

� �
þ A2

3

� �

D1 ¼ 3s3
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 � k2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

a1

2
s

� eI k

a1
;
h

k

� �0
@

1
A h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � h2
p

¼ d1

�
A3

1 � eI k

a1
;
h

k

� �
þ A3

2 � eII k

a1
;
h

k

� �
þ A3

3

�

ð40Þ
The detailed expressions for A

j
i are given in the appendix.

The superscript j in A
j
i corresponds to the respective Lame

functions s1ðj ¼ 1Þ, c1ðj ¼ 2Þ and d1ðj ¼ 3Þ. The displace-
ment potentials are then obtained by substituting Eqs. (40)
and (37) in Eq. (35), i.e.

X1 ¼ x̂1

�
A1

1 � eI k

a1
;
h

k

� �
þ A1

2 � eII k

a1
;
h

k

� �
þ A1

3

�

X2 ¼ x̂2

�
A2

1 � eI k

a1
;
h

k

� �
þ A2

2 � eII k

a1
;
h

k

� �
þ A2

3

�

X3 ¼ x̂3

�
A3

1 � eI k

a1
;
h

k

� �
þ A3

2 � eII k

a1
;
h

k

� �
þ A3

3

�
ð41Þ
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Integrals
R

Xidx̂i; ði; j ¼ 1; 2; 3Þ in Eqs. (32) and (34) are
evaluated as:Z

Xidx̂i ¼
Z

x̂i

�
Ai

1 � eI k

a1
;
h

k

� �

þ Ai
2 � eII k

a1
;
h

k

� �
þ Ai

3

�
dx̂i

¼ 1

2
x̂2

i

�
Ai

1 � eI k

a1
;
h

k

� �
þ Ai

2 � eII k

a1
;
h

k

� �
þ Ai

3

�

�
Z

x̂2
i

2

o

�
Ai

1 � eI k
a1
; h

k

� �
þ Ai

2 � eII k
a1
; h

k

� �
þ Ai

3

�

ox̂i
dx̂i

¼ x̂2
i

2

�
Ai

1 � eI k

a1
;
h

k

� �
þ Ai

2 � eII k

a1
;
h

k

� �
þ Ai

3

�

�
Z ða2

1 � l2
i Þ

2

� ð1�
X
j 6¼i

x̂2
j

a2
1 � l2

j

 !

o Ai
1 � eI k

a1
; h

k

� �
þ Ai

2 � eII k
a1
; h

k

� �
þ Ai

3

� �
oa1

oa1

ox̂i
dx̂i

ð42Þ
where l1 ¼ 0; l2 ¼ h and l3 ¼ k. After evaluating
oa1=ox̂i oa1=ox̂i from Eq. (36), the integrals are restated as

Z
Xidx̂i¼

x̂2
i

2



Ai

1�eI k

a1
;
h

k

� �
þAi

2�eII k

a1
;
h

k

� �
þAi

3

�

�
X
j 6¼i

x̂2
j

2



B

ij
1 �eI k

a1
;
h

k

� �
þB

ij
2 �eII k

a1
;
h

k

� �
þB

ij
3

�

�1

2



Ci

1�eI k

a1
;
h

k

� �
þCi

2�eII k

a1
;
h

k

� �
þC

j
3

�
ð43Þ

The first superscript i in B
ij
k corresponds to the respective

the Lame functions s1ðj ¼ 1Þ, c1ðj ¼ 2Þ and d1ðj ¼ 3Þ, while
the second superscript correspond to the Cartesian
coordinate x̂j. Maxwell stress functions are subsequently
derived by substituting Eq. (43) in Eqs. (32) and (34) as

UXi

ll ¼
X3

j¼1

x̂2
j

2



B

ij
1 � eI k

a1
;
h

k

� �
þB

ij
2 � eII k

a1
;
h

k

� �
þB

ij
3

�

�1

2
fCi

1 � eI k

a1
;
h

k

� �
þCi

2 � eII k

a1
;
h

k

� �
þC

j
3g 8l¼ 1;2;3

ð44Þ
The functional forms of B

ij
k and Ci

k are determined from
the displacement potentials X1, X2 and X3 using the sym-
bolic manipulator MAPLE [43]. The coefficients corre-
sponding to the standard elliptic integrals (i.e. B

ij
k and Ci

k
for k ¼ 1; 2 & i; j ¼ 1; 2; 3) are functions of the dimensions
of the ellipsoid f ðh; kÞ.

The expressions in Eq. (44) should be effectively
represented in the stress functions of the Voronoi cell FEM
formulation, with two characteristics, viz. : (i) The effect of

the leading order term should be pronounced at the
interface, i.e. at a1 ¼ 1, and should decay rapidly with
increasing distance from the interface, i.e. a1 !1; and
(ii) The resulting stress field should be invariant with re-
spect to coordinate transformations and be independent of
the relative orientation of the principal axes of the ellip-
soid with respect to the load directions. To achieve the first
condition, the elliptic integrals in equation (44) are
expanded in a series in a1 as:

eI k

a1
;
h

k

� �
¼ k

a1
þ k3 � kh2

6a3
1

þ � 1

20
k3h2 þ 3

40
k5 � 1

40
kh4

� �
a�5

1

þ
�
� 3

112
k5h2 � 1

112
k3h4 þ 5

112
k7

� 1

112
kh6

�
a�7

1

þ
�
� 5

1152
kh8 � 5

288
k7h2 þ 35

1152
k9

� 1

192
k5h4 � 1

288
k3h6

�
a�9

1 þ Oða�11
1 Þ

eII k

a1
;
h

k

� �
¼ k

a1
þ kh2 þ k3

6a3
1

þ 1

20
k3h2 þ 3

40
kh4 � 3

40
k5

� �
a�5

1

þ
�
� 3

112
k3h4 � 3

112
k5h2 þ 5

112
kh6

� 5

112
k7

�
a�7

1

þ
�
� 35

1152
k9 þ 5

288
k3h6 þ 35

1152
kh8

þ 1

64
k5h4 þ 5

288
k7h2

�
a�9

1 þ Oða�11
1 Þ

ð45Þ
Convergence of the series in Eq. (45) is guaranteed, since
h < k < 1. The rate of convergence is fairly rapid for el-
lipsoids with low aspect ratio. For example, if the principal
axes ratio is 2 : 1:5 : 1 (h ¼ 0:661 and k ¼ 0:866), the series
expansion takes the form

eI k

a1
;
h

k

� �
¼ 0:866000

a1
þ0:056283649

a3
1

þ0:022033934

a5
1

þ0:0104981217

a7
1

þ0:00554282513

a9
1

þO
1

a11
1

� �

eII k

a1
;
h

k

� �
¼ 0:86600

a1
þ0:1602036493

a3
1

þ0:05663792256

a5
1

þ0:02506215896

a7
1

þ0:0125602296

a9
1

þO
1

a11
1

� �
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For low aspect ratios, the stress functions in equation (44)
can then be expanded in the form

P
iðai

ai
1

Þ, where ai are

expansion coefficients. However, for higher aspect ratios,
the rate of convergence of eII is much slower. For example,
for the principal axes ratio 9 : 3 : 1 (h ¼ 0:9439 and
k ¼ 0:9939), the series expansion takes the form

eI k

a1
;
h

k

� �
¼0:9939315872

a1
þ0:0160354296

a3
1

þ0:00927200612

a5
1

þ0:006386476357

a7
1

þ0:00479290549

a9
1

þO
1

a11
1

� �

eII k

a1
;
h

k

� �
¼ 0:993931587

a1
þ 0:31126624

a3
1

þ 0:175693615

a5
1

þ 0:11821546

a7
1

þ 0:08672541547

a9
1

þ O
1

a11
1

� �

Comparison of the coefficients of a�9 in expressions of eII

for high and low aspect ratios confirm this observation.
To enhance the convergence rate with increasing aspect

ratio ellipsoids i.e. for k! 1; ð0 < h=k < 1Þ, the following
two limiting functions are added to the series of reciprocal
basis functions in a1 in Eq. (45).

limit h
k!1e

II k

a1
;
h

k

� �
¼ tanh�1 k

a1

� �
and

limit h
k!0e

II k

a1
;
h

k

� �
¼ sin�1 k

a1

� �
ð46Þ

The corresponding linear combination of the two elliptic
integrals is

A1�eI k

a1
;
h

k

� �
þA2�eII k

a1
;
h

k

� �
�
Xn

i¼1

ai

ai
1

þb1 tanh�1 k

a1

� �

þb2 sin�1 k

a1

� �
ð47Þ

The coefficients B
ij
3 in Eq. (44) can similarly be represented

as a convergent reciprocal series, i.e. B
ij
3 ¼

P
k

ck

ak
1

. Again, the

rate of convergence of the series is slow for ellipsoids with
high aspect ratio, i.e. ðh; kÞ ! 1 as a1 ! 1. Consequently,
this functional form of B

ij
3 is retained in the finite element

approximation of the stress functions.
The stress functions in Eq. (44) are written in terms of

local coordinates x̂i; ði ¼ 1; 2; 3Þ oriented along the ellip-
soid principal axes. For representing in terms of global
coordinates xi; ði ¼ 1; 2; 3Þ, the local coordinates should be
transformed to global coordinates according to the rela-
tion ðx̂i ¼ lix1 þmix2 þ nix3Þ, where li;mi; ni; ði ¼ 1; 2; 3Þ
are the direction cosines of the principal axes. Conse-
quently, each of the polynomial terms in the stress func-
tion containing x̂2

i should be replaced by terms containing
global coordinates as x

p
1x

q
2xr

3 where the exponents p; q; r

are integers satisfying pþ qþ r ¼ 2. Equation (44) can be
rewritten for ellipsoids of any orientation as:

UXi

ll ¼
X3

j¼1

X
8pþqþr¼2

ðcpqrx
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q
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3Þ

�
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ðCi

1 � eI k
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k

� �
þCi

2 � eII k
a1
;h

k

� �
þC

j
3Þ

2
8l¼ 1;2;3

ð48Þ
For incorporation in the finite element formulation, these
stress functions are approximated by using series expan-
sion of the elliptic integrals in Eq. (48) as:

UXi

ll �
Xn

i¼1

X2

8pþqþr¼0

bpqrix
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q
2xr

3
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þ
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1x

q
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1
pqr sin�1 k
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8pþqþr¼0

x
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1x

q
2xr

3

X
ij

bij
pqrB

ij
3 ð49Þ

The effect of adding the reciprocal functions to the stress
functions on the solution convergence is demonstrated in
table 2 of section 5.3.

3.1.3
Boundary displacement assumptions
The faces of each 3D Voronoi cell element are generated to
be planar polygons. Each face is further dissected into tri-
angular subdomains with a node at the centroid, as shown in
Fig. (4)a. The number of triangles is equal to the number of
edges on each face. This facilitates interpolation of element
boundary displacements. Similarly, the matrix-inclusion
ellipsoidal interface is divided into 6 or 24 surface quad-
rilateral elements. Compatible displacement fields satisfying
inter-element continuity on the element boundary oXE

e and
inter-phase continuity on the matrix-inclusion interface
oXI

e are generated by interpolation of nodal displacements,
[18,19] as:

uE
e ¼ ½LE�fqE

eg on oXE
e and uI

e ¼ ½LI �fqI
eg on oXI

e

ð50Þ
where qE

e and qI
e are generalized displacement vectors at

the nodes of the element boundary and interface
respectively. This is discussed further in section 2.

3.2
Weak form resulting from element assumptions
Substituting Eq. (24) and (50) in the energy functional (17)
and setting the first variations with respect to the stress
parameters fbM

e g and fbI
eg respectively to zero, yields the

weak forms of the kinematic relations (19),
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Z
XM

e

½PM�T ½SM�½PM�dXfbM
e g¼

Z
oXE

e

½PM�T½nE�½LE�dXfqE
eg

�
Z

oXI
e

½PM�T ½nI �½LI�dXfqI
egðaÞZ

XI
e

½PI �T½SI�½PI�dXfbI
eg¼

Z
oXI

e

½PI �T½nI�½LI �dXfqI
eg ðbÞ

ð51Þ
where ½nE� and ½nI � are the matrices containing compo-
nents of the unit normals to the element boundary and
interface. The kinematic Eq. (51) can be expressed as the
matrix equations

HM 0

0 HI

� 	
bM

e

bI
e

( )
¼

GE �GMI

0 GII

� 	
qE

e

qI
e

( )
8e ¼ 1 � � �N

ð52Þ
Subsequently, setting the first variation of the total
energy functional P with respect to fqE

eg and fqI
eg to zero,

results in the weak form of the traction reciprocity con-
ditions.

XN

e¼1

R
oXE

e
½LE�T½nE�T ½PM�dX 0

�
R

oXI
e
½LI�T ½nI �T½PM�dX

R
oXI

e
½LI �T½nI�T ½PI�dX

2
4

3
5

� bM
e

bI
e

( )
¼
XN

e¼1

R
Cte
½LE�Tf�tgdX

f0g

( )

ð53Þ
Substituting Eq. (52) in the global traction reciprocity
Eq. (53), yields the matrix equation:

XN

e¼1

GE �GMI

0 GII

� 	T
HM 0

0 HI

� 	

� GE �GMI

0 GII

� 	
qE

e
qI

e


 �
¼
XN

e¼1

R
Cte
½LM�Tf�tgdX

0


 �

ð54Þ

Fig. 4. Element and inclusion surface patches and integration
volume: (a) element face patch; (b) integration volume for matrix
domain; (c) inclusion surface patch; (d) integration volume for
inclusion
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With known tractions and displacements on Cte and Cue

respectively, the global traction reciprocity condition (54)
is solved for the generalized displacements.

3.3
Stability and convergence
Stability and convergence conditions for displacement-
based and stress-based finite element approximations have
been developed extensively in [44,45]. Stability conditions
of the independent stress-displacement field variational
problem in VCFEM, may be assumed to depend on the
condition that energy functionals eaM=I ðrM=I

e ; r
M=I
e Þ and

eb
M=I
E=I ðu

E=I
e ; r

M=I
e Þ in equation (18) are positive for all

nontrivial stresses and non-rigid body displacements. The
bilinear form eaM=I represents the element complimentary
energy and may be represented in terms of the stress
coefficients from equations (52) and (20) as

eaM=IðrM=I
e ;rM=I

e Þ¼<bM=I
e ;HM=Ib

M=I
e >8rM=I

e 2T M=I
e ð55Þ

where < : > represents the L2 vector inner product.
Consequently, eaM=I is positive for all r 6¼ 0, provided the
matrix [H] is positive definite. From the definition of [H]
in Eqs. (51) and(52), the necessary condition for it to be
positive definite is that the compliance tensor [S] be
positive definite, which is true for elastic problems. A
second condition is that the finite-dimensional subspaces
T M=I

e be spanned uniquely by the basis functions
[PMðx; y; zÞ] and [PIðx; y; zÞ]. This is satisfied by assuring
linear independence of the columns of basis functions
[PMðx; y; zÞ] and [PIðx; y; zÞ], which also guarantees the
invertibility of [H]. Furthermore, additional stability
conditions should be satisfied to guarantee non-zero stress
parameters bM=I

e in eaM=I for all non-rigid body boundary
displacement fields u

E=I
e . This is accomplished by careful

choice of the dimensions of the stress and displacement
subspaces. From Eqs. (18) and (20), the bilinear forms of
the energy functional eb

M=I
E=I may be represented in terms of

the stress and displacement parameters as

ebM
E ðrM

e ; uE
e Þ ¼< GEqE

e ; b
M
e >;

ebM
I ðrI

e; uI
eÞ ¼< GMIqI

e; b
M
e >; and

ebI
IðrI

e; uI
eÞ ¼< GIIqI

e; b
I
e > 8rM=I

e 2 T M=I
e and

8uE=Ie 2 VE=I
e ð56Þ

It is necessary that all these functionals eb
M=I
E=I ¼ 0 for rigid

body displacement modes uE=I on the element boundary
and interface. Thus, displacement fields in ?VE=I

e that are
orthogonal to the subspace of rigid body modes, should
strictly produce positive strain energies. This discrete
L-B-B condition [45,46], ensures stability of multi-field
variational problems such as in VCFEM.

3.3.1
Voronoi cell elements with voids
The strain energy for a Voronoi cell element with a void is
expressed from Eqs. (20), (56) and (52) as

ðSEÞMe ¼e aM
e ðrM

e ; r
M
e Þ ¼e bM

E ðrM
e ; uE

e Þ �e bM
I ðrM

e ; uI
eÞ

¼< GEqE
e ; b

M
e > � < GMIqI

e; b
M
e >

¼< ðGEqE
e � GMIqI

eÞ; bM
e >

¼< GE �GMI½ � qE
e

qI
e


 �
;

½HM��1 GE �GMI½ � qE
e

qI
e


 �

¼< Gvoid
� �

Qf g; ½HM��1
Gvoid
� �

Qf g > ð57Þ
For the porous element, ½Gvoid� is a nM

b � ðnE
q þ nI

qÞ rec-

tangular matrix, where nM
b ¼ dimðT M

e Þ, nE
q ¼ dimðVE

e Þ and
nI

q ¼ dimðVI
eÞ. Since ½HM� is positive definite, the strain

energy in the Voronoi cell element vanishes for zero stress
fields in the matrix, and consequently in Eq. (57)

ðSEÞMe ¼ 0, Gvoid
� �

Qf g ¼ 0 ð58Þ
The necessary condition of stability is written from Eq.
(58) as

½Gvoid�fQg ¼ ½U�½k�½V�fQg 6¼ 0; 8Q
\

Qrb ¼ ; ð59Þ
where Qrb correspond to the six rigid body modes of
displacement. The matrices ½U� and ½V�, whose columns
are the eigenvectors of ½Gvoid�½Gvoid�T and ½Gvoid�T ½Gvoid�
respectively, are orthonormal matrices obtained by sin-
gular value decomposition of ½Gvoid�. [k] is a rectangular
matrix with positive entries on the diagonal corresponding
to the square roots of the non-zero eigenvalues of both
½Gvoid�½Gvoid�T and ½Gvoid�T ½Gvoid�. Premultiplying both sides
of Eq. (59) by ½U��1 yields

½k�½V�fQg ¼ ½k�fQ�g ¼ 0 ð60Þ
Since the columns of ½V� are linearly independent, the
above equation can only be satisfied for either trivial or
rigid body solutions of the boundary displacement.
Equation (58) also leads to the L-B-B condition for
rank sufficiency of a Voronoi cell element with a void.
Positive singular values of ½k� imply that the strain
energy associated with the stress field solution rM

e ðuE
e ; uI

eÞ
associated with non-rigid body displacement fields

u
E=I
e 2? VE=I

e 8?VE=I
e

Trb VE=I
e ¼ ; is strictly non-zero. From

Eqs. (20) and (58), the L-B-B condition may be stated as:

9c > 0 such that sup
8u

E=I
e 2?V

E=I
e

ebM
E ðrM

e ; uE
e Þ �e bM

I ðrM
e ; uI

eÞ
k uE

e 	 uI
e k


 c k rM
e k 8rM

e 2 T M
e ð61Þ

where k � k are metric norms defined in the respective
subspaces. The corresponding necessary condition for
stability in terms of the matrix dimensions become

nM
b > nE

q þ nI
q � 6 ð62Þ

The sufficient condition for stability is established by
ensuring that the eigen-values in ½k� are positive, which is
enforced at the solution stage.

3.3.2
Voronoi cell elements with inclusions
For a composite Voronoi cell element with an embedded
inclusion, positiveness of the total strain energy
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ðSEÞe ¼ ðSEÞMe þ ðSEÞIe can be stated in a similar manner
as:

9c > 0 such that sup
8uE

e2?VE
e

ebM
E ðrM

e ; uE
e Þ

k uE
e k


 c k rM
e k 8rM

e 2 T M
e and

sup
8uI

e2?VI
e

ebI
IðrI

e; uI
eÞ

k uI
e k


 c k rI
e k 8rI

e 2 T
I ð63Þ

The corresponding L-B-B condition or the necessary
condition for stability are (see [18,19])

nM
b > nE

q � 6 and nI
b > nI

q � 6 ð64Þ
These conditions are sufficient to guarantee the existence
of solution and its convergence for multi-field saddle point
problem posed by the Voronoi cell FEM with elastic con-
stituents [46].

4
Numerical implementation

4.1
Scaling of the stress function
It is desirable that matrices HM½ � and HI½ � have good
condition numbers and are invertible. Global cartesian
coordinate representation with varying exponents make
disparate contributions to these matrices. For example, for
x; y; z >> 1, different exponents n can make big differ-
ences in the matrix components that can lead to bad
conditioning with poor invertibility. Scaling of stress
functions have been proposed in [18,19] through local
element coordinates ðn; g; fÞ. Coordinates ðx; y; zÞ are
linearly mapped as

n ¼ ðx� xcÞ
l

; g ¼ ðy� ycÞ
l

; f ¼ ðz� zcÞ
l

ð65Þ

where ðxc; yc; zcÞ are the center coordinates of the Voronoi
cell element and l is a scaling length determined as:

l ¼ max jmaxðxe � xcÞ;maxðye � ycÞ;
maxðze � zcÞj8ðxe; ye; zeÞ 2 Xe

The scaled coordinates are in the range of �1 to 1 for most
Voronoi cell elements. The corresponding matrix stress
functions in Eq. (49) have the form

Uij ¼
Xm

pþqþr¼1

npgqfrbpqr þ
Xm

pþqþr¼1

npgqfr

�
Xn

k¼1

1

apþqþrþk
1

bm
pqrk; i ¼ j ¼ 1; 2; 3 ð66Þ

4.2
Numerical integration schemes for G and H matrices

4.2.1 Integration of [G] matrices
In Eqs. (52) and (54), the matrices GMI½ � and GII½ � are
numerically integrated over the interface and the matrix
GE½ � over the element boundary. All numerical integrations

are executed using Gaussian quadrature. VCFEM elements

have polygonal boundaries, which are divided into 6
noded quadratic triangular elements as shown in Fig. 4a.
For each polygonal face the triangular elements are con-
structed with one node at the centroid and two others
coinciding the vertices of the edges. For the ellipsoidal
interface, subdivision to construct 9-noded quadratic ele-
ments is done in the following sequence (see Fig. 4c).

1. A bounding box with its edges parallel to the principle
axes of the ellipsoids and completely encompassing the
ellipsoids is constructed. The ratio of the three edges of
the box is the same as the ratio of the three axes of the
ellipsoid.

2. 9 nodal points are inscribed on each face of the
bounding box. This includes 4 corner nodes, 4 middle
nodes and 1 center node.

3. Each of the 9 nodes are joined with the center of the
bounding box and the corresponding intercepts with
the interface form the quadrilateral surface element.
This is repeated for all the 6 faces of the bounding box
faces. It provides smaller elements in regions of higher
curvature

The GII½ � matrix, requiring integrating over ellipsoidal
surface segments of the interface, is sensitive to the surface
elements used for the integration. Standard 9 noded-
biquadratic elements with isoparametric shape functions
can result in significant deviation from the actual surface
area especially in regions of high curvature. To overcome
this, a parametric equation for the ellipsoid is expressed as
x ¼ a cos h sin /; y ¼ b sin h cos /; z ¼ c cos / ð67Þ
where a; b; c are the semi-axes and 0 � h � 2p ,
� 1

2 p � / � 1
2 p correspond to the angular range of the

surface. The nodal coordinates are represented as ðha;/aÞ
with a ¼ 1 . . . 9. The Gauss integration points in this
mapping are interpolated from the spherical coordinates
of the nodes

h ¼
X9

a¼1

Naha/ ¼
X9

a¼1

Na/a

where Na is the interpolation function for a 9 noded
biquadratic element. Subsequently, the global Cartesian
coordinates of the integration points ðx; y; zÞ are expressed
in terms of ðh;/Þ and the semi-axes a; b; c. In the in-
tegration scheme, the integral of a function over a segment
on the interface

R
s f ðx; y; zÞds

� �
is written asR 1

�1

R 1
�1 f J1J2dndf

� �
. J1 and J2 are the determinants of the

Jacobian operators relating the spherical to cartesian
coordinates and natural (master) to spherical coordinates
respectively.

J1 ¼ det

î ĵ k̂

ox
o/

oy
o/

oz
o/

ox
oh

oy
oh

oz
oh

2
664

3
775

¼ sin / cos h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2c2 sin2 /þ a2c2 sin2 /þ a2b2

q

J2 ¼ det

P9
i¼1 N 0ihhi

P9
i¼1 N 0ih/iP9

i¼1 N 0i/hi

P9
i¼1 N 0i//i

" #
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This mapping scheme guarantees that all integration
points are on the actual surface.

4.2.2
Integration of [H] matrices:
For accurate domain integration of matrices HM½ � and HI½ �,
the matrix and inclusion volumes XM

e and XI
e are sub-

divided into 3D brick and tetrahedral elements respec-
tively. For the matrix domain Xm, the following algorithm
is adopted.

� Each face on the element boundary oXE
e is subdivided

into triangles by joining the face edges to the center of
the element as shown in Fig. 4a. The triangles are
represented using 9-noded biquadratic elements with
collapsed nodes at the central vertex. � Each node of the
above triangular element is projected on the interface
oXI

e. The projected point is the intersection of the line
joining the node with ellipsoid centroid, with the in-
terface. This results in a 9-noded element at the inter-
face as shown in Fig. 4b. � The element-pair at the
element face and interface are used to generate
18-noded brick elements for volume integration. It is
possible that the projected element on the interface is
too large due to the relative positioning of the interface
in the Voronoi cell. To correct this problem, each of the
triangle pair is subdivided into 3 sub-triangles before
generating the brick elements. The subdivision is
carried out for the following conditions:

area of projected triangle

interface area
> specified tolerance

or
area of face triangle

element surface area
> specified tolerance

The value of the tolerance is set to 4.5%, which is
slightly greater than the area ratio generated by a cubic
element with a spherical inclusion at the center. � The
18 noded brick elements are further subdivided to en-
hance the accuracy of integration of the reciprocal
function in ½PM�, particularly near the interface. To ac-
complish this, the projection line from the face node to
the inclusion boundary is subdivided into four seg-
ments using the ratio of the in ellipsoidal coordinates:
a1

1 : a2
1 : a3

1 : a4
1 ¼ 1:1 : 1:2 : 1:3 : 1:4. The resulting 4

brick elements become progressively larger as they
move away from the interface is shown in Fig. 4b. �
Gauss quadrature rules are used in each brick element
for numerical integration.

For volume integration in the inclusion to evaluate ½HI �,
tetrahedral elements are used. As shown in 4d, these ele-
ments are constructed by joining interface element nodes
with the inclusion centroid.

4.3
Implementation of conditions for stability
Linear independence of the columns of ½PM� and ½PI � is
natural for pure polynomial expansions. However, when
reciprocal functions are used, some of the reciprocal terms
may be linearly dependent on the polynomial terms. The
rank of matrices like ½PM� is determined apriori from the

diagonal matrix resulting from a Cholesky factorization of
the square matrix

½H�M� ¼
Z

Xe

½PM�T½PM�dX ð68Þ

Nearly dependent terms in the columns of ½PM� will result
in very small pivots during the factorization process.
Corresponding terms in the stress function are dropped to
prevent numerical inaccuracies in the inversion ½HM�.

In VCFEM, the interface nodes are in general, not topo-
logically connected to the element boundary nodes. It is
necessary to specify rigid-body modes for the displacement
field fqIg on the interface. A simple procedure, corre-
sponding to the constraining selected displacement modes
based on the singular value decomposition of matrix ½GI�, is
performed for Voronoi cell elements with inclusions. Sin-
gular value decomposition of the matrix ½GE� � ½GMI �, and
matrices ½GE� and ½GII � are performed for Voronoi cell ele-
ments with voids and inclusions respectively to satisfy the
discrete L-B-B conditions. The number of degrees of free-
dom nM

b and nI
b in the stress functions UM and UI are chosen

to satisfy the Eqs. (62) and (64). Zero singular values in the
diagonal of the resulting ½k� matrix are removed by enrich-
ing the corresponding stress function with polynomial
terms. Additionally, extremely small eigen-values in ½k�may
result in inaccurate displacements. This is averted by con-
straining selected displacements based on the singular value
decomposition of ½GMI � or ½GII �. The procedure involves
re-writing the matrix multiplication as:

½G�fqIg ¼ ½U�½k�½V�fqIg ¼ ½U�½k�fqIgcalt ¼ ½G�altfqIgalt

ð69Þ
Elements in fqI

altg corresponding to small eigen-values in
½k� are pre-constrained to zero. The process decreases the
dimensions of VI

eH and results in a loss of accuracy. This
procedure constrains rigid-body modes on the inclusion
interface and also extremely small eigen-values in ½k�
which causes inaccurate displacements. The rotated ½G�alt
matrix from singular value decomposition is used in the
stiffness matrix calculation and the corresponding dis-
placement vector at the interface is fqI

altg.

5
Numerical examples
A number of linear elastic boundary value problems are
numerically solved by the 3D Voronoi cell finite element
model to understand its effectiveness in analyzing het-
erogeneous microstructures. Heterogeneities in the
microstructure are in the form of either voids or inclusions
of ellipsoidal shapes. The problems solved are divided into
two different categories, namely comparison of micro-
scopic VCFEM solutions with: (i) known analytical solu-
tions for simple unit cells; (ii) results using commercial
codes for more complex microstructures.

5.1
Stress distribution around a spherical void
The analytical solution for the three-dimensional stresses
around a spherical void in an infinite medium under
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uniaxial tension (rzz ¼ 1) has been provided in Ti-
moshenko and Goodier [1] (section 137). The stress field
from a special stress function is superposed on the so-
lutions of a solid bar in tension for this solution. The
special stress field matches the stress field for the solid
bar on the surface of the sphere and vanishes to zero at
infinity. In the VCFEM analysis, a L� L� L domain
with a single spherical void of radius rd ¼ L

5 is modeled
using a single cubic element. The Possion’s ratio of the
material is relevant to the solution and is taken to be
m ¼ 0:3. In the VCFEM implementation, linear
displacement fields are assumed on the triangular sub-
domains on each face, while quadratic triangular ele-
ments are used for displacement fields on the void
surface. The matrix stress function UM

polyÞij in equation
(25) is taken as a fifth order polynomial stress function
pþ qþ r ¼ 0 � � � 5; npoly

b ¼ 336. The reciprocal stress
functions in Eq. (49) is constructed with i ¼ 1 � � � 5 for
pþ qþ r ¼ 0 � � � 2. The axisymmetric stress function
used in [1] can be proved to be equivalent to 3D
Maxwell stress functions of the form:

U11¼
x2þy2

a5
�2

z2

a5

� �
cþ 2m�1ð Þ x2þy2ð Þ

a3
þ 2m�2ð Þz2

a3

� �
b

þ 2m�1ð Þ x2þy2ð Þþ 2m�2ð Þz2þ 2m�1ð Þ x2þz2ð Þþ
a3

� �
rd

þ 2m�2ð Þy2þz2þy2

a3

� �
rdþr0y2

U22¼
x2þy2

a5
�2

z2

a5

� �
cþ 2m�1ð Þ x2þy2ð Þ

a3
þ 2m�2ð Þz2

a3

� �
b

þ 2m�1ð Þ x2þy2ð Þþ 2m�2ð Þz2þx2þz2

a3

� �
rd

þ 2m�1ð Þ z2þy2ð Þ 2m�2ð Þx2

a3

� �
rd

U33¼
x2þy2

a5
�2

z2

a5

� �
cþ x2þy2

a3

� �
b

þ 2m�1ð Þ x2þy2ð Þþ 2m�2ð Þx2þ 2m�1ð Þ x2þz2ð Þ
a3

� �
rd

þ 2m�2ð Þy2þx2þy2

a3

� �
rd ð70Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2
p

rd
corresponds to the ellipsoidal

coordinate and a; b; c are material constants that can be
expressed as,

a ¼ r0 1� 5mð Þ
4 7� 5mð Þ 1� 2mð Þ ; b ¼

5m
2 7� 5mð Þ ; c ¼

r0

2 7� 5mð Þ
For this case, the VCFEM stress interpolation function in
Eq. (49) matches the theoretical stress function in Eq. (70)
exactly. The solution error can therefore be attributed to
the error in displacement interpolations on the void and
element boundaries produced by the triangular elements
and solution error. Different stress components along a
line passing through the center of the sphere are plotted in
Fig. 5. The dominant stress along this line, perpendicular
to the loading direction, is the normal stress in the loading

direction. The VCFEM solutions closely match the stresses
in [1].

5.2
Stress distribution around an ellipsoidal void
Sadowsky and Sternberg [2] have presented an analytical
solution to the problem of stress field around a small
ellipsoidal void under uniaxial tension in an infinite
medium. The exact solution for stresses is expressed in
terms of elliptic functions. In this example, the stress
distribution generated by the VCFEM is compared with
that in [2]. The ellipsoid has an aspect ratio
a : b : c ¼ 9 : 3 : 1 in a matrix cube of dimensions
L� L� L, with L ¼ 5a. The material properties and the
stress and displacement interpolation fields in this pro-
blem are same as in the previous example. Stress dis-
tributions along the centroidal major axis of the ellipsoid,
that is perpendicular to the loading direction are shown in
Figs. 6a and b. Concentration of the dominant stress rzz

occurs near the tip of the void on the major axis. The Fig.
6b shows a zoom-in of the stresses near this region. The
concentration is very well represented by the VCFEM
solution. The slight deviation from the analytical solution,
away from the tip, is because of the displacement inter-
polations on the ellipsoidal surface.

5.3
Effect of interaction of spherical heterogeneities
The interaction between two heterogeneities, which are
sources of stress concentration, is of considerable in-
terest to the composites community. Semi-analytical
solutions to these problems have been provided in [4]
for cavities using bispherical coordinates, and in [5] for
rigid inclusions and cavities based on the Boussinesq-

Fig. 5. Comparison of stress distribution along the center line
z ¼ 0 for the cubical domain with a spherical void
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Papkovich stress functions. The solutions in the latter
method are expanded in series of spherical harmonics
with respect to the centers of the heterogeneities. The
VCFEM implementation involves a mesh of two cubic
elements, with each element containing a spherical
inclusion or void. The problem is analyzed with the
heterogeneities approaching each other and hence the
common edge shared by the elements. The stress
concentration at the interface increases with decreasing
distance. For improved accuracy, the adaptive scheme
developed in [19] is implemented to enhance the
displacement interpolation using h� p enrichment. The
error indicator for adaptation is based on the traction
discontinuity along the element boundary and the
heterogeneity-matrix interface. Once identified for
refinement, the boundaries and interfaces are
successively subdivided into smaller triangles till the
traction reciprocity error is within acceptable tolerance.

The first problem solved using VCFEM involves two
voids of radius r, whose centroids are separated by a
distance R. The distance is set to R ¼ 4r in this problem.
The boundary condition corresponds to a far field

hydrostatic tension of r1xx ¼ r1yy ¼ r1zz ¼ 1. Stresses gen-
erated by VCFEM at the equators and poles of the spheres
are compared with analytical solutions of [4] in table 1.
The maximum difference between the two solutions is
found to be less than 1% .

In the second problem set considered, the two hetero-
geneities are assumed to be either voids or rigid inclu-
sions. The rigid material is simulated in VCFEM with a
very high modulus, corresponding i.e. Einclusion ¼ 50Ematrix.
Two different applied far field strains are considered for
generating the solutions suggested in [5]. They are:

(i) A far field hydrostatic tension, represented by the strain
field �1xx ¼ �1yy ¼ �1zz ¼ 1.

(ii) A far field in-plane tension and out-of-plane com-
pression, represented by the strain field �1xx ¼ �1yy
¼ ��1zz ¼ 1. The R=r ratio is varied from 0 to 3 in this
problem. Figures 7 shows the comparison of VCFEM
results with those in [5] for the normalized stress field
rzz along a line joining the centers of the spheres for
R=r ¼ 3. A good agreement of the results is observed
with less than 1% .

Table 1. Comparison of
VCFEM generated stresses
with [?] for two spherical voids
in an infinite medium at (a)
adjacent pole (b) equator (c)
remote pole

Stress Near Pole Equator Remote Pole

[4] VCFEM [4] VCFEM [4] VCFEM

rxx 1.570 1.5610 0.000 0.0000 1.510 1.4963
ryy 1.570 1.5673 1.470 1.4810 1.510 1.4988
rzz 0.000 0.0000 1.500 1.4922 0.00 0.00

Fig. 6. Comparison of stress distribution along the center line
y ¼ 0; z ¼ 0 for a cubical matrix with an elliptical void: (a) for
different values of x and (b) near the tip of the elliptical void
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The convergence rate of the VCFE model using purely
polynomial stress functions and the combined polynomial
and reciprocal terms are examined for rigid inclusions
with R=r ¼ 3 in table 2. The rate is very slow with purely

polynomial based stress function enrichments. However
the addition of the reciprocal terms significantly enhances
the convergence rate.

Table 2. Convergence rate of the normalized stress
rzz�r1zz

l0
for purely polynomial (poly) vs polynomial+reciprocal (VC) stress function

at point A for 2 spherical inclusions shown in fig(??) with R=r ¼ 3 with �1xx ¼ �1yy ¼ ��1zz ¼ 1

n
poly
b ¼ 336 n

poly
b ¼ 468 n

poly
b ¼ 620 nVC

b ¼ 574 [6]

Normalized Stress )7.567 )7.614 )7.693 )8.343 )8.3588

Fig. 7. Comparison of stress
ditribution along the center
line bewteen the two spheres,
for various values of sepera-
tion distance and macroscopic
loads with (a) �1ij ¼ dij and (b)
�1ij ¼ di1dj1 þ di2dj2 � 2di3dj3
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5.4
Comparison with ANSYS for random microstructures
A microstructure consisting of randomly dispersed 20
spherical voids in a 10� 10� 4 cuboidal matrix
(�5:0 � x � 5:0;�5:0 � y � 5:0; 0:0 � z � 4:0), is mod-
eled in this example. The microstructure and the Voronoi
cell mesh are shown in Fig. 8a, while Fig. 8b shows the
mesh with commercial code ANSYS. The VCFEM mesh
contains twenty elements corresponding to the number of
voids, with a total of 144 nodes on the element boundaries
and 1,480 nodes on the matrix-inclusion interfaces. The
corresponding converged ANSYS mesh contains 84,123
ten-noded tetrahedron SOLID92 elements and 124,655
nodes. The matrix material has a Young’s modulus of
E ¼ 200GPa and Poisson’s ratio m ¼ 0:3. The boundary
conditions are: (i) Symmetry conditions on faces with
x ¼ �5; y ¼ �5; and z ¼ 0;; (ii) Displacement uz ¼ 4 on
the face z ¼ 4, corresponding to an overall strain �zz ¼ 1:0
in the z�direction. The other two faces (x ¼ 5; y ¼ 5) are
traction free. The VCFEM solutions for microstructural
stresses are compared to those generated by the highly
refined ANSYS model. The tensile stress rzz along three
lines parallel to the coordinate axes x; y; z, and through the
origin are plotted in Fig. 9. Stress concentrations of upto 4
are observed along the x and y directions. The VCFEM
model is able to capture the important features in the
stress distribution with an accurate representation of the
peak stresses along the void surface. The bumps and peaks
in these plots are due to the unsmoothened representation
of matrix stresses resulting in small discontinuities across
element boundaries.

5.4.1
Parallel implementation of the VCFEM code
While the 3D VCFEM is accurate for heterogeneous
microstructures, it has high requirements of computing
time, mainly because of numerical integration using a

large number of integration points. A multi-level parallel
programming approach is implemented to significantly
enhance the computational efficiency of the 3D VCFEM in
[47]. The parallelization is conducted for a cluster of
symmetric multi-processor (SMP) workstation nodes. MPI
is used for data decomposition at a coarse level between
the nodes and OpenMP is used for multi-threaded paral-
lelism on each node. The multi-level parallelism combines
benefits of improved loop timings and domain decom-
position methods to obtain optimized solution times using
SMP cluster systems. The code is scalable to any number
of multiprocessor nodes such that any number of elements
can be solved simultaneously with the only limit being the
available hardware resources. The addition of OpenMP
directives into the VCFEM model allows for loop level
parallelization to occur in an efficient manner. The com-
putations for each element can be performed across mul-
tiple processors in a shared memory environment. For the
20-element microstructure, the timings for the multi-level
program using different number of nodes of the cluster,
with each node running four OpenMP threads, are pro-
vided in Fig. 10. Details of the parallelization scheme are
provided in [47].

6
Conclusions
A three-dimensional Voronoi cell finite element model
(VCFEM) is developed in this paper for analyzing micro-
structural stresses in elastic domains containing ellipsoidal
inclusions or voids. The paper begins with the develop-
ment of a 3D domain tessellation method for generating
the Voronoi cell mesh, in which each Voronoi cell contains
one heterogeneity at most. To account for the shapes and
sizes of heterogeneities in the domain discretization pro-
cedure, a surface-based tessellation algorithm is proposed
as a modified form of the point-based tessellation. For
planar faces, the surface based tessellation may give rise to

Fig. 8. (a) VCFEM and (b) ANSYS meshes for 20 spherical voids
in a cuboidal material domain
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non-coinciding triple points. Local adjustments are
implemented to avoid such incongruence. The mesh
generation algorithm is successfully tested for different
microstructures with various shapes, sizes and spatial
distribution of heterogeneities.

The Voronoi cell finite element model for small
deformation elasticity is subsequently developed using an
assumed stress hybrid formulation. In this model, equili-
briated stress fields are constructed from symmetric
Maxwell or Morera’s stress functions. Complete poly-
nomial representation of the stress functions guarantees
invariance of stresses with respect to coordinate trans-
formations. A necessary condition for stability is that the
columns of the stress interpolation function [P(x1; x2; x3)].

A special procedure of selective elimination of the
dependent modes is invoked to restore this condition.
Stress functions comprised of pure polynomials yield poor
convergence characteristics and consequently special
augmentation functions are developed to improve accu-
racy and efficiency. These functions account for the shape
of the interface in its vicinity, but decay with increasing
distance from it. Creation of these functions in terms of
elliptic integrals and using ellipsoidal harmonics is a major
contribution of this paper. The development follows from
the derivation of stresses from the general solutions to the
Navier’s equation. Numerical implementation of the
algorithms is presented and especially the methods of fil-
tering out the rigid body modes and enhancing stability

Fig. 9. Comparison of tensile stress distribution along centerlines
of the cuboidal domain
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and convergence of the resulting finite element model.
Various numerical examples are solved in this paper to
validate the model. Comparison of microstructural stress
results generated by the 3D VCFEM with analytical
solutions in the literature for smaller number of hetero-
geneities confirm the accuracy of the model. Stress dis-
tribution results are also compared with a highly refined
FEM model using ANSYS using multiple voids. The
accuracy of the VCFEM predictions in these simulations
provide adequate validation to the robustness of the
formulation. A multi-level code parallelization using
Open-MP and MPI adds significant efficiency to the
VCFEM simulations.

Three dimensional stress analysis in complex micro-
structures has currently become a necessity in the design
of advanced materials. Despite the disadvantages asso-
ciated with conventional modeling tools like FEM in
efficiently model real microstructures, serious and novel
attempts are being made to incorporate three dimensional
analyses into practice [8, 9, 10, 13, 14, 15, 16]. The present
paper is developed to propose an alternative approach to
these developments by way of 3D VCFEM. While this
method of modeling with direct interface to the micro-
structure has considerable promise, a difficulty that is
currently faced with, is the large number of integration
points needed for the special functions in Gauss quad-
rature methods. This is a topic of future investigation and
reduction.

7
Appendix

7.1
Coefficients for lame and stress functions
The coefficients A

j
i for the lame functions C1; S1&D1 in

equation (40) are given as:

A1
1 ¼ 3h2;A1

2 ¼ �3h2;A1
3 ¼ 0

A2
1 ¼ � 1� h2

k2

� �
3hkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � h2
p ;A2

2 ¼
3hkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � h2
p ;

A2
3 ¼ �

3h3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � h2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � k2
p

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � h2
p

A3
1 ¼

3h2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � h2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � h2
p

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � k2
p ;

A3
2 ¼ �

3h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � h2
p ;A3

3 ¼ 0 ð71Þ

The coefficients B
ij
k ;C

i
k for the stress functions in equation

(44) are given as

B11
1 ¼ h;B12

1 ¼ �
k2h

k2 � h2
;B13

1 ¼
h3

k2 � h2

B21
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � h2
p

h

k
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k2 � h2
p

h

k
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k
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Fig. 10. Speedup with multi-level parallel
code with additional computing nodes.
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14. Böhm HJ, Eckschlager A, Han W (1999) Modeling of phase
arrangement effects in high speed tool steels. In: F. Jeglitsch,
R. Ebner and H. Leitner (eds.) Tool Steels in the Next Cen-
tury. Montanuniversit€at Leobe, Leoben Austria, pp 147–156

15. Segurado J, Llorca J, Gonzalez C(2002) On the accuracy of
mean field approaches to simulate the plastic deformation of
composites. Scripta Mater. 46:525–529

16. Moes N, Cloirec M, Cartraud P, Remacle J-F (2003) A com-
putational approach to handle complex microstructure geo-
metries. Comput. Meth. Appl. Mech. Engrg. 192:3163–3177

17. http://www.matsim.ch/PalmyraE.html
18. Moorthy S, Ghosh S (1996) A model for analysis of arbitrary

composite and porous microstructures with Voronoi cell
finite elements. Int. J. Numer. Meth. Engrg. 39:2363–2398

19. Moorthy S, Ghosh S (2000) Adaptivity and convergence in the
Voronoi cell finite element model for analyzing hetero-
geneous materials. Comput. Meth. Appl. Mech. Engrg. 185:
37–74

20. Ghosh S, Moorthy S (1998) Particle Cracking Simulation in
Non-Uniform Microstructures of Metal-Matrix Composites.
Acta Metallurgica et Materillia 46(3):965–982

21. Moorthy S, Ghosh S (1998) A Voronoi cell finite element
model for particle cracking in composite materials. Comput.
Meth. Appl. Mech. Engrg. 151:377–400

22. Ghosh S, Mukhopadhyay SN (1991) A two dimensional
automatic mesh generator for finite element analysis of
random composites. Comput. Struct. 41:245–256

23. Okabe A, Boots B, Sugihara K (1992) Spatial tessellations
concepts and applications of Voronoi diagrams. John Wiley &
Sons ISBN:0 471 93430 5

24. Kumar S (1992) Computer Simulation of 3D Material
Microstructure and Its Application in the Determination of
Mechanical Behavior of Polycrystalline Materials and
Engineering Structures. Ph D Dissertation, Penn. State
University

25. Kiang T (1966) Random fragmentation in two and three
dimensions. Z. Astrophys 64:433–439

26. Andrade PN, Fortes MA (1988) Distribution of cell volumes in
a Voronoi partition. Phil. Mag. B 58:671–674

27. Mahin KW, Hanson K, Morris JW (1980) Comparative ana-
lysis of the cellular and Johnson-Mehl microstructures
through computer simulation. Acta Metall. B 28:443–453

28. Mackay AL (1972) Stereological characteristics of atomic
arrangements in crystals. J. Microscopy 95(2):217–227

29. Finney JL (1979) A procedure for construction of Voronoi
polyhedra. J. Comput. Phys. 32:137–143

30. Tanaka M (1986) Statistics of Voronoi polyhedra in rapidly
quenched monatomic liquids I: Changes during rapid
quenching process. J. Phys. Soc. Japan 55:3108–3116

31. Hinde AL, Miles RE (1980) Monte-Carlo estimates of the
distribution of the random polygons of the Voronoi tessel-
lation with respect to a Poisson process. Stat. Comput. Simul.
10:205–223

32. Pathak P (1981) PhD Dissertation, University of Minnesota
33. Winterfeld PH (1997) Percolation and Conduction

Phenomena in Disordered Composite Media. PhD
Dissertation, University of Minnesota

34. Tuma JJ, Walsh RA(1997) Engineering Mathematics
Handbook. McGraw-Hill, U.S.A ISBN 0 07 065529 4

35. Dixon LCW, Spedicato E, Szegö GP (1980) Nonlinear Optimi-
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