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Abstract This paper presents new finite element meth-
ods for the analysis of localized failures in plastic beams
and frames in the form of plastic hinges. The hinges are
modeled as discontinuities of the generalized displace-
ments of the underlying Timoshenko beam/rod theory.
Hinges accounting for a discontinuity in the transversal
and longitudinal displacements and the rotation field are
developed in this context. A multi-scale framework is
considered in the incorporation of the dissipative effects
of these discontinuities in the large-scale problem of a
beam and a general frame. A localized softening cohe-
sive law relating these generalized displacements with
the stress resultants acting at the level of the cross sec-
tion is effectively introduced in the frame response. The
resulting models, referred to as localized models, are
then able to capture the localized dissipation observed in
the localized failures of these structural members,
avoiding altogether the inconsistencies observed for
classical models in the stress resultants with strain soft-
ening. The constructive approach followed in the
development of these models leads naturally to the for-
mulation of enhanced strain finite elements for their
numerical approximation. In this context, we develop
new finite elements incorporating the singular strains
associated to the plastic hinges at the element level. A
careful analysis is presented so the resulting finite ele-
ments avoid the phenomenon of stress locking, that is,
an overstiff response in the softening of the hinge, not
allowing for the full release of the stress. The accurate
approximation of the kinematics of the hinges requires a
strain enhancement linking the jumps in the deflection
and the rotation fields, given the coupled definition of
the transverse shear strain in these two fields. Different
enhanced strain elements, involving different base finite
elements and different enhancement strategies, are

considered and analyzed in detail. Their performance
are then compared in several representative numerical
simulations. These analyses identify optimally enhanced
finite elements for the accurate modeling the localized
failures observed in common framed structures.

Keywords Beams and frames Æ Plastic hinge Æ Strong
discontinuity Æ Enhanced finite elements Æ Stress locking

1 Introduction

The analysis of the failure of structural systems is one of
the main problems in basically any practical application
in structural engineering. Of particular interest is the
understanding of the observed localized failures in which
the columns and beams of framed structures fail in
concentrated zones, usually described as plastic hinges.
The study of the post-failure response, with the structure
exhibiting a reduction in the load capacity for additional
deformation (generically referred to as softening), ap-
pears as a clear challenge given the nonlinearity of the
resulting inelastic problem. The development of
numerical techniques for the accurate resolution of these
solutions appears then as a clear choice. The goal of this
paper is precisely the formulation of accurate and effi-
cient finite element methods for the analysis and
numerical simulation of plastic hinges in beams and
frames, to model their softening post-limit response.

Initial attempts in the analysis of typical structural
members considered classical theories, like the Timo-
shenko beam theory, in combination with standard
plasticity models in stress resultant form. To model the
overall softening response of the structure, a strain
softening law can be considered at the constitutive or
cross-section level, e.g., between the bending moment
and curvature (see Darvall [1984], and Bazant et al.
[1987]). However, strain softening is known to lead to
serious inconsistencies in inelastic models of the local
continuum. The mathematical problem becomes
ill-posed, and the solutions obtained with them are
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physically meaningless. A typical situation is the inade-
quacy of a plastic model with strain softening law to
model the failure of a rod in the fully dynamic case
involving wave propagation, as presented in Baz̆ant &
Belytschko [1985]. The finite element solutions of the
problem show the typical pathological mesh size
dependence in the conditions; see again Bažant et al.
[1987] for an example in the structural context of interest
here. In fact, the numerical methods are just obtaining
the non-physical solutions associated to the continuum
models with strain softening as the mesh is refined.

These inconsistencies can all be traced back to the lack
of a characteristic length defining a finite zone where the
dissipative softening effects are to localize in the contin-
uum problem. Remarkably, the mathematical analyses
presented in Armero & Ehrlich [2002] identify the same
difficulties in inelastic models of a Timoshenko beam/rod
with strain softening despite the existence of awell-defined
length scale in these models: namely, the thickness of the
structural member. A complete linearized spectral anal-
ysis of the governing equations has been presented in this
reference identifying the ill-posedness of themathematical
problem with a strain softening law (that is, a relation
between the generalized strainmeasures and the conjugate
stress resultants defining the Timoshenko theory of a
beam/rod). The significance of this result has been illus-
trated with the exact closed-form solution of the wave
propagation in a simply supported beam with strain
softening (i.e. moment versus curvature softening law),
extending in this way the results presented originally in
Bažant&Belytschko [1985] for a rod. This solution shows
again to be physically incorrect, with the model unable to
capture the localized dissipation associated to the
formation of the plastic hinges.

These results motivate the consideration of the so-
called strong discontinuity approach in the modeling
and numerical resolution of these localized solutions.
The plastic hinges are then understood as discontinuities
of the generalized displacement fields defining the
underlying structural theory under consideration. This
includes discontinuities in the longitudinal and trans-
versal displacements of the beam/rod middle-axis, and
the rotation of the beam cross-section. In this way, we
can model general responses of the plastic hinges (for
example, bending moment versus relative rotation, or
coupled transverse shear force and bending moment
versus relative rotation and deflection jump). This situ-
ation is to be contrasted with formulations incorporat-
ing a plastic hinge modeled with a zone of finite length
where the strain softening takes place; see e.g. Darvall
[1984], Bažant et al. [1987] or the review in Bažant &
Cedolin [1991] (Sect. 13.6).

The strong discontinuity approach can be found
developed in the recent literature. Early works include
Simo et al. [1993], Larsson et al. [1993], Armero &
Garikipati [1995, 96], and Oliver [1996a, b], among
others. We presented in Armero[1999] and Armer-
o[2001] a multi-scale formulation of this approach. In
this way, the strong discontinuities are seen as tools for

the incorporation of the localized dissipative effects
observed in the failures of interest in the large-scale
problem of the original continuum. This approach leads
to what we refer to as localized models, which incor-
porate these effects without the need to introduce
explicitly the small scales associated to the failure of the
material. Furthermore, the constructive way in formu-
lating these models, with the strong discontinuities (or,
rather, the singular strain fields associated to these
solutions) being introduced locally in a small neighbor-
hood of the material points that eventually vanishes,
leads naturally to the formulation of enhanced strain
finite element methods for their numerical approxima-
tion. The interpolated strain fields of a base element are
enhanced, locally at the element level, with the singular
fields associated to the strong discontinuities. No regu-
larization of the strong discontinuities is required in
these formulations, with the final finite elements incor-
porating the localized dissipative effects objectively.

We have developed recently in Armero & Ehrlich
[2002] this multi-scale framework for the modeling of
plastic hinges in beams and rods, arriving to localized
models in these contexts. The mathematical analyses
presented in this reference show that the resulting
initial boundary-value problems recover their mathe-
matical well-posedness and their physical significance.
In particular, these properties were verified after
obtaining the exact closed-form solution of the wave
propagation in a simply supported beam with a soft-
ening hinge (i.e. moment versus rotation softening
law) at its center. It is the particular goal of the
present paper to use this framework for the develop-
ment of new enhanced strain finite element methods
for the numerical resolution of these discontinuous
solutions. The consideration of beam finite elements
incorporating plastic hinges can be found in Darval &
Mendis [1984], King et al. [1992], and Jirásek [1997],
among others. This includes the case of plastic hinges
regularized by a zone of finite length where the soft-
ening response takes place, as considered in the first of
these references. The strong discontinuity approach
proposed here allows for a rigorous and systematic
development of these finite element methods, as illus-
trated by the considerations in this paper.

Crucial to the accurate modeling of the strong dis-
continuities by the finite elements is the avoidance of the
so-called stress locking. This situation is typical in the
original smeared crack models of concrete (see e.g. Rots
et al. [1985]), and it involves an overstiff response of the
numerical model when trying to capture the softening of
a discontinuity (crack or similar). A spurious transfer of
stress may occur across the discontinuity, not allowing
the full release of the stress in the fully softened dis-
continuity. This situation may even lead to a hardening
rather than a softening overall response of the solid or
structure. Finite element formulations based on the
strong discontinuity approach, carefully accounting for
the kinematics of the strong discontinuities and the
equilibrium conditions across them, have been shown to
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avoid stress locking. We refer to Jirásek [2000] for
complete details on these arguments.

We present in this paper a complete analysis of these
considerations in the context of plastic hinges in beams
and rods. The final goal is again to obtain new finite
elements that incorporate these plastic hinges in their
local interpolations. The coupling between the deflection
and rotation fields in the definition of the transverse
shear strain of a Timoshenko beam leads to a different
problem when compared with the plane or three-
dimensional continuum. The more involved kinematics
require the formulation of new and more involved
enhancements of the element strains to capture correctly
the kinematics of the plastic hinges. It is precisely the
avoidance of the stress locking as defined above that is
proposed here as a general methodology for the design
of these enhanced finite elements. More specifically, the
requirement that the finite element should accommodate
a fully softened plastic hinge with no strains (or stress
resultants) is shown to define these enhancements of the
strains. Enhancements involving linked contributions of
the deflections and rotation discontinuity jumps are
obtained in this way. We illustrate this approach for
different base finite elements, from a simple two-noded
piece-wise linear interpolation of the generalized dis-
placements to the finite element presented in Crisfield
[1984] involving a linked interpolation of the deflection
and rotation fields. In all these cases, we arrive to local
enhancements that avoid any stress locking and provide
an accurate and efficient tool for the simulation of the
localized failures of frame structures of interest here.

We limit the analyses in this paper to inelastic models
of beams/rods expressed directly in stress resultants
(e.g., bending moment, axial and transverse shear for-
ces). In this context, the progression of the plastic effects
through the beam cross section can be modeled with the
appropriate hardening laws evolving the elastic domains
in the stress resultant space; see the discussion in Lub-
liner [1990]. We refer also to this reference for details on
how different factors, like the shape of the cross section,
affect the models in stress resultants. We plan to extend
these analyses in the future to the so-called fiber or
layered models accounting for an explicit evaluation of
these plastic effects through the beam thickness; see e.g.
Bažant et al. [1987], Spacone et al. [1996a, b], and ref-
erences therein. We emphasize again our specific interest
in the modeling of the post-failure response rather than
a simple evaluation of the limit loads of the structure as
in classical limit analysis (see again the summary in
Lubliner [1990] and references therein) or other related
approaches, like the so-called quasi-hinge approach of
Attalla et al. [1984], among others.

An outline of the rest of the paper is as follows.
Section 2 presents the modeling of plastic hinges in
beams and rods in the context of the aforementioned
multi-scale framework. It defines, in this way, the
mathematical problem for which we want to develop the
finite element methods in the rest of the paper. The
general framework of the enhanced strain finite element

methods developed to this purpose is presented in Sect.
3. The discrete finite element equations are then identi-
fied. We left for Sect. 4 the design of the actual newly
proposed finite elements. To this end, Sect. 4.1 describes
in detail the phenomenon of stress locking in the context
of the beam/rod theories of interest here, identifying the
aforementioned general methodology for the successful
design of the strain enhancements. This methodology is
applied in Sect. 4.2 to 4.4 to different base finite elements
arriving at a series of new enhanced strain finite elements
that incorporate locally plastic hinges. Different analyses
are presented, including eigenvalue analyses of the
resulting stiffness matrices obtained after linearization,
to obtain a complete understanding of the numerical
properties of the different elements. For the same pur-
pose, Sect. 5 presents a series of representative numerical
simulations to illustrate and compare the numerical
performance of the different finite elements. Section 6
presents a brief summary of the main findings and some
additional concluding remarks. We finish with the short
Appendix I, which includes some basic mathematical
results on the approximations of the different functions
required in the development of the new finite elements
proposed in this paper.

2 Plastic hinges in beams and rods

We characterize in this section the plastic hinges ob-
served in the localized failures in beams and rods
within the context of strong discontinuities. More
precisely, we make use of the multi-scale framework
developed in Armero [1999] and Armero [2001] for the
continuum to characterize these discontinuities in the
generalized displacements defining a Timoshenko
beam/rod.

The emphasis in the considerations to follow is then
the efficient incorporation of the localized dissipative
effects observed in these type of failures in the large-
scale problem of such a beam, here understood as the
problem exhibiting typical continuity requirements.
This problem is briefly presented in Sect. 2.1. The
incorporation of the strong discontinuities (or plastic
hinges) is then carried out locally, through a local
enhancement of the kinematics of the large-scale
problem in Sect. 2.2. The consideration of this en-
hanced kinematics, with the inclusion of the generalized
displacement jumps associated to the strong disconti-
nuities, allows the characterization of the localized
dissipative mechanisms of interest as elaborated in Sect.
2.3. These considerations lead then to the modeling of
the small scales of the material response, being then
introduced in the previous large-scale problem in Sect.
2.4.

2.1 The large scale problem

We are interested in the case of a straight beam/rod
defined by its middle-axis B ¼ ð0; LÞ � R for a length L

239



and the normal cross-section AðxÞ with x 2 B. For
simplicity, and without loss of generality, we consider
plane deformations of such a beam. Infinitesimal
deformations are assumed in the general context of a
Timoshenko beam theory, that is, with the cross-sec-
tions A remaining plane and undistorted but not
necessarily orthogonal to the deformed axis. In this
context, we consider the generalized displacements
u :¼ fu;w; #g corresponding to the longitudinal dis-
placement uðxÞ along the direction of the middle-axis,
the transversal displacement wðxÞ, and the rotation #ðxÞ
of the cross section, all functions of x 2 B. Figure 2.1
presents a sketch of this assumed kinematics including,
in particular, the positive sign convention considered in
what follows.

The strain measures of a classical Timoshenko beam/
rod are then defined by

e ¼ eðuÞ :¼ fe; j; cg :¼ foxu; ox#; oxw� #g ; ð2:1Þ
for the axial strain e, the bending strain j and the
transverse shear strain c, all in terms of the generalized
displacements u and their first derivatives oxð�Þ. Conju-
gate to these strain measures we have the stress resul-
tants r :¼ fN ;M ; V g for the axial force N , the bending
moment M and the transverse shear force V . Figure 2.1
depicts again the assumed positive sign convention for
these quantities.

The quasi-static equilibrium for such a classical
Timoshenko beam/rod is then characterized in weak
form by the variational statementZ

B

r � eðgÞdx ¼
Z

B

f � gdxþ �r � g
��
¶rB

8g 2Vu ; ð2:2Þ

for the distributed loads (forces and moments) per unit
length f ¼ fn;m; pg, and imposed stress-resultants �r on

¶rB � ¶B, for the boundary ¶B ¼ f0; Lg. The admissi-
ble variations g in (2.2) are defined by

Vu ¼ fg : B! R3 : g 2 H1ðBÞ with g ¼ 0 on ¶uBg;
ð2:3Þ

for the part of the boundary ¶uB � ¶B with imposed
generalized displacements (u ¼ �u on ¶uB). The usual
assumption

¶uB [ ¶rB ¼ ¶B and ¶uB \ ¶rB ¼ ;; ð2:4Þ
is considered for each of the three components for a
well-posed problem. Similarly, the definition of the
admissible space of variations Vu in (2.3) considers the
classical regularity assumption of functions with square
integrable first derivative (i.e. H1ðBÞ functions) charac-
teristic, for example, of a linear elastic beam/rod. As we
discuss below, the added effects associated to
discontinuities of the generalized displacements u, that
is, the so-called strong discontinuities, are to be intro-
duced separately. We refer to the problem defined by
(2.2) to (2.3) as the large-scale problem.

Equation (2.2) corresponds to the principle of virtual
work and leads, after a standard argument based on
integration by parts, to the local equilibrium relations

¶N
¶x
þ n¼ 0;

¶V
¶x
þ p ¼ 0 and

¶M
¶x
þ V þm¼ 0 :

ð2:5Þ
We also recover the continuity of the stress resultants,
that is, ½½r�� ¼ 0 for the jump ½½��� at any point x 2 B. It is
important to observe the coupling (or ‘‘linking’’)
between the bending moment and the transverse shear at
this level, a direct consequence of the definition of the
transverse shear strain c in (2.1) linking the deflection w
and the rotation # fields. The coupling of the axial part
of the problem can only occur in the assumed case of a
straight infinitesimal beam at the constitutive level.

Remark 2.1. Continuum elastoplastic models. The above
equations are to be supplemented with a constitutive
relation. A plastic model can be easily formulated in
stress resultant form through the relations

r ¼ ¶ee W for ee :¼ e� ep with

_ep ¼ k¶r/; _a ¼ k¶q/;

/ � 0; k � 0; k/ ¼ 0 and k _/ ¼ 0 ;

9>=
>; ð2:6Þ

for an elastic potential W ðeeÞ in terms of the elastic part
of the strain ee, a yield function (or interaction diagram
as it is usually known in this context) /ðr; qÞ in terms of
the stress resultant r and the hardening/softening
internal variables q and a, for a general hardening/
softening law qðaÞ. Equations (2.6) have the same form
as an associated plastic model in the local continuum,
and so we shall refer to it as the ‘‘continuum model’’ in
contrast with the ‘‘localized models’’ to be developed
below.

Fig. 2.1 Kinematics of a Timoshenko beam/rod in the infinitesimal
range. The different quantities are shown according to the assumed
positive sign convention
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2.2 The kinematics of strong discontinuities

The large-scale problem defined in the previous section
assumes a generalized displacement field u and corre-
sponding variations in the space Vu that satisfy the
standard regularity conditions shown in (2.3). However,
these conditions may be too restrictive for the charac-
terization of the failure of the beam/rod. Of interest in
this work is the modeling of the plastic hinges charac-
teristic of the localized failures observed in structural
members. It has been observed in Armero & Ehrlich
[2002] that the direct use of a continuum model of the
form (2.6) in combination with a strain softening law
qðaÞ (i.e., with H :¼ �¶aq < 0) leads to the same
inconsistencies as in the local continuum. This situation
occurs even after the observation that a Timoshenko
beam theory as considered above does possess a length
scale in the model. For example, the ratio

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

¶2jjW
� �

= ¶2ccW
� �r

can be readily shown to define

such a length scale, being directly related to the thickness
or height of the beam. The results presented in this
reference show that this length scale is not sufficient to
regularize the elastoplastic problem with strain soften-
ing, leading eventually to a mathematically ill-posed
problem, physically meaningless.

In fact, by obtaining the closed-form solution of the
fully nonlinear problem in particular cases, the appear-
ance of discontinuities in the generalized displacement
field u were observed. The associated strain measures
involve then singular distributions (e.g., Dirac delta
functions) which are clearly not encompassed in the
functional setting of the large-scale problem considered
in the previous section. The natural concept of a plastic
hinge is then recovered. As noted in Section 1, the
challenge is to consider these discontinuous solutions
while maintaining the structure of the large-scale prob-
lem as defined by equation (2.2) in terms of the large-
scale displacements u. This goal can be accomplished by
noting the multi-scale nature of the problem given the
locality of the localized dissipative effects. The strong
discontinuities become then an efficient tool for the
modeling of the dissipative effects associated to the small
scales of the material deformation.

In this context, we consider a local neighborhood
Bxd � B of a material point xd 2 B in the large scale
where the presence of a localized dissipative mechanism
has been detected. Following the spectral analysis pre-
sented in Armero & Ehrlich [2002] that identifies the
presence of strain softening as the triggering of the
ill-posedness of the continuum model, the simulations
presented in Sect. 5 consider the activation of the
localized dissipative mechanism once the strain softening
state is reached in a general elastoplastic hardening/
softening model. We define

hxd ¼ lengthðBxd Þ > 0 ð2:7Þ
for the local neighborhood Bxd � R. We denote by
s 2 ð0; hxd Þ a local coordinate in Bxd with s ¼ sd corre-

sponding to the original material point xd 2 B. Figure
2.2 illustrates these ideas. The length parameter hxd is left
indeterminate at this stage. The goal is to incorporate
the localized dissipative effects of the ‘‘small scales’’ Bxd

into the large-scale problem (2.2) in the limit as hxd ! 0,
that is, in the ‘‘large-scale limit’’.

To this purpose, we consider the small-scale strains el

defined by

el :¼ eðuÞ þ GðnÞ þ n dsd in Bxd ; ð2:8Þ
in terms of a set of local parameters n 2 R3 and a linear
operator Gð�Þ consistent with the infinitesimal assump-
tion considered in these developments. The strains (2.8)
define a local enhancement of the large-scale strains eðuÞ
involving, in particular, the singular measure of the
Dirac delta function dsd ðsÞ. As occurred with the length
parameter hxd the strain operator Gð�Þ is left indetermi-
nate at this stage, noting again our final goal to char-
acterize the model in the large-scale limit hxd ! 0.

Given the nature of the Dirac delta function in (2.8),
the local parameters n can be easily observed to have the
units of the generalized displacements for each of the
three components. In fact, they can be understood
physically as the jumps of a generalized displacement
distribution (say, ul) defined in Bxd . That is, we can
consider a small-scale displacement field

ul ¼ uþ nwsd
in Bxd ; ð2:9Þ

for some function wsd
ðsÞ exhibiting a unit jump at sd . In

this way, we can write

n ¼ ðnu; nw; n#Þ ¼ ð½½ul��; ½½wl��; ½½#l��Þ ; ð2:10Þ
for the jump operator ½½��� at sd . The linearity of the
strain operator Gð�Þ in (2.8) follows also in the assumed
infinitesimal kinematics. The consideration of compati-
ble enhanced strains in Bxd , that is, el ¼ eðulÞ appears
then as a particular case.

Fig. 2.2 Strong discontinuities in beams and rods. The strong
discontinuities are defined locally in a neighborhood Bxd of measure
hxd ! 0 (the small scale) maintaining the structure of the large-scale
problem
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2.3 The localized dissipative mechanism

The local field n associated with the singular part of the
strain field (2.8) allows to model directly the localized
dissipative mechanism observed in the small scale Bxd

besides the large-scale response already accounted by the
large-scale displacements u. In this way, we consider a
general inelastic model

rd ¼ r̂dðnÞ ; ð2:11Þ
between the jumps n and the stress resultants rd driving
the localized dissipation at xd . We recover the notion of
a cohesive law as it is common in the continuum.

General plastic and damage models can be accom-
modated in these considerations; see Armero [1999] for a
discussion in the context of continuum problems. The
numerical examples presented in Sect. 5 consider a
plastic model with the constitutive relation (2.11) given
implicitly by the expressions

_n ¼ ~k ¶rd
~/; _~a ¼ ~k ¶~q

~/

~k � 0; ~/ � 0; ~k ~/ ¼ 0; k _~/ ¼ 0

9=
; ; ð2:12Þ

in terms of an interaction diagram (or yield surface)
~/ðrd ; ~qÞ function of the stress resultants rd driving the
discontinuity and the localized softening internal vari-
ables ~q and ~a, related by a given localized softening law
~q ¼ ~̂qð~aÞ. The Eq. (2.12)2 correspond to the loading/
unloading conditions and consistency conditions defin-
ing the localized plastic multiplier ~k.

The symbols ~ð�Þ are used explicitly in (2.12) to
emphasize the localized nature of the field in contrast
with their analogs in the continuum model (2.6). The
plastic model (2.12) defines an inelastic relation
between the generalized displacement jumps n and the
driving stress resultant rd . This situation is to be
contrasted with the inelastic relation between the
strains and stress resultants implied by the original
continuum relations (2.6). In this way, we refer to the
final model defined by the relation (2.11) (e.g. Eq
(2.12)) as a ‘‘localized model’’.

Remarks 2.2.

1. Depending on the nature of the interaction diagram ~/
in (2.12) we can recover different models of plastic
hinges. In this way, an interaction diagram depending
only on the bending moment Md leads to an articu-
lation hinge where only a relative rotation n# is
activated. The numerical examples in Sect. 5 consider
several of these cases. In general, if the constitutive
model (2.12)1 defines a constant direction for the
displacement jump rate (i.e. n~/ :¼ ¶rd

~/ ¼ constant),
only the component of the jump along nn :¼ n � n~/
evolves. In this case, the general localized relation
(2.11) must be understood then for the particular
component of the stress resultants and generalized
displacement jump nn.

2. The Eq. (2.12) model a rigid-plastic response of the
strong discontinuity of the associated form. As
noted above, additional effects (like elastic, viscous,
damage, etc. components) can be accommodated in
the framework considered here, leading eventually
to what we can refer as elastoplastic, viscous,
damage, etc. hinges. For simplicity, we use the
generic name of ‘‘plastic hinges’’ in this paper.
Equally important in many applications is the
consideration of the plastic evolution Eq. (2.12) in
combination with a multi-surface form to model
corners in the interaction diagram ~/ðrd ; ~qÞ. Since
these considerations do not affect the development
of the finite elements discussed in Sect. 3 and 4, the
main goal of this paper, further details are omitted
here. We plan to present a complete discussion of
these important aspects of the models considered
here in a forthcoming publication. h

2.4 The local governing equation

The introduction of the new parameters n inBxd requires
the consideration of a new equation in Bxd for its
determination, as developed in this section. We first note
that the considerations presented in the previous section
identified only the general constitutive relation (2.11) for
the localized dissipative mechanism associated with the
strong discontinuity at xd . The bulk response in the local
neighborhood Bxd can be given by a general constitutive
relation between the stress resultants r and the local
strain measures

�el :¼ eðuÞ þ GðnÞ ; ð2:13Þ
that is, the regular part of the small-scale strains (2.8) in
the bulk �Bxd :¼ Bxdnxd .

Without loss of generality, we consider the existence
of a stress potential W ð�elÞ (depending possibly on
other internal variables in the bulk �Bxd ) such that

r ¼ ¶�elW in Bxd : ð2:14Þ

The numerical simulations considered in Sect. 5 consider
a linear elastic response in the bulk given by

N ¼ EA�el; M ¼ EI �jl; and V ¼ GAs�cl ; ð2:15Þ

for a linear elastic isotropic material with Young mod-
ulus E and shear modulus G, and a cross-section area A,
second-moment of area I and modified area in shear As.
The quadratic character of the stress potential W ð�elÞ
follows trivially in this case.

As shown in Armero [1999] and Armero [2001], the
goal of introducing the dissipation associated with the
localized inelastic model (2.11) in the small scale Bxd

into the large-scale problem (2.2) in the large-scale limit
hxd ! 0 defines not only this local governing equation
but also the strain operator Gð�Þ in the small-scale
strain (2.8). With the above considerations at hand, we
can write the relation
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Dl : ¼
Z

�Bxd

_�el � r� _W
� �

dsþ _n � rd

¼
Z

�Bxd

eð _uÞ � r� _W
� �

ds

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼D

þ
Z

�Bxd

Gð _nÞ � r dsþ _n � rd :

ð2:16Þ
The functional Dl can be identified with the dissipation
functional in the small-scale whereas the functional D
accounts only for the stress power on the large-scale
strains eðuÞ. Following the philosophy indicated in Sect.
1 (that is, our goal to solve a large-scale problem while
still capturing the dissipation associated to the small
scales), the identification of these two dissipations for
any variations of the internal parameters n leads readily
to the local equation

rBxd
ðu;n; fÞ :¼

Z

Bxd

GðfÞ � r dsþ f � r̂dðnÞ ¼ 0 8f 2 R3 ;

ð2:17Þ
in the small scale Bxd .

It remains to determine the local strain operator Gð�Þ
defining the regular part of the enhanced strain (2.8).
Equation (2.17) relates the stress resultant r in the bulk
Bxd , as seen also in the large-scale problem, with the
stress resultant rd driving the localized dissipative
mechanism in xd . We note again our interest to recover
the large-scale limit hxd ! 0 while introducing the
localized dissipation in the large-scale problem through
this equation in the small scale Bxd . We then impose the
condition

rd ¼ rðxdÞ as hxd ! 0 ; ð2:18Þ
that is, we identify the driving stress resultants rd on the
discontinuity with the stress resultants at xd in the large-
scale limit. From Eq. (2.17), we see that condition (2.18)
implies the asymptotic relation

GðnÞ ¼ � 1

hxd

nþ oð1Þ as hxd ! 0 ; ð2:19Þ

that is, up to higher order terms in hxd (with the common
use of the ‘‘small-oh’’ oð�Þ notation). The model is then
fully defined in the large-scale limit.

We observe that the local Eq. (2.17) defines a rela-
tion between the large-scale displacement u and the
local parameters n through the dependence of the stress
resultants r on the large-scale strain measure eðuÞ in
(2.13). The linearization of this equation leads to the
relation

Dn rBxd

� �
_n¼ 1

h2xd

Z

Bxd

CdsþH

0
B@

1
CA _nþoðhxd Þ as hxd ! 0 ;

ð2:20Þ
where we have introduced the tangents associated to the
rate relations

_r ¼ C_�el and _rd ¼ H _n ð2:21Þ
for the bulk and localized responses, respectively, both
at xd . A straightforward use of the implicit function
theorem implies then the existence of a relation

n ¼ n̂ðuÞ ; ð2:22Þ
if the matrix appearing in (2.20) is not singular. The
bulk response is expected to lead to a positive definite
tangent stiffness C (e.g., positive moduli for the linear
elastic response (2.15)), whereas a softening response of
the localized relation (2.11) leads to the negative
character of the softening moduli H. Assuming a finite
moduli H, the matrix in (2.20) can be assured to
remain positive definite by choosing a small enough hxd

and, eventually, in the large-scale limit hxd ! 0 of
interest here. We refer to Armero [2001] for additional
details of these considerations in the context of a local
continuum.

The introduction of the relation (2.22) in the weak
Eq. (2.2) through the stress resultant relations (2.15)
leads eventually to a large-scale problem in u only,
involving no small scales (i.e. hxd ¼ 0). We refer to the
resulting problem as the ‘‘enhanced large-scale prob-
lem’’. Remarkably, the structure of the original large-
scale problem is fully maintained while fully capturing
the dissipation of the small scales of the material
response. We note again that the localized models must
be understood with hxd ¼ 0, that is, with no small scales
Bxd . The constructive procedure followed in all these
arguments, involving in particular a finite hxd > 0, plays
a crucial role in the development of the finite element
methods appropriate for the numerical simulation of
the final localized model, as considered in the next
section. The condition (2.19) will play a crucial role
then to assure the consistency of the finite elements
with the proposed localized models.

Remark 2.3. The approach considered here understands
the strong discontinuities as a tool for the modeling of
the localized dissipative mechanisms observed in the
localized failures of structures, eventually capturing
these dissipative effects in the large-scale problem. In
this way, the role of the displacement jump n in the
enhanced large-scale problem follows closely the role
of an internal variable in an inelastic model. However,
the explicit consideration of the kinematics associated
to these discontinuous solutions (as implied, e.g., by
Eq. (2.8) for the small-scale strains) leads naturally to
the development of efficient finite element methods for
the accurate resolution of the localized failures of
interest.

3 Enhanced finite element methods

The considerations presented in the previous section in
the derivation of localized models are especially suited
for the development of enhanced strain finite element
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methods for its numerical approximation. The strong
discontinuities (or plastic hinges) are incorporated in
the finite element interpolations without resorting to
the regularization of the Dirac delta functions
appearing in the formulation, hence following similar
considerations as the formulation originally presented
in Armero & Garikipati [1995] for the local contin-
uum.

We develop the general finite element framework in
Sect. 3.1. Section 3.2 describes the linearization process
considered in the actual numerical implementation and
needed in the forthcoming sections. The actual design of
the finite elements is addressed in Sect. 4.

3.1 The finite element formulation

The finite element implementation of the localized
models developed in the previous section follows easily
from the constructive approach considered in the for-
mulation of these models. The identification of the local
neighborhood Bxd in the previous arguments with a fi-
nite element Be ¼ ½x1; x2�, for end nodal coordinates x1
and x2 resulting in an element length he ¼ x2 � x1 allows
this implementation. We denote by s :¼ x� x1. The
element length he plays then the role of hxd in the argu-
ments of the previous section. A finite length he > 0
occurs in the actual finite element simulations, but this
length is to be understood as he ! 0 for a convergent
analysis. The situation characteristic of the theoretical
arguments of Sect. 2 is then recovered.

In this way, the analog of the small-scale strains (2.8)
in the finite element context reads

eh
e ¼ Bde þ Gce|fflfflfflfflfflffl{zfflfflfflfflfflffl}

�eh
e

þnedsd ; ð3:1Þ

defining an enhancement of a given base finite element
defined by the linear strain operator B for a set of
generalized displacements de in element Be. The
enhanced part of the strains has two parts as in
the small-scale strains (2.8). A singular part in terms of
the Dirac delta contribution and a regular part in
terms of the enhanced strain operator Gc, both
depending on the local enhanced parameters ne in
element Be;loc where a plastic hinge has been detected.
Section 4 below considers several base finite elements
and discusses the design of the enhanced strain oper-
ator Gc appropriate for each of them.

The principle of virtual work governing the large-
scale problem (2.2) and the local governing Eq. (2.17) in
the small scales Be;loc, with Bc;loc :¼ Be;loclnxd in the
discrete context, lead to the nonlinear equations

R :¼ f ext � A
nelem

e¼1

Zhe

0

BT rðde;neÞds ¼ 0;

re :¼
Zhe

0

GT
e rðde;neÞdsþ r̂dðneÞ ¼ 0 in Be;loc :

9>>>>>>>=
>>>>>>>;

ð3:2Þ

The stress resultants rðde; neÞ in the bulk are given by the
generic bulk response relation (2.14) in terms of the
regular part of the enhanced strains �eh

e in (3.1), whereas
the driving stress resultants rdðneÞ are given by the
localized relations governing the plastic hinge. The
symbol Anelem

e¼1 in (3.2) refers to the standard assembly
operator over the nnelem elements.

We observe again that the localized model devel-
oped in the previous section is defined as hxd ¼ he ! 0.
In particular, the enhanced strain operator Gð�Þ in
(2.8) is only required to satisfy the asymptotic relation
(2.19) as hxd ! 0. This situation leaves a great deal of
freedom in the development of the appropriate en-
hanced strain interpolations for a finite he > 0. In
particular, the performance of the finite element can be
optimized by choosing a different enhanced strain
operators in the definition of the enhanced strains (2.8)
and in the local governing Eq. (2.17) imposing the
local equilibrium in weak form. We refer to these
operators as Gcð�Þ and Geð�Þ in equations (3.1) and
(3.2), respectively, as for compatibility and equilibrium
operators. The requirement

Gc;Ge ¼ �
1

he
1þ Oð1Þ as he ! 0 ; ð3:3Þ

appears then for the consistency with the previous
arguments. We note that the consideration of these
different operators may lead, a-priori, to a non-sym-
metric system of equations after linearization; see Sect.
3.2 below.

As a particular case, given the spatial polynomial
interpolation for the stress resultants rhðsÞ :¼ rðde; neÞ
arising for the assumed interpolation in a particular fi-
nite element, we can construct the equilibrium operator
Ge such that

rhðsdÞ ¼ �
Zhe

0

GT
e rhðsÞds :

In this way, the Eq. (2.17)2 imposes exactly the pointwise
relation rd ¼ rhðsdÞ for the driving stress resultant at the
discontinuity. For example, for a stress resultant rhðsÞ
involving linear functions in s at the most, we have

Ge ¼ �
geðsÞ

he
1

for geðsÞ ¼ 1þ 3 1� 2sd

he

� 	
1� 2s

he

� 	
; ð3:4Þ

after noting that

1

he

Zhe

0

geðsÞds ¼ 1 and

1

he

Zhe

0

sgeðsÞds ¼ sd : ð3:5Þ

A similar function can be found for polynomials of
any degree; see Appendix I for additional details. We
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observe that the (equilibrium) enhanced strain
operator (3.4) does satisfy the consistency requirement
(3.3).

Remarks 3.1

1. The above numerical implementation is simplified
for the particular case of a constant direction of the
evolution of the displacement jumps described in
Remark 2.2.1. In this case, the single component nn
of the enhanced parameters is considered, with Eq.
(3.2)2 projected in the direction n ~/ :¼ ¶rd

~/ as well.
These considerations affect the definitions of the
enhanced strain operators Gc and Ge.

2. The spectral analysis presented in Armero & Ehrlich
[2002] identifies the presence of strain softening as the
triggering of the ill-posedness of the continuum
inelastic problem. For the case of an elastic-softening
response considered in the numerical examples of
Sect. 5, the strong discontinuity (plastic hinge) is then
activated where yielding is observed.

3. Different finite elements are developed in Sect. 4.
The (reduced integration) constant strain element of
Sect. 4.3 considers a one-point integration quadra-
ture rule with the quadrature point at the center of
the element (s ¼ he=2). For the rest of elements,
involving a linear strain distribution at the most, we
use the three-point Lobatto quadrature (see e.g.,
Hughes [1987], page 440), with one quadrature point
at each end node and a third one at the center of the
element. The plastic hinge is activated in the quad-
rature point where it is detected; see Item 2. above.
In this way, for an element with a linear distribution
of the yield function ~/ðrd ; 0Þ (e.g., linear interpola-
tion of the bending moment for an interaction dia-
gram based on the bending moment only), the hinge
is first activated at either end. When this detection is
simultaneous at several quadrature points due to a
constant interpolation of the yield function ~/ðrd ; 0Þ,
the discontinuity is activated at the middle quadra-
ture point. h

3.2 The discrete linearized equations

The nonlinear set of algebraic Eq. (3.2) are solved
through a Newton-Raphson iterative scheme. To this
purpose, we consider their consistent linearization

Kdd Kdn

Knd Knn

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
K

DdðiÞnþ1

Dn
ðiÞ
nþ1

2
4

3
5 ¼ R

ðiÞ
nþ1

�rðiÞnþ1

2
4

3
5 ; ð3:6Þ

in the increments of the nodal displacements and
enhanced parameters

d
ðiþ1Þ
nþ1 ¼ d

ðiÞ
nþ1þDdðiÞnþ1 and n

ðiþ1Þ
nþ1 ¼ n

ðiÞ
nþ1þDn

ðiÞ
nþ1 ; ð3:7Þ

respectively, in an increment n (say, ½tn; tnþ1�) and itera-
tion counter ðiÞ. The stiffness matrices in (3.6) are de-
fined by the element contributions

Ke;dd ¼
Rhe

0

BT CBds; Ke;dn ¼
Rhe

0

BT CGcds;

Ke;nd ¼
Rhe

0

GT
e CBds; Ke;nn ¼

Rhe

0

GT
e CGcdsþH ;

9>>>>=
>>>>;
ð3:8Þ

for the tangent tensors C and H defined in (2.21) for
the rate form of the bulk and localized responses,
respectively, at the known solution fdðiÞnþ1; n

ðiÞ
nþ1g. We

have omitted the increment and iteration indices when
referring to the different stiffness matrices to simplify
the notation.

We observe that the enhanced parameters only affect
the elements where a plastic hinge has been detected. In
fact, the local character of the enhanced Eq. (3.2)2 for
each of such elements allows to solve the corresponding
linearized Eq. (3.6)2 for Dn

ðiÞ
e;nþ1 locally in each element

Be;loc, leading to the relation

Dn
ðiÞ
e;nþ1¼�K�1e;nn r

ðiÞ
e;nþ1þKe;ndDd

ðiþ1Þ
e;nþ1

h i
in Be;loc : ð3:9Þ

This situation allows the static condensation of these
parameters after introducing (3.9) in (3.6)1 resulting in
the reduced system

K�Dd ¼ R�
ðiÞ

nþ1 ; ð3:10Þ
for the statically condensed stiffness matrix

K� ¼ A
nelem

e¼1
Ke;dd � Ke;dnK

�1
e;nnKe;nd

h i
; ð3:11Þ

and the statically condensed residual

R�
ðiÞ

nþ1 ¼ A
nelem

e¼1
R
ðiÞ
e;nþ1 þ K�1e;nnr

ðiÞ
e;nþ1

h i
; ð3:12Þ

obtained both through the assembly of the nelem ele-
ments. We note that the consideration of different
enhanced strain operators Ge 6¼ Gc leads, in general, to a
non-symmetric system of Eq. (3.10), except in special
situations where the integrations in (3.8) eventually
results in this symmetry, as it is the case for the element
proposed in Sect. 4.4.

The arguments considered in the development of
the localized models in Sect. 2 to arrive at a ‘‘enhanced
large-scale problem’’ translate then directly in the actual
finite element implementation. Eq. (3.10) defines a
problem in terms of the nodal (or, better, large-scale)
displacements d. The computational efficiency of the
proposed approach is to be noted.

4 Design of locking-free enhanced finite elements

It remains to determine the operator Gc defining the
enhanced strains (3.1) locally in a finite element. A simple
choice, given the consistency condition (3.3), is given by

245



GðEÞc :¼ � 1

he
1 : ð4:1Þ

We refer to the final strategy as the ‘‘E’’ enhancement
and label the resulting enhanced finite elements by ‘‘-E’’.
The enhancement (4.1) can be thought as a direct
extension of similar considerations from previously
proposed formulations for the continuum involving the
leading h�1e term (see e.g., Armero & Garikipati [1995,
96]), Armero [1999]. However, the coupled (or linked)
character of the transverse shear and bending strains
noted in Sect. 2.1 leads to non-optimal finite elements
for finite he, even though a consistent formulation is
obtained for he ! 0. The ‘‘E’’ enhancement (4.1) may
lead, in particular, to stress locking as elaborated in Sect.
4.1 below.

We develop in this section several enhanced finite
elements avoiding these difficulties. To illustrate the
relation of the different enhancements with the basic
interpolations of the underlying finite elements, we
present first the case of a simple two-noded interpolation
of the generalized displacements in Sect. 4.2. This finite
element exhibits the well-known shear locking in the
thin-beam limit, even in the context of the elastic
problem. The reduced one-point integration, constant
strain element is then investigated in Sect. 4.3 to avoid
this drawback. Furthermore, we consider in Sect. (4.4)
the more sophisticated finite element involving a linked
interpolation of the deflection and rotation fields as
presented in Crisfield [1984].

4.1 Stress locking

The kinematics of the finite element should allow, for
finite he > 0, the resolution of the zero state of strain (in
its regular part) corresponding to a fully softened state
of the plastic hinge (i.e. rd ¼ 0). Otherwise, a spurious
transfer of stresses occurs which is known as stress
locking. An over-stiff response of the element is then

observed in this case, even though its effects may be
diminished as the finite element mesh is refined (i.e. as
he ! 0).

This basic consideration defines the design strategy for
the enhanced finite elements presented in this work.
Figure 4.1 depicts a typical two-noded finite element with
a plastic hinge at the local coordinate sd . The plastic hinge
exhibits a generalized displacement jump n̂e ¼
ðn̂u

e ; n̂
w
e ; n̂

#
e Þ. For an axial displacement û1, rotation #̂1 and

deflection ŵ1 for the first node, the displacements for the
second node associated to zero strains are given by

û2 ¼ û1 þ n̂u
e ;

#̂2 ¼ #̂1 þ n̂#e ;

ŵ2 ¼ ŵ1 þ #̂1he þ n̂w
e þ ðhe � sdÞn̂#e ;

9>=
>; ð4:2Þ

with a piece-wise constant distribution of the axial and
rotation fields on both sides of the element and a piece-
wise linear distribution of the transversal displacement.
That is, we have the small-scale displacements (i.e. at the
element level)

ûlðsÞ ¼ û1 þ Hsd ðsÞ ðû2 � û1Þ;

#̂lðsÞ ¼ #̂1 þ Hsd ðsÞ ð#̂2 � #̂1Þ;

ŵlðsÞ ¼ ŵ1 þ #̂1 sþ Hsd ðsÞ

� ðŵ2 � ŵ1Þ � #̂1 s� #̂2 ðhe � sÞ
h i

;

9>>>>>>>=
>>>>>>>;

ð4:3Þ

in terms of the displacements of the end nodes û1 and û2
given by (4.2), and the Heaviside jump function

Hsd ðSÞ :¼ 0 for s < sd ;
1 for s > sd :



ð4:4Þ

A straightforward calculation based on the definition of
the strain measures (2.1) shows their vanishing for the
displacement distributions (4.3). Equivalently, we can
define the jump components

n̂u
e ¼ û2 � û1;

n̂#e ¼ #̂2 � #̂1;
n̂w

e ¼ ŵ2 � ŵ1 � #̂1sd � #̂2ðhe � sdÞ ;

9>>=
>>;

ð4:5ÞFig. 4.1 Sketch of the plastic hinge mode. A fully softened plastic
hinge rd ¼ 0 should be captured for a zero strain (stress resultant) in
the bulk of the element, that is, for the end nodal displacements shown
in terms of the displacement jumps n̂ ¼ ðn̂u; n̂w; n̂#Þ at the plastic hinge
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associated to the nodal displacements (4.2). We refer to
the distributions ûlðsÞ in (4.3) and, in particular, to the
nodal displacements (4.2) as the ‘‘hinge mode’’.

Starting with a base finite element able to reproduce
linear displacements, its enhanced counterpart must be
able to reproduce exactly this hinge mode with zero
strain in its regular part (i.e., besides the singular strain
associated with the discontinuity or hinge). Crucial to
this property is the proper definition of the enhanced
strain operator Gc defining in combination with the
(compatible) strain operator B the element strains (3.1).
The imposition of zero regular part of the strain for the
displacement distributions (4.3) defines then the proper
enhanced strain operator Gc. Different base elements,
that is, different B’s will lead then to different enhanced
strain operators Gc’s.

The sections below show how these arguments define
efficient locking-free finite elements for the modeling of
plastic hinges in beams and frames. The proposed gen-
eral principle is illustrated for particular finite elements.
We point out again the basic consistency requirement
(3.3) that the newly proposed enhanced strain operators
Gc must satisfy as he ! 0. The leading term in he must be
then given by (4.1).

Clearly, the enhancement for the uncoupled axial
component defined by (4.1) is enough to avoid the
stress-locking in the axial alone: the value nu ¼ û2 � û1

reproduces trivially the zero axial strain associated with
the piece-wise constant axial displacement distribution
of the hinge mode (4.3). Similar considerations apply to
the bending strain and the rotation enhancement. This
situation is not so trivial for the transverse shear strain.
The linking between the jumps in the rotation and the
deflection in (4.2) is to be noted, requiring then more
involved enhanced strain operators when compared with
the basic ‘‘E’’ enhancement (4.1). A linking between the
rotation and deflection jumps is then to be expected, as
illustrated in the examples of the sections below. Given
this linked nature of the final enhanced strain operator
Gc, we refer to the new enhancement strategies as ‘‘LE’’
enhancement (‘‘linked enhancement’’) in contrast with
the ‘‘E’’ enhancement (4.1).

4.2 Constant axial, constant bending, linear
transverse shear finite elements (N0M0S1)

The simplest finite element for a Timoshenko beam/rod
consists of the two-noded piece-wise linear interpolation
of the generalized displacements

uhðsÞ ¼ 1� s
he

� 	
u1 þ

s
he

u2;

#hðsÞ ¼ 1� s
he

� 	
#1 þ

s
he
#2;

whðsÞ ¼ 1� s
he

� 	
w1 þ

s
he

w2 ;

9>>>>>>>>>=
>>>>>>>>>;

ð4:6Þ

for a typical element Be ¼ ½x1; x2� (with s :¼ x� x1 and
he :¼ x2 � x1, as before), the nodal axial displacements
u1 and u2, the nodal deflections w1 and w2, and the nodal
rotations #1 and #2. The displacements (4.6) are to be
understood as a numerical approximation of the large-
scale displacements u in Sect. 2.1 .

The regular part of the enhanced strains (2.8) in the
elements where the strong discontinuity has been
detected is then given by

�eh
lðsÞ ¼

1

he
ðu2 � u1Þ þ Ge

cðneÞ;

�jh
lðsÞ ¼

1

he
ð#2 � #1Þ þ Gj

c ðneÞ;

�ch
lðsÞ ¼

1

he
ðw2 � w1Þ � 1� s

he

� 	
#1

� s
he
#2 þ Gc

cðneÞ ;

9>>>>>>>>>>=
>>>>>>>>>>;

ð4:7Þ

for the different components of the enhanced strain
operator GcðneÞ ¼

�
Ge

cðneÞ; Gj
c ðneÞ; Gc

cðneÞ
�
. We note

that the compatible (or large-scale) part of the axial and
bending strains is constant, with the corresponding
transverse shear part being linear in s, thus the name
N0M0S1 given to the element.

Inserting then the nodal displacements (4.2) in the
expressions (4.7) and requiring these strain measures to
vanish, we obtain

GðLEÞe
c;N0M1S0ðneÞ ¼ �

1

he
nu

e ;

GðLEÞj
c;N0M1S0ðneÞ ¼ �

1

he
n#e ;

GðLEÞc
c;N0M1S0ðneÞ ¼ �

1

he
nw

e � 1� sþ sd

he

� 	
n#e ;

9>>>>>>>>=
>>>>>>>>;

ð4:8Þ

for the enhanced strain operator G
ðLEÞ
c;N0M1S0ðneÞ. The

expected linking between the deflection and rotation
jumps appears in the enhancement of the transverse
shear strain, motivating again the name of ‘‘LE’’
enhancement. We refer to the final element as the
N0M1S0-LE element, in contrast with the N0M1S0-E
element constructed with the large-scale displacements
(4.7) in combination with the enhancement (4.1). We
observe that the ‘‘LE’’ enhancement operator (4.8) sat-
isfies the consistency requirement (3.3) as he ! 0,
reducing to the ‘‘E’’ enhancement (4.1) in this limit.

The strains (4.7) can be integrated, leading to the
generalized displacements at the element level

uh
lðsÞ ¼ uhðsÞ þ Hsd ðSÞ �

s
he

� 	
nu

e ;

#h
lðsÞ ¼ #hðsÞ þ Hsd ðSÞ �

s
he

� 	
n#e ;

wh
lðsÞ ¼ whðsÞ þ Hsd ðSÞ �

s
he

� 	
nw

e

þ ðs� sdÞHsd ðSÞ � 1� sd

he

� 	
s


 �
n#e ;

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð4:9Þ
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for the Heaviside function Hsd defined in (4.4). Here we
have imposed the nodal values uh

lð0Þ ¼ u1 and
uh

lðheÞ ¼ u2. The generalized displacements (4.9) corre-
spond to the small-scale displacements (2.9), identifying
in the process the function wsd

ðsÞ in this equation for the
element under consideration and finite he > 0. The reg-
ular part of the strain measures associated with the
generalized displacements (4.9) are given by the en-
hanced strains (4.8), with the singular parts corre-
sponding to the Dirac delta contributions in (2.8); note
that d

ds
Hsd ¼ dsd ðsÞ. We observe that introducing the

jump components (4.5) in (4.9) we recover exactly the
generalized displacements distributions (4.3) of the hinge
mode.

4.2.1 Eigenvalue analysis

Further insight on the properties of the finite elements
can be obtained through an eigenvalue analysis of the
stiffness matrices arising upon linearization, as ob-
tained in Sect. 3.2. We are interested here in the con-
sideration of a fully softened plastic hinge. The case of
vanishing stiffness in the rate response of the hinge
(2.21)2, leading to H ¼ 0 in (3.8), is then considered in
what follows.

The calculation of the eigenvalues of the original
uncondensed stiffness matrix K in (3.6) for the
N0M0S1-LE element leads to six zero eigenvalues with
the eigenvectors spanning the kernel of the stiffness
matrix. This kernel is given by

kern½KðLEÞ
N0M1S0�

¼ span

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 he � sd

0 1 he 0 1 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666666666666666664

3
7777777777777777775

ð Du1Þ
ð Dw1Þ
ð D#1Þ
ð Du2Þ
ð Dw2Þ
ð D#2Þ
ð Dnu

eÞ
ð Dnw

e Þ
ð Dn#e Þ

ð4:10Þ
for the N0M0S1-LE element. The first three columns
correspond to the original rigid body modes of the base
element with no additional opening of the plastic hinge:
the first two columns correspond to the longitudinal and
transversal translations of the element, respectively,
whereas the third column corresponds to a rigid rotation
around the first node. Three new zero-energy modes
appear in the formulation, as it is expected from physical
grounds for a fully softened hinge if the element is not to
show stress locking. The fourth column corresponds to

the pure opening of the discontinuity in the longitudinal
direction, the fifth column to the pure opening in the
transversal direction, and the last column to the articu-
lation of the element about the hinge at sd . Figure 4.2
depicts these six zero-energy modes.

For the N0M0S1-E, with no linked enhancement in
the transverse shear strain, the element only possesses
five zero-energy modes, even for the fully softened hinge.
The articulation zero-energy mode, the last column in
(4.10), is no longer present in the kernel of the stiffness
matrix of the element. The absence of this extra zero-
energy mode results in the element exhibiting stress
locking. The corresponding non-zero eigenvalue is given
by

112he GAsh2
e þ 18EI

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGAsÞ2h4e þ 12ðGAsÞðEIÞh2e þ 324ðEIÞ2

q �
�!
he!0

0 ;

ð4:11Þ
that is, vanishing for he ¼ 0. This result shows the nature
of the stress locking, gradually disappearing as the mesh
is refined.

4.3 Constant axial, constant bending, constant
transverse shear finite element (N0M0S0)

The N0M0S1 elements considered in the previous sec-
tion, with their simple piece-wise linear interpolation of
the transverse shear force in combination with the piece-
wise constant bending moment distribution, show the
classical shear locking in the thin-beam limit, that is, for
ðGAsh2e=EIÞ ! 1 in the context of the linear elastic
model defined by the relations (2.15). A simple strategy

Fig. 4.2 The six zero energy modes associated to a fully softened hinge
at sd for the N0M1S0-LE element. These modes are given by the
columns in (4.10), with the numbering following the order of the
columns in this equation. The first three modes correspond to the rigid
body modes whereas the last three correspond to the pure opening of
the hinge in the longitudinal and transversal directions, and the pure
hinge rotation
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to avoid this shear locking is the consideration of the
linear interpolations (4.6) but in combination with a one-
point integration rule (with the quadrature point at the
center of the element s ¼ he=2) to evaluate the different
integrals of the finite element equations. In this way, we
arrive at a constant transverse shear distribution as well.

Following the logic described in Remark 3.1.3, the
plastic hinges are activated at the center of the element
sd ¼ he=2 given the constant character of the strain
measures (and hence the stress resultants). In this case,
the ‘‘LE’’ enhanced operator (4.8), evaluated also at the
center of the element, reduces to the ‘‘E’’ enhancement
(4.1), that is, we have

G
ðLEÞ
c;N0M0S0 ¼ GðEÞc : ð4:12Þ

The final constant enhanced strains read in this case

�eh
lðsÞ ¼

1

he
ðu2 � u1Þ �

1

he
nu

e ;

�jh
lðsÞ ¼

1

he
ð#2 � #1Þ �

1

he
n#e ;

�ch
lðsÞ ¼

1

he
ðw2 � w1Þ �

#1 þ #2
2

� 1

he
nw

e ;

9>>>>>>>>=
>>>>>>>>;

ð4:13Þ

in terms of the nodal values of the generalized
displacements and their jumps.

We note that the equilibrium operator Ge in (3.4) is
also given in this case by Ge ¼ �ð1=heÞ1 recovering the
symmetry of linearized system of Eq. (3.11). We refer to
the resulting finite element N0M0S0-E (	 N0M0S0-LE),
and we do not expect any problems with stress locking
given the arguments above.

Remark 4.1. An eigenvalue analysis for the NOM0S0-E
element as presented in Sect. 4.2.1 for the N0M0S1
elements reveals the presence again of three additional
zero-energy modes for the fully softened hinge, thus
confirming the lack of stress locking in the element. In
fact, the same exact eigenvectors as in (4.10) are recov-
ered in this case with sd ¼ he=2 corresponding to the
location of the hinge at the center of the element.

4.4 Constant axial, linear bending, constant
transverse shear finite elements (N0M1S0)

Despite the locking-free response of the N0M0S0 ele-
ment of the previous section, the simple constant strain
approximation leads to a relatively poor performance.
Alternatives improving on this numerical performance
include the element presented in Crisfield [1984] based
on a linked interpolation of the deflection and rotation
fields, and a constant transverse shear strain distribution
combined with a linear distribution of the bending
strain. The interpolations for the generalized displace-
ments are given by

uhðsÞ ¼ 1� s
he
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s
he

u2;
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þ 2
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2
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#12 ;

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;
ð4:14Þ

for a typical finite element of length he. The element
degrees of freedom correspond then to the generalized
displacements at the nodes plus a bubble term in the
rotation given by #12, which is eventually statically
condensed out.

The particular interpolation considered in (4.14)
results in a locking-free element in shear with a linear
distribution of the bending strain and a constant distri-
bution of the axial and transverse shear strains. With the
addition of the enhanced strain terms, we obtain

�eh
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he
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ð4:15Þ

for the regular part of the enhanced strains (3.1). The
imposition again of the requirement that the strains
(4.15) vanish for the generalized displacements (4.2),
with #̂12 ¼ 0, defines the enhanced strain operators

GðLEÞe
c;N0M0S1ðneÞ ¼ �

1

he
nu

e ;

GðLEÞj
c;N0M0S1ðneÞ ¼ �

1
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GðLEÞc
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1

he
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e �
1

2
� sd

he

� 	
n#e :

9>>>>>>>>>=
>>>>>>>>>;

ð4:16Þ

We observe that these enhancements satisfy the consis-
tency requirement Gc ¼ �ð1=heÞ1þ oð1Þ as he ! 0. The
difference with the enhanced strains (4.8) for the linear
element is to be noted. We denote the resulting enhanced
strain finite element by N0M1S0-LE, in contrast with
the N0M1S0-E based on the enhancement (4.1), that is,
the first terms in (4.16).

The enhanced strains (4.16) can be alternatively
obtained by considering the local generalized displace-
ments
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We note again the difference of these distributions with
the small-scale displacements (4.9) for the original
N0M0S1 element.

Remark 4.2.

1. Remarkably, the same element is obtained with the

choice Ge  G
ðLEÞ
c;N0M1S0 for the enhanced strain oper-

ator imposing the equilibrium in the local equilibrium
equation (3.2), under the assumptions of no external
distributed moments and constant material properties
along the element. In this case, the linear bending
moment distribution MðsÞ arising from the linear
bending strain (4.15)2 and the constant transverse
shear strain V arising from the constant transverse
shear strain (4.15)3 are related by

MðsÞ ¼ �M � s� he

2

� 	
V for

�M :¼ 1

he

Zhe

0

MðsÞds ¼ Mðhe

2
Þ ; ð4:18Þ

that is, V ¼ �dM=ds. The relation (4.18) follows easily
from the weak equilibrium equation associated to the
variation of the bubble in the rotation d#12, which reads
(for no external distributed bending moments)
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� 8
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2
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3
V


 �
ds ¼ 0 ; ð4:19Þ

after noting the dependence of the strain measures (4.15)
on #12. Then, we obtain
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A similar result for the other two components of equa-
tion (3.2)2 (i.e. for dnu

e and dnw
e ) follows easily. Hence,

the driving stress resultant on the plastic hinge is given
by the stress resultant at that point with the choice

Ge  G
ðLEÞ
c;N0M1S0. A major consequence of this result is

that the N0M1S0-LE element leads to a symmetric
system of equations (3.11), regardless of the position of
the discontinuity.

2. We observe that the N0M1S0-E element can
accommodate zero strain measures (4.15) with
#̂12 ¼ 0 and the jumps

n̂u
e;approx ¼ û2 � û1 ¼ n̂u

e ;

n̂#e;approx ¼ #̂2 � #̂1 ¼ n̂#e ;
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he

2
ð#̂1 þ #̂2Þ

¼ n̂w
e þ

he

2
� sd

� 	
ð#̂2 � #̂1Þ ;

9>>>>>>>=
>>>>>>>;

ð4:21Þ

for the original jumps n̂e in (4.5) of the hinge mode.
This is a direct consequence of the constant transverse
shear in the base element. Hence, the N0M1S0-E ele-
ment is able to reproduce a hinge mode with no strain,
but not in terms of the exact jump components. We
note the difference of the jumps n̂e;approx in (4.21) with
the exact jumps in (4.5) when the discontinuity is not at
the center of the element sd 6¼ he=2 while exhibiting a
jump in the rotation field. This situation implies that
the N0M1S0-E will not show stress-locking, but it will
not capture the exact solution for a finite mesh he > 0
and a hinge involving a rotation jump component
unless the plastic hinge forms at the center of the ele-
ment. The exact solution is recovered in the limit
he ! 0. These considerations are confirmed by the
numerical simulations presented in Sect. 5.

3. We carry again an eigenvalue analysis of the stiffness
matrix (3.6) associated to the N0M1S0-E and
N0M1S0-LE elements of this section for the case of a
fully opened hinge (i.e. H ¼ 0 in (3.8)). Both elements
show three extra zero-energy modes in addition of the
basic three rigid body modes, hence confirming
the absence of stress locking for both elements. The
component associated to the bubble in rotation (D#12)
vanishes in particular. The N0M1S0-LE possesses the
three exact modes as in (4.10), that is, the two pure
opening in longitudinal and transversal directions,
and the rotation about the plastic hinge at sd . How-
ever, this last rotation mode is not reproduced exactly
by the N0M1S0-E element, but with he � sd in (4.10)
replaced by he=2. As observed in Remark 4.2.2, this
element reproduces the zero strain mode for a hinge
located at the center of the element, despite the actual
location of the hinge at sd . h

5 Representative numerical simulations

We present in this section several numerical examples
involving the new enhanced finite elements developed
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in this paper. The sole purpose of the discussion
presented here is to evaluate and compare the
numerical performance of the different finite elements.
Section 5.1 considers a simple cantilever beam in
combination with different interaction diagrams, illus-
trating the effects of stress-locking in this simple
setting. Section 5.2 considers the problem of the push-
over of a frame, involving the formation of a more
involved pattern of plastic hinges.

5.1 Cantilever beam

The effects of stress locking in the performance of the
different finite elements presented in Sect. 4 can be easily
illustrated through a simple cantilever beam problem.
We consider a cantilever beam of length L ¼ 1 under a
fixed imposed longitudinal displacement and an
increasing transversal displacement at the free end.
Seeking to avoid the well-known shear locking effects,
we choose the material properties such that ðGAsL2=EIÞ
is small (
1), that is, far from the thin-beam limit
where those effects are of major influence. In particular,
the simulations presented here consider the elastic model
(2.15) with elasticities EA ¼ 0:2, EI ¼ 1 and
GAs ¼ 0:641. We note, however, that the N0M0S1 ele-
ments lock in shear in the thin-beam limit.

We consider four different interaction diagrams (or
yield functions) separately to test the responses of the
plastic hinge in pure bending, pure shear, coupled shear-
bending response, and coupled axial-bending. No addi-
tional insights have been gained for the other possible
couplings. Since our only goal is to test the numerical
performance of the different elements, we consider the
simple interaction diagrams

~/1ðMd ; ~qÞ ¼
jMd j
My
� 1� ~qð Þ ; ð5:1Þ

~/2ðVd ; ~qÞ ¼
jVd j
Vy
� 1� ~qð Þ ; ð5:2Þ

~/3ðMd ; Vd ; ~qÞ ¼
jMd j
My
þ jVd j

Vy
� 1� ~qð Þ ; ð5:3Þ

~/4ðNd ;Md ; ~qÞ ¼
jNd j
Ny
þ jMd j

My
� 1� ~qð Þ ; ð5:4Þ

with yield limits Ny ¼ 1, My ¼ 1 and Vy ¼ 1. In all cases,
we consider the linear softening response

~qð~aÞ ¼ minf1;�Hag ; ð5:5Þ
with softening modulus H ¼ � 0.1. We present next a
detailed analysis illustrating the numerical performance
of the different elements for these cases.

5.1.1 Pure bending interaction diagram

We start by considering the interaction diagram ~/1 in
(5.1) depending on the bending moment only. A trans-
versal displacement is applied at the free end, leading to

a linear bending distribution along the span of the beam.
The solution is initially linear elastic until a plastic hinge
on the rotation (that is, with n#) forms at the clamped
end (x ¼ 0) when the bending moment reaches the yield
value My ¼ 1. The bending moment at this end softens
following the linear softening law (5.5) as additional
transversal displacement is imposed, with the rest of the
beam unloading elastically. The axial component does
not affect the solution in this uncoupled case, with the
axial response remaining elastic throughout for the fixed
imposed longitudinal displacement. Hence, we do not
consider it in the discussion that follows.

Figure 5.2 depicts the solution obtained with the
N0M0S1-E, N0M0S1-LE, N0M1S0-E and N0M1S0-LE
elements, while Fig. 5.3 shows the solution for the
N0M0S0-E in this case. They include the evolution of the
reacting transversal force versus the imposed transversal
displacement, and the spatial distributions of the trans-
verse shear force and the bending moment at the imposed
displacement �w ¼ 6, before the plastic hinge has fully
softened. The discontinuous distributions of the stress
resultants across elements are smoothed by considering
the average values at the nodes. Equally spaced elements
are considered in all the numerical simulations. Similar
considerations apply to all the plots showing spatial
distributions along the span in what follows.

The solution depicted in Fig. 5.2 for the N0M0S1-E
element clearly shows the stress-locking that this element
exhibits. The reaction increases even after the plastic
hinge is formed, after an initial softening response. The
locking is more severe for coarser meshes, eventually
disappearing as the mesh is refined. As discussed in
Sect.4, this element is not able to reproduce a fully
softened state of strain (or stress) for a finite element
length he > 0. A spurious transfer of bending moment
occurs, leading to the over-stiff (even hardening) re-
sponse of the element. The poor resolution of the
transverse shear force and bending moment resolution
obtained with the element, with unphysical oscillations
in the former, can also be observed in Fig. 5.2.

This situation is to be contrasted with the results
obtained with the linked enhancement for the same base
finite element, that is, for the N0M0S1-LE element. The
element does not show stress-locking, as verified by the
absence of the stiffening of the softening response. Still

Fig. 5.1 Cantilever beam: problem definition. A cantilever beam of
span L is subjected to an imposed transversal and/or longitudinal
displacement at the free end (�w and �u, respectively), measuring the
corresponding reactions (Ry and Rx). A plastic hinge is activated at the
fixed end
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we can observe a much stiffer response for coarse
meshes, especially in the limit load. Convergence occurs
as the meshes are refined. These considerations are also
apparent in the distributions of the transverse shear
force and bending moment shown in Fig. 5.2 for dif-
ferent meshes. A similar performance can be observed
for the constant strain element N0M0S0-E in Fig. 5.3.

Figure 5.2 shows also the solution for the linear mo-
ment elements N0M1S0-E and N0M1S0-LE. Both ele-
ments coincide in the elastic range, capturing exactly the
limit load. As argued in Remark 4.2.1, no stress-locking is
to be observed for either element, but the N0M1S0-E is
not able to capture the exact solution. The discrepancy
is apparent for coarse meshes, diminishing as the mesh is
refined. We refer to Remark 4.2.1 for an analytical
explanationof this response. In contrast, theN0M1S0-LE
is able to capture the exact solution for any mesh in this
case with linear bending moment and constant transverse
shear force. This includes not only the evolution of the
reacting force versus imposed transversal displacement,
but also the spatial distributions of the transverse shear
force and the bending moment. This property is to be
traced to the correct resolution of the hinge mode by the
enhanced element in these conditions.

5.1.2 Pure transverse shear interaction diagram

Figure 5.4 depicts the solutions obtained for the inter-
action diagram in the transverse shear ~/2 in (5.2). Once

again the exact constant linear elastic axial response is
reproduced exactly by all the elements and its consid-
eration is omitted in the following discussion. The exact
solution consists of an initial elastic phase with constant
transverse shear force and linear distribution of bending
moment. When the transverse shear force reaches the
yield value Vy ¼ 1 a hinge is formed, consisting of a jump
in the deflection nw. In order to break the symmetry, and
trigger the formation of the plastic hinge at the clamped
end, an imperfection (lower Vy) is considered in the first
element from the fixed support. Under the increasing
imposed transversal deflection, the shear hinge softens
following the assumed linear softening law (5.5), with
the rest of the beam unloading elastically.

The same response is to be expected in this case for the
non-linked and linked enhanced elements (i.e., -E and -
LE elements), due to the absence of a jump in the rota-
tion n#. In particular, no stress-locking is to be expected
for the -E elements. These observations are confirmed by
the numerical simulations. Figure 5.4 shows again the
evolution of the transversal reacting force versus the
imposed transversal displacement, and the spatial dis-
tributions of the transversal shear force and the bending
moment at the imposed displacement �w ¼ 6, before the
plastic hinge fully softens. Different meshes with equally
spaced finite elements are again considered.

We can observe how again the N0M0S1 and
N0M0S0 based elements are not capable of reproducing
the constant transverse shear and linear bending
moment distributions exactly. Different responses are
obtained for different meshes, converging eventually to
the exact solution as the mesh is refined. In contrast, the
N0M1S0 based elements are able to capture the exact
solution for any mesh in this case.

5.1.3 Coupled transverse shear-bending interaction
diagram

We consider next the yield surface ~/3 in (5.3) involving a
coupled response of the transversal shear and bending
moment at the plastic hinge. The axial response remains

Fig. 5.3 Cantilever beam with imposed transversal displacement.
Solutions for a plastic hinge in bending ( ~/1 interaction diagram):
transversal reacting force vs. imposed displacement, and the distribu-
tion along the span x of the transverse shear force and bending
moment at imposed displacement �w ¼ 6. All plots follow the same
legend

Fig. 5.2 Cantilever beam with imposed transversal displacement.
Solutions for a plastic hinge in bending ( ~/1 interaction diagram):
transversal reacting force vs. imposed displacement, and the distribu-
tion along the span x of the transverse shear force and bending
moment at imposed displacement �w ¼ 6. All plots follow the same
legend

b
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elastic and so it is again ignored in the discussion that
follows. After the initial linear elastic response, a plastic
hinge is formed at the clamped end of the cantilever when
the stress-resultants at this point reach the values
ðMð0Þ; V ð0ÞÞ ¼ ð0:5; 0:5Þ for the assumed material
parameters (note that by simple equilibrium

Mð0Þ ¼ V ð0ÞL for L ¼ 1 even in the plastic range). A
plastic hinge forms then at the clamped end involving the
transversal displacement jump nw and a rotation jump n#.
Given the assumed normality of the plastic response by
the evolution Eq. (2.12), the direction of the plastic jump
vector ðnw; n#Þ is orthogonal to the yield surface. In fact,
given the constant relation between Mð0Þ ¼ V ð0ÞL and
the assumed piece-wise linear interaction diagram, this
direction remains constant as the elastic domain softens
for the increasing imposed transversal displacement.

Figure 5.5 depicts the solution obtained with the
N0M0S1-E, N0M0S1-LE, N0M1S0-E and N0M1S0-

Fig. 5.4 Cantilever beam with imposed transversal displacement.
Solutions for a plastic shear hinge ( ~/2 interaction diagram):
transversal reacting force vs. imposed displacement, and the distribu-
tion along the span x of the transverse shear force and bending
moment at imposed displacement �w ¼ 6. All plots follow the same
legend
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LE elements, while Fig. 5.6 depicts the solution for the
constant strain N0M0S0-E element. The evolution of
the reacting transversal force versus the imposed
transversal displacement, and the spatial distributions
of the transverse shear force and the bending moment
are again shown at �w ¼ 6, before the plastic hinge
fully softens, for different equally spaced finite element
meshes.

The same qualitative response as in the case of a
plastic hinge in pure bending discussed in Sect. 5.1.1 can
be observed. In particular the severe stress locking of the
N0M0S1-E element is again clear, being eliminated by
the linked enhancement LE. The exact solution is again
recovered for any mesh with the N0M1S0-LE element,
thanks to the correct resolution of the kinematics of the
hinge mode.

5.1.4 Coupled axial-bending interaction diagram

We consider in this section the case defined by the
interaction diagram ~/4 in (5.4) depending of the axial
force and the bending moment. The influence of the
axial force will now affect the results. We consider an
imposed longitudinal displacement �u ¼ 2:5, kept fixed
during the entire simulation, while the imposed trans-
versal displacement �w is increased linearly to load the
cantilever. In this case, the initial response is linear

elastic until the stress resultants reach the yield surface at
the point ðN ;MÞ ¼ ð0:5; 0:5Þ in stress space at the
clamped end of the cantilever. A plastic hinge involving
a longitudinal displacement jump nu and a rotation jump
n# is formed at this point. The increasing imposed
transversal displacement leads to the softening of the
hinge. The direction of the plastic jump vector ðnu; n#Þ is
orthogonal to the yield surface ~/4. Both components of
the jump vector increase for additional imposed trans-
versal displacement, resulting in an unloading of the
axial force and a smaller stiffness in the bending
response, until the axial force is fully unloaded. This
occurs when the stress resultants reach a vertex of the
yield surface. The longitudinal displacement jump nu

then ceases to evolve. Afterwards, the response of the
plastic hinge consists of a softening of the bending re-
sponse, leading to a decrease of the moment (and
reacting transversal force) for increasing imposed
transverse displacement, with an elastic unloading else-
where in the beam.

Figures 5.7 and 5.8 depict the solution obtained
with the N0M0S1-E, N0M0S1-LE, N0M1S0-E and
N0M1S0-LE elements in this case, while Fig.5.9 shows
the solution for the constant strain N0M0S0-E element.
We show in all these figures the evolution of the reacting
transversal and longitudinal forces versus the imposed
transversal displacement, a transversal force versus
horizontal force diagram, and the distributions of the
axial force, the transverse shear force and the bending
moment at the imposed transversal displacement �w ¼ 3.
The discontinuous distributions of the stress resultants
across elements are again smoothed by considering the
average values at the nodes. Equally spaced elements are
considered.

The different features of the solution outlined above
can be observed in these solutions. Note the change of
the slope (stiffness) in the evolution of the transversal
reaction versus imposed displacements corresponding to
the formation of the plastic hinge at the fixed end. The
axial force starts then decreasing whereas the reacting
transversal force (and reacting bending moment
Mð0Þ ¼ RyL) keeps increasing. This situation is clearly

Fig. 5.5 Cantilever beam with imposed transversal displacement.
Solutions for a plastic hinge in bending and transverse shear ( ~/3
interaction diagram): transversal reacting force vs. imposed
displacement, and the distribution along the span x of the transverse
shear force and bending moment at imposed displacement �w ¼ 6. All
plots follow the same legend

b

Fig. 5.6 Cantilever beam with imposed transversal displacement.
Solutions for a plastic hinge in bending and transverse shear ( ~/3
interaction diagram): transversal reacting force vs. imposed
displacement, and the distribution along the span x of the transverse
shear force and bending moment at imposed displacement �w ¼ 6. All
plots follow the same legend
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depicted in the diagrams of the reacting bending
moment and longitudinal force of Fig. 5.7 and 5.9. The
overall reduction of the size of the elastic domain due to
the softening is apparent. The decrease of the reacting
bending moment starts when the axial force has soften
completely.

Once again the stress locking of the element
N0M0S1-E is clearly noticeable. The over-stiff
response is less marked as the mesh is refined. Adding
the linked enhancement in the N0M0S1-LE element
eliminates this stiffening of the softening response.
However, for coarse meshes the response is still stiff,
with considerable overestimation of the limit load.
Convergence occurs as the meshes are refined. Similar
performance can be observed for the constant strain
element N0M0S0-E in Fig. 5.9. Stress locking is not
observed for the N0M1S0-E and N0M1S0-LE ele-
ments, but the N0M1S0-E element is not able to
capture the exact response except for the limit he ! 0.
The differences are apparent for coarse meshes. The
exact solution is recovered for the N0M1S0-LE ele-
ment for any mesh.

5.2 Push-over of a frame

We consider next the more involved example of the
push-over of a frame. In particular, we study the failure
of the two story frame depicted in Fig. 5.10. The frame is
loaded in two phases. Initially, two transversal forces of
value P = 100 kips are applied at the center of the
beams and kept constant. They are followed by imposed
horizontal displacements at nodes A and B (see Fig. 5.10
in 100 increments of 0.05 inches each.

The localized plastic model (2.12) is considered again,
with the coupled axial-bending interaction diagram ~/4,
defined in (5.4). We consider again the simple setting of
a linear elastic response followed by the localized soft-
ening law (5.5) with softening modulus H ¼ �0:001
kip-in. The plastic hinges are then activated upon
yielding. More involved hardening/softening laws can be
considered to arrive to a more realistic response
involving an initial spread of bulk plasticity. However,
our goal here is again the evaluation of the finite ele-
ments in the resolution of the plastic hinges. Similarly,
the simulations presented here do not involve the corner
of the yield surface (5.4), requiring a multi-surface form
of Eq. (2.12) and their special numerical integration. As
noted above, we plan to address these issues in a sepa-
rate article.

We also consider numerical simulations based on the
continuum model (2.6). The same yield surface (5.4),

now in terms of the point value of the bending moment
M and axial force N , is also considered. A linear strain
softening law is again considered with (continuum)
softening modulus Hcont ¼ �0:036 kips. The constant
strain N0M0S0 element, leading to a Galerkin approx-
imation of the inelastic problem, is considered for this
continuum model.

Figure 5.11 depicts the horizontal reacting force at
node A for the N0M0S0 element with the continuum
model and for the N0M0S0-E and N0M1S0-LE en-
hanced elements with the localized model (2.12). The
pathological mesh-size dependence of the Galerkin
solution based on the continuum model is apparent. A
significantly softer response is observed as the mesh is
refined, leading eventually to an unphysical solution
exhibiting no energy dissipation. This situation confirms
the analyses presented in Armero & Ehrlich [2002]
identifying the ill-posedness of problem based on the
continuum model despite the presence of a length scale
in the problem (namely, the thickness). These difficulties
are completely avoided by the localized model, leading
to numerical solution converging to a physically mean-
ingful (dissipative) solution.

The two considered enhanced elements for the
localized model, the N0M0S0-E and N0M1S0-LE ele-
ments, show no shear nor stress locking. The much
superior performance of the N0M1S0-LE element
observed in the different tests of the previous section is
also clearly manifested in this example. The element is
able to capture again the exact solution in this case
involving no distributed loads, but only point loads at
the nodes. We observe that this property is not only a
direct consequence of the piece-wise linear character of
the stress resultant distributions at the element level, but
also of the correct resolution of the kinematics of the
plastic hinges by the newly proposed N0M1S0-LE en-
hanced element. The crucial need of the specific linked
enhancement developed in Sect. 4.4 is to be noted to
arrive to this result.

Figure 5.10 depicts also the deformed configuration
of the frame obtained with the N0M1S0-LE enhanced
element at an imposed displacement of �u ¼ 5. Several
plastic hinges form during the loading process. They are
depicted superposed to the deformed configuration in
Fig. 5.10 with a number indicating the order of their
formation. Figure 5.12 depicts the evolution of the
equivalent plastic jump ~a in the localized plastic model
(2.12) for the different hinges. A complex pattern of
plastic hinge formation and interaction is observed,
leading to the redistribution of the stress resultants
throughout the structure. In particular, some of the
plastic hinges become deactivated during the loading
process.

6 Concluding remarks

We have presented in this paper a general framework
for the characterization of plastic hinges in beams/rods.

Fig. 5.7 Cantilever beam with imposed longitudinal and transversal
displacements. Solutions for a plastic hinge in axial force and bending
( ~/4 interaction diagram): transversal and longitudinal reacting forces
vs. imposed displacement, and transversal vs. longitudinal reacting
force. All plots follow the same legend
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The considered formulation falls within the so-called
strong discontinuity approach: the plastic hinges cor-
respond to discontinuities of the generalized
displacement fields of the underlying Timoshenko the-
ory. We have developed in this context what we refer
as localized models, incorporating the localized effects
associated with the plastic hinges. This is accomplished,
in particular, in a multi-scale framework avoiding the
explicit consideration of small scales in the large-scale
problem of the beams and general frames of interest

here, while effectively incorporating the localized dis-
sipative effects of the plastic hinges in this problem.
The resulting localized models maintain the structure of
the typical large-scale structural problem, while cap-
turing the dissipative mechanisms characteristic of the
localized failures of structural systems.

The constructive approach considered in the
development of these models has naturally led to the
formulation of enhanced finite element methods for
their numerical simulation, the main goal of the cur-
rent cpaper. We have presented several finite elements
in this framework. A careful analysis of the kinematics
of the beam/rod under consideration has led, in par-
ticular, to new enhancement strategies that avoid
stress-locking. The coupling of the deflection and
rotation fields in the definition of the strain measures
defining the response of the beam/rod requires a
similar linked character of the enhanced strains mea-
sures. Due to this more involved kinematics, the newly
proposed finite elements are then not direct extensions
of previously proposed enhanced finite elements for
the resolution of strong discontinuities in continuum
problems.

The resulting enhanced finite elements are able to
accurately resolve the kinematics of the plastic hinges,

Fig. 5.8 Cantilever beam with imposed longitudinal and transversal
displacements. Solutions for a plastic hinge in axial force and bending
( ~/4 interaction diagram): distribution along the span x of the axial
force, transverse shear force and bending moment at imposed
displacement �w ¼ 3. All plots follow the same legend

Fig. 5.9 Cantilever beam with imposed longitudinal and transversal
displacements. Solutions for a plastic hinge in axial force and bending
( ~/4 interaction diagram): First row: transversal and longitudinal
reacting force vs. imposed displacement, and transversal vs. long-
itudinal reacting force. Second row: distribution along the span x of
the axial force, transverse shear force and bending moment at
imposed displacement �w ¼ 3. All plots follow the same legend
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locally at the element level, leading to computationally
very efficient formulations for the analysis of the failure
of structural frames. The numerical performance of the
proposed methods has been illustrated with a series of
representative numerical simulations. We are currently
extending these results to consider alternative models of
the plastic response of the structural members of interest
(e.g., fiber-based models). Similar, but more involved,
enhanced strategies at both the constitutive and finite
element levels can be considered to model the formation
of hinge lines in plates and shells, as we plan to address
in a forthcoming publication.

Appendix I

Approximations to the local equilibrium equation

The developments in Sect. (3.1) consider a special
enhanced strain operator Ge in the discrete local equi-
librium (3.2)2 that enforces exactly the relation
rd ¼ rðsdÞ for the driving stress resultant and the actual
stress resultant, respectively, on the plastic hinge at sd .
The case of an at most linear distribution of the stress
resultant rðsÞ, as it is the case for the finite elements
considered in Sect. 4, was considered in the particular
expression (3.4).

These considerations are a particular case of the
following general result: for any integer n, there exist a
function gnðsÞ such that

1

h

Zh

0

gnðsÞrnðsÞds ¼ rnðsdÞ ; ðI:1Þ

for sd 2 ½0; h�, with h > 0, and for all rnðsÞnð½0; h�Þ :¼
fpolynomials of degree n in ½0; h�g.

Indeed, let fpiðsÞg, i ¼ 1; 2; . . . ; n be a polyno-
mial basis for Pnð½0; h�Þ. We then write gnðsÞ and rnðsÞ
as

gnðsÞ ¼
Xn

j¼1
bjpjðsÞ and rnðsÞ ¼

Xn

i¼1
cipiðsÞ : ðI:2Þ

in this basis. Introducing (I.2) in (I.1 ) we obtain

Xn

i¼1

Xn

j¼1
bicjMij ¼

Xn

j¼1
cjpjðsdÞ ; ðI:3Þ

where Mij is the symmetric positive definite Gramm
matrix

Mij ¼
1

h

Zh

0

piðsÞpjðsÞds ; ðI:4Þ

associated to the polynomial basis fpiðsÞg. Given the
arbitrariness of rnðsÞ (i.e., cj) in (I.3), we obtain

Xn

i¼1
biMij ¼ pjðsdÞ : ðI:5Þ

for j ¼ 1; 2; . . . ; n. Equation (I.5) defines a symmetric
(positive-definite) algebraic system of equations whose
solution uniquely determines fbjg and, thus, gnðsÞ.

Furthermore, given any smooth function
rðsÞ : ½0; h� ! R, we can write

rðsÞ ¼ rnðsÞ þ oðhnþ1Þ ðI:6Þ

for a polynomial rnðsÞ of degree n. The result (I.1 ) then
implies

Fig. 5.10 Push-over of a frame: initial and deformed configurations.
The loading consists of an imposed equal horizontal displacements at
nodes A and B after two transversal forces have been applied at the
center of the beams. The plastic hinges are shown in the deformed
configuration, with the numbers indicating the order of appearance

Table 5.1 Push-over of a frame. Material properties.

Property Beams Columns

EA (kips) 6:467 � 105 7:685 � 105
GAs (kips) 2:072 � 105 2:463 � 105
EI (kips-in2) 3:875 � 107 2:897 � 107
Ny (kips) 1:115 � 103 1:350 � 103
My (kips-in) 7:300 � 103 7:850 � 103
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1

h

Zh

0

gnðsÞrðsÞdx ¼ 1

h

Zh

0

gnðsÞ rnðsÞ þ oðhnþ1Þ
� �

ds

¼ rðsdÞ þ
1

h

Zh

0

gnðsÞds

0
@

1
Aoðhnþ1Þ

¼ rðsdÞ þ oðhnþ1Þ ðI:7Þ

since gnðsÞ is a polynomial in s.
The following cases are particular cases of these

considerations:

1. n = 0. Then pðsÞ ¼ 1 and (I.5) reduces to

b1 ¼ 1 so g0ðsÞ ¼ 1 : ðI:8Þ
2. n = 1. Let the elements of the polynomial basis be

p0ðsÞ ¼ 1 and p1ðsÞ ¼ s� h
2
; ðI:9Þ

the Legendre polynomials in ½0; h�. Then Mij is diagonal,
and (I.5) yields

b0 ¼ 1 and b1 ¼
12

h2
sd �

h
2

� 	
; ðI:10Þ

Fig. 5.11 Push-over of a frame: reacting force at node A versus
imposed displacement. Solutions for the continuum model with the
N0M0S0 element, and the localized model with the N0M0S0-E and
N0M01S0-LE enhanced elements for different meshes. The number of
elements in the legend is the total number of elements in the frame,
with the same number of elements for each beam and column
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and

g1ðsÞ ¼ 1þ 3 1� 2sd

h

� 	
1� 2s

h

� 	
; ðI:11Þ

as employed in (3.4).
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Bažant Z, Belytschko T (1985) Wave propagation in a strain
softening bar. ASCE J Eng Mech 111: 381–389
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Jirásek M (2000) Comparative study of finite elements with
embedded discontinuities. Comput Meth Appl Mech Eng 188:
307–330

King WS, White DW, Chen WF (1992) Second-order inelastic
analysis of methods for steel-frame design. ASCE J Struct Eng
118: 408–428

Larsson R, Runesson K, Ottosen, NS (1993) Discontinuous dis-
placement approximation for capturing plastic localization. Int
J Numer Meth Eng 36: 2087–2105

Lubliner J (1990) Plasticity Theory. Macmillan Publishing
Company, New York

Oliver J (1996a) Modelling strong discontinuities in solid
mechanics via strain softening constitutive equations. Part 1:
Fundamentals. Int J Num Meth Eng 39: 3575–3623

Oliver J (1996b) Modelling strong discontinuities in solid
mechanics via strain softening constitutive equations. Part 2:
Numerical Simulation. Int J Num Meth Eng 39: 3575–3623

Rots JG, Nauta P, Kusters G, Blaauwendraa T (1985) Smeared
crack approach and fracture localization in concrete. Heron 30

Simo JC, Oliver J, Armero, F (1993) An analysis of strong dis-
continuities induced by softening solutions in rate independent
solids. J. Comput Mech 12: 277–296

Spacone E, Filippou F, Taucer FF (1996a) Fiber beam-column
model for nonlinear analysis of R/C Frames: Part I. Formula-
tion. Earthquake Eng Struct Dyn 25: 711–725

Spacone E, Filippou F, Taucer FF (1996b) Fiber beam-column
model for nonlinear analysis of R/C Frames: Part II. Applica-
tions. Earthquake Eng and Struct Dyn 25: 727–742

Fig. 5.12 Push-over of a frame: equivalent plastic jump ~a versus
imposed displacement �u. The hinges are numbered according to their
initial onset. The diagram on the left top figure depicts the location of
the hinges. The number of elements in the legend is the total number
of elements in the frame model. All the plots follow the same legend

b

264


