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Abstract This paper presents a complete derivation and
implementation of the Arbitrary Lagrangian Eulerian
(ALE) formulation for the simulation of large deformation
quasi-static and dynamic problems. While most of the
previous work done on ALE for dynamic applications was
mainly based on operator split and explicit calculations,
this work derives the quasi-static and dynamic ALE
equations using a fully coupled implicit approach. Full
expression for the ALE virtual work equations and finite
element matrices are given. Time integration relations for
the dynamic equations are also derived. Several quasi-
static and dynamic large deformation applications are
solved and presented.
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1
Introduction
The Arbitrary Lagrangian Eulerian (ALE) formulation has
emerged in recent years as a technique that can alleviate
many of the drawbacks of the traditional Lagrangian and
Eulerian formulations [2, 5, 7, 11, 16]. Using ALE, the
computational grid need not adhere to the material nor be
fixed in space but can be moved arbitrarily. The grid is
continuously moved to optimize element shapes inde-
pendently from material deformation. A proper ALE
formulation should reduce to both the Lagrangian and
Eulerian formulations at any degree of freedom as desired.
Combining the merits of both the Lagrangian and Eulerian
formulations, ALE can easily describe different types of
boundary conditions and prevent mesh distortion.

The ALE equations are derived by substituting the
relationship between the material time derivative and grid
time derivative into the continuum mechanics governing
equations. This substitution gives rise to convective terms

in the ALE equations which account for the transport of
material through the grid. ALE is usually termed a coupled
formulation since material deformation and convective
effects are coupled in the same equations. A survey of the
ALE literature [17], however, shows that the majority of
ALE analyses, whether quasi-static or dynamic, are based
on the computationally convenient operator split tech-
nique. In this approach, material deformation and con-
vective effects are treated separately. Thus each time step
may be divided into two steps: a regular Lagrangian step
followed by an Eulerian step. The main advantage of this
technique over the fully coupled approach is the reduction
in the cost of implementation of ALE to current
Lagrangian codes as the Lagrangian step is unchanged and
only the Eulerian step algorithm needs to be added.
Moreover, the decoupling of the Lagrangian and Eulerian
steps results in simpler equations to be solved. However,
from the theoretical point of view, the fully coupled ALE
approach represents a true kinematic description in which
material deformation is described relative to a moving
reference configuration.

In this work, a complete treatment for the fully coupled
implicit ALE formulation is presented. Virtual work equa-
tions are first derived from the basic principles of contin-
uum mechanics. Next, finite element descritization of the
virtual work equations is performed. Full expression for the
resulting finite element matrices and vectors are also given.
A method for condensing out grid displacements and pro-
cessing of the equivalent stiffness matrix on the element
level is presented. Finally, several quasi-static and dynamic
large deformation applications are solved and discussed.

2
Basic ALE equations

2.1
Notations
The governing ALE equilibrium equations will be derived
for use with an implicit time-stepping approach. In this
approach, we assume that the solution for the equilibrium
positions at all time steps from time 0 to time t have been
solved for, and that the solution for time t þ Dt is required
next. Throughout this paper, standard indicial notations are
adopted; right subscripts denote the components of a tensor
and repeated subscripts imply summation. In addition, time
and configuration notations similar to those used by Bathe
[1] are adopted. Left superscripts indicate the configuration
in which the quantity occurs whereas left subscripts indicate
the configuration to which the quantity is referred. Left
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subscripts may be omitted if the quantity occurs in the same
configuration in which it is measured. A quantity with no left
superscripts or subscripts indicate an incremental quantity
from time t to t þ Dt.

2.2
Kinematics
In the ALE description, the material configuration at any
time t refers to the set of material particles, whereas the
reference configuration consists of a set of arbitrarily
moving grid points sharing a common boundary with the
set of material particles. The material configuration is
identified by a set of material point coordinates Xm

i while
the reference, or grid, configuration is identified by an
independent set of grid point coordinates X

g
i . Let

txm
i ðXm

j ; tÞ and tx
g
i ðX

g
j ; tÞ be the vector functions or the

mappings that characterize the motion of the material
point Xm

j and the grid point X
g
j in space, respectively. The

position of Xm
j at time t is given by

txi ¼txm
i ðXm

j ; tÞ ð1Þ
The set of material particles is related to the set of grid
points by requiring that the two configurations share the
same space at all times. Any point within the common
boundary is occupied by elements of the two sets. Thus,
the position of the grid point X

g
j that occupies the same

point in space at time t as Xm
j is also given by txi as

txi ¼tx
g
i ðX

g
j ; tÞ ð2Þ

The ALE formulation requires that the inverse of (1) and
(2) exist to ensure a one-to-one mapping between the two
configurations. The material velocity tvi and the grid point
velocity tv

g
i at time t are given by

tvi ¼
otxm

i

ot

�
�
�
�
Xm

j

ð3Þ

tv
g
i ¼

otx
g
i

ot

�
�
�
�

X
g
j

ð4Þ

The boundary constraint, which ensures that the material
and grid configurations have the same boundary at all
times, can be expressed in the form

ðtvi � tv
g
i Þtni

�
�
on the boundary

¼ 0 ð5Þ

where tni is the unit normal to the boundary surface.
The governing ALE equations involve the material time

derivative of several quantities. The material derivative of
an arbitrary function tf is denoted by a superposed dot
and is defined to be the rate of change of the function
holding the material particle Xm

i fixed

t _f ¼ otf

ot

�
�
�
�
Xm

i

ð6Þ

However, the grid configuration is the computational
configuration that tracks the history of all quantities. Thus,
it is convenient to define a grid time derivative, which is
the time derivative of the function tf holding the grid point
X

g
i fixed, and denote it by a superposed prime

tf 0 ¼ otf

ot

�
�
�
�

X
g
i

ð7Þ

The relation between the two time derivatives is given by
[9]

t _f ¼ tf 0 þ ðtvi � tv
g
i Þ

otf

otxi
ð8Þ

Employing displacement based finite elements, we denote
the incremental material displacements from time t to
time tþ Dt by ui and the corresponding incremental grid
displacements by u

g
i . We have the following relation

tþDtxi ¼ txi þ u
g
i ð9Þ

where tþDtxi is the position of the grid point in the
configuration at time t þ Dt.

2.3
Continuity
The local form of conservation of mass, continuity, at time
t is given by

t _q ¼ �tq
otvi

otxi
ð10Þ

where tq is the material density. Using (8), the continuity
equation with respect to an arbitrary moving grid point
can be expressed as

tq0 ¼ �tq
otvi

otxi
� ðtvi � tv

g
i Þ

otq
otxi

ð11Þ

3
Quasi-static analysis

3.1
Principle of virtual displacements
For quasi-static analysis, as in the case of low-speed metal
forming processes, inertia effects may be neglected.
Employing an implicit incremental approach, the govern-
ing equilibrium equations for ALE are established for the
configuration of the body at time t þ Dt. Since the con-
figuration at time t þ Dt is yet unknown, an approximate
solution is usually obtained by referring all variables to the
grid configuration at time t and linearizing the resulting
equations. The solution is then refined by iterations.

The principle of virtual displacements is employed to
express the equilibrium of the body at time t þ Dt. It can
be written in the form
Z

tþDtV

tþDtrijdtþDteij
tþDtdV ¼ dtþDtWext ð12Þ

where tþDtrij are the components of the true (or Cauchy)
stress tensor at time t þ Dt and tþDteij is the work conju-
gate true strain tensor defined by

tþDteij ¼
1

2

oui

otþDtxj

þ ouj

otþDtxi

 !

ð13Þ

The external virtual work, dtþDtWext, is given by
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d tþDtWext ¼
Z

tþDtV

tþDtqtþDtfi
Bdui

tþDtdV

þ
Z

tþDtS

tþDtfi
Sdui

tþDtdS ð14Þ

in which tþDtf B
i and tþDtf S

i are the components of the body
force per unit mass and the surface traction at time t þ Dt,
respectively.

3.2
Incremental decompositions
In referring variables to the grid configuration, variables at
time t þ Dt are assumed to be composed of their respec-
tive values at time t plus an increment given by the grid
time derivative of the variable multiplied by the time
increment Dt.

Material density at time t þ Dt can be decomposed into

tþDtq ¼ tqþ tq0Dt ð15Þ
which, upon substituting (11), gives

tþDtq ¼ tq� tq
ouk

otxk
� ðuk � u

g
kÞ

otq

otxk
ð16Þ

Stress components at time t þ Dt can be expressed in
terms of the stresses at time t for the same grid point plus
a stress increment tr0ijDt

tþDtrij ¼ trij þ tr0ijDt ð17Þ
and using (8), we get

tþDtrij ¼ trij þ t _rijDt � ðuk � u
g
kÞ

otrij

otxk
ð18Þ

The material rate of Cauchy stresses t _rij is calculated from
the material constitutive relation which is usually given in
terms of an objective stress rate tensor such as the
Truesdell stress rate tensor defined by

trT
ij ¼ t _rij þ

otvk

otxk

trij �
otvj

otxk

trik �
otvi

otxk

trjk ð19Þ

Restricting the analysis to elastic-plastic materials, the
material constitutive relation in terms of the Truesdell
stress rate is given by

trT
ij ¼ tCEP

ijkl
tDkl ð20Þ

where tDij is the rate of deformation tensor given by

tDij ¼
1

2

otvi

otxj
þ

otvj

otxi

� �

ð21Þ

and tCEP
ijkl is the fourth order elastic-plastic material

constitutive tensor whose construction is presented in a
later section in this work. The variation in the strain
components at time t þ Dt can be decomposed as

dtþDteij ¼ dteij þ dte
0
ijDt ð22Þ

in which dte
0
ij is the grid time derivative of dteij and is given by

dte
0
ij ¼ �

1

2

odui

otxk

otv
g
k

otxj
þ oduj

otxk

otv
g
k

otxi

� �

ð23Þ

Substitution in (22) gives

dtþDteij ¼ dteij �
1

2

odui

otxk

ou
g
k

otxj
þ

oduj

otxk

ou
g
k

otxi

� �

ð24Þ

Incremental decomposition of elemental volume at time
t þ Dt in terms of the elemental volume at time t is given
by

tþDtdV ¼ tdV þtdV 0Dt ¼ 1þ ou
g
k

otxk

� �

tdV ð25Þ

Similarly, incremental decomposition of elemental surface
area is given by

tþDt dS¼ tdSþt dS0Dt

¼ 1þ ou
g
k

otxk
�1

2

ou
g
m

otxn
þ ou

g
n

otxm

� �

tnt
mnn

� �

t dS ð26Þ

where tnm is the unit outward normal to the surface at time t.

3.3
Linearization
Linearization is accomplished by expanding (12) using the
previous incremental decompositions and neglecting
higher orders in all incremental quantities. Substituting by
(18), (24), and (25), the internal virtual work can be
expanded, after linearization, into
Z

tþDtV

tþDtrijdtþDteij
tþDtdV

¼
Z

tV

trijdteij
tdV þ

Z

tV

t _rijDtdteij
tdV

þ
Z

tV

ou
g
k

otxk

trijdteij
tdV �

Z

tV

ou
g
k

otxj

trij
odui

otxk

tdV

�
Z

tV

ðuk � u
g
kÞ

otrij

otxk
dteij

tdV ð27Þ

Considering the external virtual work on the RHS of (12),
the body force term can be referred to the grid configu-
ration by using (16) and (25) to get
Z

tþDtV

tþDtqtþDtf B
i dui

tþDtdV

¼
Z

tV

tqtþDtfi
Bdui

tdV

�
Z

tV

tqtþDtf B
i

ouk

otxk
� ou

g
k

otxk

� �

dui
tdV

�
Z

tV

tþDtf B
i ðuk � u

g
kÞ

otq
otxk

dui
t dV ð28Þ
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Similarly, by using (26), the traction force term of the
external virtual work can be expressed as
Z

tþDtS

tþDtf S
i dui

tþDtdS

¼
Z

tS

tþDtf S
i 1þ ou

g
k

otxk
�1

2

ou
g
m

otxn
þ ou

g
n

otxm

� �

tnm
tnn

� �

dui
t dS

ð29Þ

3.4
Treatment of convective terms
Convective terms, such as the last integral on the RHS of
(27), involve the computation of the spatial derivatives of
stresses. Since the stress values are computed at the
integration points, and not at the nodal points connecting
the elements, the stress field is generally discontinuous
across element edges. Thus, stress gradients cannot be
reliably computed on the element level when evaluating
element matrices. A method of finding a continuous stress
field by interpolation was first used by Huétink [6]. In this
method, integration point stresses are first extrapolated by
a least square approximation to get the nodal stresses.
Nodal stresses computed from each element are then
averaged. A continuous stress field is then assumed in the
form

trij ¼
XN

a¼1

ht
arija ð30Þ

where ha is the element shape function evaluated at node
a, rija are the nodal stress components at node a and N is
the number of element nodal points. Finally, the spatial
derivatives of integration point stresses can be computed
on the element level as

otrij

otxk
¼
XN

a¼1

oha

otxk

trija ð31Þ

Another method for treating convective terms was
proposed by Liu et al. [13]. A stress-velocity product is
defined in the form

tyijk ¼ ðtvk � tv
g
kÞ

trij ð32Þ

Differentiating (32) with respect to space gives the con-
vective term as

ðtvk � tv
g
kÞ

otrij

otxk
¼

otyijk

otxk
� otvk

otxk
� otv

g
k

otxk

� �

trij ð33Þ

Equation (33) circumvents the computation of the stress
gradients by computing the gradients of the stress-
velocity product instead. However, this method
necessitates the use of a weak form of stress integration
to establish the nodal values for the stress-velocity
product.

In this paper, a method for the treatment of the con-
vective term that sidesteps the computation of the spatial

gradients of stresses is used. This method involves a
transformation from volume integrals to surface integrals
as offered by the divergence theorem. Use is also made of
the boundary constraint in (5). The last integral on the
RHS of (27) can be rewritten as
Z

tV

ðuk�u
g
kÞ

otrij

otxk
dteij

tdV

¼
Z

tV

o½ðuk�u
g
kÞtrijdteij�

otxk

tdV�
Z

tV

ðuk�u
g
kÞ

trij
odteij

otxk

t dV

�
Z

tV

ouk

otxk
� ou

g
k

otxk

� �

trijdteij
tdV ð34Þ

Applying the divergence theorem to the first integral in
(34) and using (5), we get
Z

tV

o½ðuk � u
g
kÞ

trijdteij�
otxk

tdV

¼
Z

tS

ðuk � u
g
kÞ

trijdteij
tnk

tdS ¼ 0 ð35Þ

Substituting in (27), the internal virtual work becomes
Z

tþDtV

tþDtrijd
tþDteij

tþDtdV

¼
Z

tV

trijdteij
tdV

þ
Z

tV

t _rijDtdteij
tdV þ

Z

tV

trijdteij
ouk

otxk

t dV

�
Z

tV

ou
g
k

otxj

trij
odui

otxk

t dV

þ
Z

tV

ðuk � u
g
kÞ

trij
odteij

otxk

tdV ð36Þ

The same method can be applied to the convective body
force term to avoid the computation of the spatial deriv-
atives of density. The last integral on the RHS of (28) can
be treated in the same manner as in (34) and (35), to give
Z

tþDtV

tþDtqtþDtf B
i dui

tþDtdV

¼
Z

tV

tqtþDtf B
i dui

tdV

þ
Z

tV

tq
otþDtf B

i

otxk
ðuk � u

g
kÞdui

tdV

þ
Z

tV

tqtþDtf B
i ðuk � u

g
kÞ

odui

otxk

tdV ð37Þ
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3.5
Fully coupled ALE equilibrium equation
Substituting by (36), (37) and (29) into (12), the principle
of virtual displacements at time t þ Dt referred to time t
can be written as
Z

tV

t_rijDtdteij
t dV þ

Z

tV

trijdteij
ouk

otxk

tdV

þ
Z

tV

ðuk � u
g
kÞ

trij
odteij

otxk

tdV

�
Z

tV

ou
g
k

otxj

trij
odui

otxk

tdV

¼ dtþDtWext �
Z

tV

trijdteij
tdV ð38Þ

where

dtþDtWext ¼
Z

tV

tqtþDtf B
i dui

tdV

þ
Z

tV

tq
otþDtf B

i

otxk
ðuk � u

g
kÞdui

tdV

þ
Z

tV

tqtþDtf B
i ðuk � u

g
kÞ

odui

otxk

tdV

þ
Z

tS

tþDtf S
i 1þ ou

g
k

otxk
� 1

2

ou
g
m

otxn
þ ou

g
n

otxm

� �

tnm
tnn

� �

dui
tdS

ð39Þ
Equation (38) represents the fully coupled ALE equilib-
rium equation. This equation can reduce to the updated
Lagrangian formulation if we choose to attach the grid
to the material, i.e. u

g
i ¼ ui , and to the Eulerian

formulation if we choose to fix the grid in space, i.e.
u

g
i ¼ 0, as limiting cases. The constitutive relations in

(19) to (21) can now be introduced into the first integral
in (38) to give
Z

tV

tCEP
ijkltekldteij

t dVþ
Z

tV

trijdtgij
tdV

þ
Z

tV

ðuk � u
g
kÞ

trij
odteij

otxk

tdV

þ
Z

tV

ouk

otxj
� ou

g
k

otxj

� �

trij
odui

otxk

tdV

¼ dtþDtWext �
Z

tV

trijdteij
tdV ð40Þ

where

tgij ¼
1

2

ouk

otxi

ouk

otxj
ð41Þ

The first two integrals on the LHS of (40) are exactly the
same as those obtained using the updated Lagrangian
formulation. The last two integrals on the LHS are the
contributions to the stiffness matrix induced by mesh
motion.

4
Dynamic analysis

4.1
Virtual work done by inertia forces
In dynamic analyses, inertia effects are included in
the balance of momentum at time t þ Dt. Inertia forces
involve the material time derivative of material
velocities, i.e. material accelerations tþDt _vi. In the ALE
formulation, we follow the grid point in its motion as
our reference configuration. Therefore, the material
referential acceleration, which is the grid time derivative
of the material velocity tþDtv0i, should be used. For
clarity, we will denote the material referential
acceleration tþDtv0i by tþDtai.

Using the relation between the two time derivatives in
(8), the virtual work done by inertia forces can be
expanded as
Z

tþDtV

tþDtqtþDt _vidui
tþDtdV

¼
Z

tþDtV

tþDtqtþDtaidui
tþDtdV

þ
Z

tþDtV

tþDtqðtþDtvj �tþDt v
g
j Þ

otþDtvi

otþDtxj

dui
tþDtdV

ð42Þ

Equation (42) is considered as an extra virtual work term
due to inertia effects to be added to the LHS, or subtracted
from the RHS, of the ALE virtual work equation, (40). The
first term on the RHS of (42) can be referred to as the
referential inertia term whereas the second term is referred
to as the convective inertia term.

4.2
Decomposition of velocities and accelerations
The velocities and accelerations at time t þ Dt can be
related to their respective values at time t using the
relations

tþDtai ¼ tai þ ai ð43Þ
tþDtvi ¼ tvi þ vi ð44Þ
tþDtv

g
i ¼ tv

g
i þ v

g
i ð45Þ

where the incremental quantities ai, vi and v
g
i depends on

the implicit time integration scheme to be employed.
Higher orders in ai, vi, v

g
i and Dt will be neglected during

linearization.
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4.3
Linearization of the referential inertia term
Incremental decomposition of the variables in the refer-
ential inertia term, in a manner similar to quasi-static
analysis and linearization of the result gives

Z

tþDtV

tþDtqtþDtaidui
tþDtdV

¼
Z

tV

tqtþDtaidui
tdV

�
Z

tV

tq
otvk

otxk
� otv

g
k

otxk

� �

tþDtaiduiDttdV

�
Z

tV

otq
otxk

tvk � tv
g
k

� �tþDt
aiduiDt tdV ð46Þ

The last integral on the RHS of (46) can be rewritten as

Z

tV

otq
otx

tvk � tv
g
k

� �tþDt
aiduiDttdV

¼
Z

tV

o tqðtvk � tv
g
kÞ

tþDtaidui

h i

otxk
DttdV

�
Z

tV

tq
otvk

otxk
� otv

g
k

otxk

� �

tþDtaiduiDttdV

�
Z

tV

tq tvk � tv
g
k

� � oðtþDtaiduiÞ
otxk

DttdV ð47Þ

Applying the divergence theorem to the first integral above
and using the boundary constraint in (5), we get

Z

tV

o tqðtvk � tv
g
kÞ

tþDtaidui

h i

otxk
Dtt dV

¼
Z

tS

tqðtvk � tv
g
kÞ

tþDtaiduinkDttdV ¼ 0 ð48Þ

Substituting in (46), we get
Z

tþDtV

tþDtqtþDtaidui
tþDtdV

¼
Z

tV

tqtþDtaidui
tdV

þ
Z

tV

tqðtvk � tv
g
kÞ
ðotþDtaiduiÞ

otxk
DttdV ð49Þ

Using (43), the referential inertia term can be written as
Z

tþDtV

tþDtqtþDtaidui
tþDtdV

¼
Z

tV

tqtaidui
tdVþ

Z

tv

tqaidui
tdV

þ
Z

tV

tqðtvk � tv
g
kÞ

oðtaiduiÞ
otxk

DttdV ð50Þ

4.4
Linearization of the convective inertia term
In the incremental decomposition and linearization of the
convective inertia term, it can be shown that

otþDtvi

otþDtxj

¼ otþDtvi

otxj
� otþDtvi

otxk

otvk

otxj
Dt ð51Þ

The convective inertia term can be expanded as

Z

tþDtV

tþDtqðtþDtvj�tþDt v
g
j Þ

otþDtvi

otþDtxj

dui
tþDtdV

¼
Z

tV

tqðtþDtvj�tþDtv
g
j Þ

otþDtvi

otxj
dui

tdV

�
Z

tV

tq
otvk

otxk
�otv

g
k

otxk

� �

tþDtvj�tþDt v
g
j

� 	otþDtvi

otxj
duiDttdV

�
Z

tV

otq
otxk
ðtvk� tv

g
kÞð

tþDtvj�tþDtv
g
j Þ

otþDtvi

otxj
duiDttdV

�
Z

tV

tq
otv

g
k

otxj
ðtþDtvj�tþDtv

g
j Þ

otþDtvi

otxk
duiDttdV ð52Þ

As before the third integral above, which involves the
spatial gradients of density, can be treated using the
divergence theorem and the boundary constraint, to get

Z

tþDtV

tþDtqðtþDtvj �tþDt v
g
j Þ

otþDtvi

otþDtxj

dui
tþDtdV

¼
Z

tV

tqðtþDtvj � tþDtv
g
j Þ

otþDtvi

otxj
dui

tdV

þ
Z

tV

tq tvk � tv
g
k

� � otþDtvj

otxk
�

otþDtv
g
j

otxk

 !

� otþDtvi

otxj
duiDttdV
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þ
Z

tV

tqðtvk � tv
g
kÞð

tþDtvj � tþDtv
g
j Þ

� o

otxk

otþDtvi

otxj
dui

 !

DttdV

�
Z

tV

tq
otv

g
k

otxj
ðtþDtvj � tþDtv

g
j Þ

otþDtvi

otxk
duiDttdV

ð53Þ

Using (44) and (45), the convective inertia term can be
written as
Z

tþDtV

tþDtqðtþDtvj � tþDtv
g
j Þ

otþDtvi

otþDtxj

dui
tþDtdV

¼
Z

tV

tqðtvj � tv
g
j Þ

otvi

otxj
dui

tdV

þ
Z

tV

tqðtvj � tv
g
j Þ

ovi

otxj
dui

tdV

þ
Z

tV

tqðvj � v
g
j Þ

otvi

otxj
dui

tdV þ
Z

tV

tqðtvk � tv
g
kÞ

� otvj

otxk
� 2

otv
g
j

otxk

 !

otvi

otxj
duiDttdV

þ
Z

tV

tqðtvk � tv
g
kÞð

tvj � tv
g
j Þ

o

otxk

otvi

otxj
dui

� �

DttdV

ð54Þ

4.5
Fully coupled ALE equation of motion
Combining (40), (50) and (54), the fully coupled ALE
equation of motion can be written as
Z

tV

tqaidui
tdV þ

Z

tV

tC
EP
ijkl tekldteij

tdV

þ
Z

tV

trijdtgij
tdV

þ
Z

tV

tqðtvj � tv
g
j Þ

ovi

otxj
dui

tdV

þ
Z

tV

tqðvj � v
g
j Þ

otvi

otxj
dui

tdV

þ
Z

tV

ðuk � u
g
kÞ

trij
odteij

otxk

tdV

þ
Z

tV

ouk

otxj
� ou

g
k

otxj

 !

trij
odui

otxk

tdV

¼ dtþDtWext �
Z

tV

trijdteij
t dV

�
Z

tV

tqtaidui
tdV

�
Z

tV

tqðtvk � tv
g
kÞ

oðtaiduiÞ
otxk

DttdV

�
Z

tV

tqðtvj � tv
g
j Þ

otvi

otxj
dui

tdV

�
Z

tV

tqðtvk � tv
g
kÞ

�
otvj

otxk
� 2

otv
g
j

otxk

 !

otvi

otxj
duiDttdV

�
Z

tV

tqðtvk � tv
g
kÞðtvj � tv

g
j Þ

� o

otxk

otvi

otxj
dui

� �

DttdV ð55Þ

The first three terms on both the LHS and RHS of (55) are
exactly the same as in the updated Lagrangian formula-
tion. The extra terms are due to ALE. Equation (55) shows
that ALE can be considered as a logical extension to the
updated Lagrangian formulation and the modifications to
the equation of motion of current Lagrangian codes are
clearly presented.

5
Mesh motion

5.1
Grid displacement
Using the ALE formulation, the finite element mesh can be
moved arbitrarily to maintain a homogeneous mesh and
properly represent boundary conditions throughout the
deformation process. In this work, good control over the
mesh motion in different parts of the mesh was obtained
by associating the grid displacement with the material
displacement by the following relation

u
g
i ¼ ai þ Bijuj ð56Þ

where ai and Bij are a vector and a matrix of mesh motion
parameters, respectively. Vector ai consists of appropriate
grid displacements given by the mesh motion scheme
while matrix Bij consists of factors that allow the coupling
of grid and material displacements. Bij is usually chosen to
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be a diagonal matrix, i.e. grid and material displacements
are coupled only at the same degree of freedom. On free
material boundaries however, it is sometimes necessary
that all degrees of freedom of grid and material displace-
ments be coupled at the same node. For two-dimensional
problems, this would result in Bij being a tridiagonal
matrix. The motion of grid points in different parts of the
mesh is controlled by the choice of the mesh motion
parameters ai and Bij for each degree of freedom i as
follows:

– For a pure Lagrangian degree of freedom: ai ¼ 0 and
Bij ¼ dij.

– For a pure Eulerian degree of freedom: ai ¼ 0 and
Bij ¼ 0.

– For an ALE degree of freedom: aiand Bij are arbitrary.

5.2
Transfinite mapping
In this work, the transfinite mapping method [4] is used as
the mesh motion scheme for the degrees of freedom
interior to any mesh region with four known boundary
curves. This method provides a homogeneous mesh and
matches the boundary of a given region at an infinite
number of points. Another distinct advantage of the
transfinite mapping method is that it allows the discrete
representation of boundary curves, i.e. the coordinates and
displacements of boundary nodes can be used to find the
optimum position of the nodes internal to the region. It
also allows for discontinuities in slope of boundary curves.

The transfinite mapping algorithm starts by partition-
ing the initial mesh into a number of regions of simpler
forms. Considering the mapping of a typical distorted
mesh region bounded by four curves /iðr; 0Þ, /iðr; 1Þ,
/ið0; sÞ and /ið1; sÞ as shown in Fig. 1, the new mesh
coordinates can be obtained by mapping the region onto a
unit square to give

tþDtxiðr; sÞ ¼ ð1� sÞ/iðr; 0Þ þ s/iðr; 1Þ þ ð1� rÞ/ið0; sÞ

þ r/ið1; sÞ � ð1� rÞð1� sÞ/ið0; 0Þ

� ð1� rÞs/ið0; 1Þ � rs/ið1; 1Þ

� rð1� sÞ/ið1; 0Þ ð57Þ

where 0 � r � 1 and 0 � s � 1 are the normalized coor-
dinates over the region. Thus, the mesh motion parameter
ai for degree of freedom i internal to a region can be given
by the transfinite mapping method as

ai ¼ tþDtxi � txi ð58Þ

5.3
Mesh motion on free material boundaries
For the transfinite mapping method to give a good
quality mesh within a certain region, grid points on the
boundaries of this region must be uniformly distributed.
Consider point k located on a 2-D free material boundary
as shown in Fig. 2. Because of its location on a free
material boundary, the ALE motion of point k is given by
(56) as

ug
x ¼ ax þ Bxxux þ Bxyuy ð59Þ

ug
y ¼ ay þ Byxux þ Byyuy ð60Þ

where coupling between the x and y degrees of freedom is
introduced in order that the grid motion of point k sat-
isfies the boundary constraint given by equation (5). The
question in this section is to find the mesh motion
parameters ax, Bxx, Bxy, ay, Byx, and Byy for node k which
satisfy the boundary constraint. We define a set of local
axes x0and y0at grid point k such that x0 is tangent to the
boundary and y0 is its normal. Assume that the local x0 and
y0 axes at point k are inclined to the global x and y axes by
an angle h. The components of the incremental material
and grid displacement vectors in the global and local
coordinate systems are related by

u0x ¼ ux cos hþ uy sin h ð61Þ

u0y ¼ �ux sin hþ uy cos h ð62Þ

u0gx ¼ ug
x cos hþ ug

y sin h ð63Þ

u0gy ¼ �ug
x sin hþ ug

y cos h ð64Þ
Meanwhile, the mesh motion equations referred to the
local coordinate system can be written as

u0gx ¼ a0x þ B0xxu0x þ B0xyu0y ð65Þ

u0gy ¼ a0y þ B0yxu0x þ B0yyu0y ð66Þ
where a0x, B0xx and B0xy are the ALE mesh motion
parameters in the direction tangent to the boundary and
can be arbitrarily chosen while a0y, B0yx and B0yy are in the
direction normal to the boundary controlled by the
boundary constraint. In this work, cubic spline inter-
polation is used to find new coordinates for point k such
that all grid points on this free material boundary are

Fig. 2. Mesh motion on free material boundaries
Fig. 1. Transfinite mapping of a distorted mesh region bounded
by four curves
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uniformly distributed. The difference between the old
and new coordinates for point k establishes the mesh
motion parameter a0x. In this case B0xx and B0xy can be set
to zero. The boundary constraint dictates that u

0g
y ¼ u0y

thus giving a0y ¼ 0, B0yx ¼ 0 and B0yy ¼ 1. Substituting
(61), (62) and (63) into (65) and letting B0xx ¼ B0xy ¼ 0,
we get

ug
x cos hþ ug

y sin h ¼ a0x ð67Þ
Substituting (61), (62) and (64) into (66), and applying
the boundary constraint a0y ¼ 0, B0yx ¼ 0 and B0yy ¼ 1, we
get

�ug
x sin hþ ug

y cos h ¼ �ux sin hþ uy cos h ð68Þ
Solving (67) and (68) for u

g
x and u

g
y, we get

ug
x ¼ a0x cos hþ ux sin2 h� uy sin h cos h ð69Þ

ug
y ¼ a0x sin h� ux sin h cos hþ uy cos2 h ð70Þ

Comparing equations (69) and (70) with equations (59)
and (60), we get

ax ¼ a0x cos h ð71Þ
Bxx ¼ sin2 h ð72Þ
Bxy ¼ � sin h cos h ð73Þ
ay ¼ a0x sin h ð74Þ
Byx ¼ � sin h cos h ð75Þ
Byy ¼ cos2 h ð76Þ

The above ALE mesh motion parameters ensure that mesh
motion on free material boundaries is consistent with the
boundary constraint given by Eq. (5).

6
Finite element equations

6.1
Quasi-static analysis
Due to the approximations involved in the linearization
of Eq. (40), an iteration procedure must be used to
ensure equilibrium. Employing a modified Newton
iteration, the matrix equation corresponding to (40)
can be written for a single element or a group of
elements as

ðtKL1 þ tK
L2ÞuðiÞ þ ðtKA1 þ tK

A2ÞðuðiÞ � ugðiÞÞ
¼ tþDtfext � tþDtf ði�1Þ ð77Þ

where uðiÞ and ugðiÞ are the corrections to the
incremental material and grid displacement vectors in
iteration i and which are used to update displacements
according to

tþDtuðiÞ ¼ tþDtuði�1Þ þ uðiÞ ð78Þ
tþDtugðiÞ ¼ tþDtugði�1Þ þ ugðiÞ ð79Þ

tKL1 and tKL2 are the Lagrangian material and geometric
stiffness matrices given by

tKL1 ¼
Z

tV

ðtBL1ÞTt
CEP

tB
L1t dV ð80Þ

tKL2 ¼
Z

tV

ðtBL2ÞTt
SL2

tB
L2t dV ð81Þ

in which tCEP is the elastic-plastic material constitutive
matrix. tKA1 and tKA2 are the convective stiffness matrices
due to ALE given by

tKA1 ¼
Z

tV

ðtBA1ÞTtSA1Ht dV ð82Þ

tKA2 ¼
Z

tV

ðtBA2ÞTtSL2BL2t dV ð83Þ

tþDtf ði�1Þ is the internal force vector given by

tþDtf ði�1Þ ¼
Z

tþDtVði�1Þ

tþDtB
L1ði�1Þ

� 	
T tþDtrði�1ÞtþDtdV

ð84Þ

and tþDtfext is the vector of externally applied loads. The
definition of matrices H, tB

L1, tBL2, tB
A1, tB

A2, tS
L2 and

tS
A1 is given in Appendix A. It is clear from the third

integral in Eq. (40) and from Appendix A, matrix tB
A1

involves second derivatives of shape functions. Thus, at
least a C1-continuous representation of the shape
functions is necessary for the accuracy of the results.
Consequently only higher order elements were
implemented in this work.

Equation (77) can be rewritten as

ðtKL þ tKAÞuðiÞ � tKAugðiÞ ¼ tþDtfext � tþDtf ði�1Þ ð85Þ
where

tKL ¼ tKL1 þ tKL2 ð86Þ
tKA ¼ tKA1 þ tKA2 ð87Þ

6.2
Dynamic analysis
Using the modified Newton iteration, the matrix equation
corresponding to (55) can be written for a single element
or a group of elements as

tMLaðiÞ þ tCA1vðiÞ þ tCA2ðvðiÞ � vgðiÞÞ

þ ðtKL1 þ tKL2ÞuðiÞ þ ðtKA1 þ tKA2Þ

� ðuðiÞ � ugðiÞÞ

¼ tþDtfext � tþDtf ði�1Þ

� ðtML þ tMAÞtþDtaði�1Þ

� ðtCA1 þ tCA3 þ tCA4ÞtþDtvði�1Þ ð88Þ
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in which tML is the Lagrangian mass matrix given by

tML ¼
Z

tV

tqHTHtdV ð89Þ

and aðiÞ, vðiÞ and vgðiÞ are the corrections to the incremental
material acceleration, material velocity and grid velocity
vectors whereas tþDtaði�1Þ and tþDtvði�1Þ are the material
acceleration and material velocity vectors at time t þ Dt
iteration i� 1. Next material acceleration, material
velocity and grid velocity approximations are obtained
using

tþDtaðiÞ ¼ tþDtaði�1Þ þ aðiÞ ð90Þ
tþDtvðiÞ ¼ tþDtvði�1Þ þ vðiÞ ð91Þ
tþDtvgðiÞ ¼ tþDtvgði�1Þ þ vgðiÞ ð92Þ
Appendix B gives the definition of the matrices tMA, tCA1,
tCA2, tCA3 and tCA4 related to the dynamic ALE equation.
Equation (88) can be rewritten as

tMLaðiÞ þ ðtCA1 þ tCA2ÞvðiÞ

� tCA2vgðiÞ þ ðtKL þ tKAÞuðiÞ � tKAugðiÞ

¼ tþDtfext � tþDtf ði�1Þ

� ðtML þ tMAÞtþDtaði�1Þ

� ðtCA1 þ tCA3 þ tCA4ÞtþDtvði�1Þ ð93Þ
Equation (93) can be integrated using the Newmark
implicit integration scheme in which the following two
assumptions are used

tþDtuðiÞ ¼ tuþ Dttv þ Dt2 1

2
� b

� �

taþ Dt2btþDtaðiÞ

ð94Þ
tþDtvðiÞ ¼ tv þ Dtð1� cÞtaþ DtctþDtaðiÞ ð95Þ
where b and c are parameters that control the integration
accuracy and stability. Rearranging (94) we get,

tþDtaðiÞ ¼ 1

Dt2b
tþDtuðiÞ � tu
h

�Dttv � Dt2 1

2
� b

� �

ta

�

ð96Þ

Using (78)

tþDtaðiÞ ¼ 1

Dt2b
tþDtuði�1Þ þ uðiÞ � tu
h

�Dttv � Dt2 1

2
� b

� �

ta

�

¼ 1

Dt2b
tþDtuði�1Þ � tu
h

�Dttv � Dt2ð1
2
� bÞta

�

þ 1

Dt2b
uðiÞ

¼ tþDtaði�1Þ þ 1

Dt2b
uðiÞ ð97Þ

Comparing (97) with (90) we get

aðiÞ ¼ 1

Dt2b
uðiÞ ð98Þ

Substituting (97) into (95)

tþDtvðiÞ ¼ tv þ Dtð1� cÞta

þ DtctþDtaði�1Þ þ Dtc
1

Dt2b
uðiÞ

¼ tþDtvði�1Þ þ c
Dtb

uðiÞ ð99Þ

Comparing (99) with (91)

vðiÞ ¼ c
Dtb

uðiÞ ð100Þ

Similarly

vgðiÞ ¼ c
Dtb

ugðiÞ ð101Þ

Substituting (98) and (100) into (93) we get

1

Dt2b
tML þ c

Dtb
ðtCA1 þ tCA2Þ

�

þðtKL þ tKAÞ



uðiÞ � c
Dtb

tCA2 þ tKA

� �

ugðiÞ

¼ tþDtfext � tþDtf ði�1Þ

� ðtML þ tMAÞtþDtaði�1Þ

� ðtCA1 þ tCA3 þ tCA4ÞtþDtvði�1Þ ð102Þ

6.3
Condensation of grid displacement
Finite element equilibrium equations, Equation (85) for
quasi-static analysis and Equation (102) for dynamic
analysis, can both be written in the general form

tKuðiÞ � tKgugðiÞ ¼ f ðiÞ ð103Þ
where tK and tKg are equivalent stiffness matrices corre-
sponding to uðiÞ and ugðiÞ, respectively, while f ðiÞ is the
incremental load vector for iteration i. Rewriting (56) in a
matrix form

ugðiÞ ¼ aþ BuðiÞ ð104Þ
where a and B are the vector and matrix of mesh motion
parameters with the special cases of pure Lagrangian
degrees of freedom given by a ¼ 0 and B ¼ I and pure
Eulerian degrees of freedom obtained by using a ¼ 0 and
B ¼ 0. The relation between the material and grid dis-
placements in (104) is considered as a supplementary
constraint equation to the finite element equilibrium
equation (103). By introducing this constraint on the
element level, grid displacements can be condensed
out of element equilibrium equations prior to solution.
Substituting (104) into (103), we get

ðtK� tKgBÞuðiÞ ¼ f ðiÞ þ tKga ð105Þ
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The conventional finite element assembly and elimina-
tion techniques may now be applied directly to solve for
the material displacements. The only limitation to this
procedure is that grid and material displacements may
only be coupled at degrees of freedom within one
element.

7
Construction of the elastic-plastic constitutive tensor
For rate-independent large strain elastic-plastic materials,
the constitutive relation is generally given in terms of the
rate of deformation tensor tDij and an objective stress rate
such as the Truesdell stress rate trT

ij

trT
ij ¼ tCEP t

ijkl Dkl ð106Þ
where tCEP

ijkl is the instantaneous elastic-plastic constitutive
tensor. The construction of the elastic-plastic tensor in-
volves a yield condition, a flow rule and a hardening rule.
In the classical theory of plasticity additive decomposition
of the rate of formation tensor into elastic and plastic parts
can be assumed in the form

tDij ¼ tDE
ij þ tDP

ij ð107Þ
in which the elastic part of the rate of deformation tensor
tDE

ij can be related to the stress rate using

trT
ij ¼ tCE

ijkl
tDE

kl

¼ tCE
ijklðtDkl � tDP

klÞ ð108Þ
where tCE

ijkl is the corresponding constitutive tensor of
elastic moduli. Restricting the analysis to the associated
flow rule, the plastic part of the rate of deformation tensor
tDP

ij is given by

tDP
ij ¼ t _k

otf

otrij
ð109Þ

where t _k is a scalar plastic flow rate and tf is the yield
condition

tf ðtrij;
tqkÞ ¼ 0 ð110Þ

in which tqk denotes a set of internal variables that
characterize the hardening of the material such that

t _qi ¼ _kthiðtrjk;
tqlÞ ð111Þ

During plastic loading, the stress is required to remain on
the yield surface tf ¼ 0. We also have t _f ¼ 0 which can be
expanded using the chain rule to give

otf

otrij

t _rij þ
otf

otqi

t _qi ¼ 0 ð112Þ

The plastic consistency condition in (112) involves the
material rate of Cauchy stresses t _rij which upon trans-
formation into the Truesdell rate and rearranging to solve
for t _k we get [15]

t _k ¼
ot f
otrij
ðtCE

ijkl þ tC�ijklÞtDkl

ot f
otrqr

tCE
qrst

ot f
otrst
� ot f

otqu

thu

ð113Þ

in which

tC�ijkl ¼
1

2
ðdik

trjl þ dil
trjk þ djk

tril þ djl
trikÞ

� dkl
trij ð114Þ

Substituting (113) into (109) and the result into (108) and
comparing with (106) we get

tCEP
ijkl ¼ tCE

ijkl �
tCE

ijop
ot f

otrop

ot f
otrmn
ðtCE

mnkl þ tC�mnklÞ
ot f

otrqr

tCE
qrst

ot f
otrst
� ot f

otqu

thu

ð115Þ

8
Stress update
For large deformation analysis, the algorithm for inte-
grating the constitutive equations in time, also known as
the stress update algorithm, should observe the material
frame indifference, i.e., preserve the objectivity of the
constitutive equations. For elastic-plastic materials, the
algorithm should also satisfy the plastic consistency
condition, i.e. keep the stress point at the end of the
integration time step on the yield surface. The method
used here is the common return mapping algorithm. The
method consists of an elastic predictor step, in which a
trial stress at time t þ Dt is computed by assuming pure
elastic deformation, followed by a plastic corrector step in
which the trial stress is projected onto an updated yield
surface to satisfy the plastic consistency condition. Stress
update can be readily treated in the case of the Lagrangian
formulation because the element integration points are
material points. In the ALE formulation, however, inte-
gration points do not coincide with material points and the
stress needs to be convected by the relative velocity as
indicated by Eq. (18).

One method of stress update is through the definition of
the stress-velocity product given in Eq. (32) and
integrating the weak form of the objective constitutive
equations [13]. A discrete form of the constitutive equa-
tions is then obtained by defining a new set of shape
functions to interpolate the stress and the stress-velocity
product tensors. The stress objectivity consideration may
be achieved using tensor transformation of the Cauchy
stress tensor or by integration of the Truesdell stress rate.

In this work, the stress at time t þ Dt is assumed to be
updated using

tþDtrij ¼ trij þ Drij

¼ trij þ tþDtr0ijDt

¼ trij þtþDt _rijDt � ðuk � u
g
kÞ

otrij

otþDtxk

¼ trij þ
ouj

otþDtxk

trik þ
oui

otþDtxk

trjk

� ouk

otþDtxk

trij þ tþDtrT
ijDt

� ðuk � u
g
kÞ

otrij

otþDtxk

ð116Þ
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where use have been made of the relations between the
grid time derivative and the material rate of Cauchy
stresses as well as the Truesdell stress rate given in
Eqs. (18) and (19). The above relation can be rewritten in
the form

tþDtrij ¼ trij þ Drrota
ij þ Drconv

ij þtþDt rT
ijDt ð117Þ

in which Drrota
ij represents a rotational objectivity term

given by

Drrota
ij ¼

ouj

otþDtxk

trik þ
oui

otþDtxk

trjk �
ouk

otþDtxk

trij

ð118Þ
whereas Drconv

ij is the ALE convective term given by

Drconv
ij ¼ �ðuk � u

g
kÞ

otrij

otþDtxk

ð119Þ

and tþDtrt
ijDt is the incremental constitutive term given by

tþDtrT
ijDt ¼tþDt CEP

ijkl
tþDtDklDt ð120Þ

In the elastic predictor phase of the return mapping
algorithm, the material behavior is assumed to be purely
elastic and the incremental constitutive term is given by

tþDtrT
ijDt ¼tþDt CE

ijkl
tþDtDE

klDt ð121Þ
which upon using (107) gives

tþDtrT
ijDt ¼tþDt CE

ijklð
tþDtDkl �tþDt DP

klÞDt ð122Þ
Substituting (122) into (117), the stress at time t þ Dt can
be regrouped as

tþDtrij ¼tþDt rpred
ij þ Drcorr

ij þ Drconv
ij ð123Þ

in which tþDtrpred
ij is the elastic predictor trial stress given

by

tþDtrpred
ij ¼ trij þ Drrota

ij þ tþDtCE
ijkl

tþDt
DklDt ð124Þ

and Drcorr
ij is the plastic corrector stress increment given

by

Drcorr
ij ¼ �tþDtCE

ijkl
tþDtDP

klDt ð125Þ

The plastic corrector phase projects the trial stress onto a
suitably updated yield surface at time t þ Dt according to
the flow and hardening rules. The evolution of the plastic
corrector phase parameters is typically expressed in terms
of a set of nonlinear algebraic equations that is linearized
and solved using an iterative Newton procedure. It is
worth noting that the variables are updated from the
converged values at the end of the previous time step at
time t and not from the nonconverged iterative values.

The convective term Drconv
ij given by (119) involves the

computation of the spatial derivatives of stresses. To this
end, the assumption of a continuous stress field as given
by Eq. (30) is used in the computation. In defining
tþDtrpred

ij and Drcorr
ij in Equation (123) for the ALE for-

mulation, a decision had to be made on whether to include
the convective term in the predictor phase only, the
corrector phase only or in both phases. In this work, the

convective stress term is chosen to be included at the end
of the both phases to avoid possible numerical instabilities
due to the arbitrariness of the grid motion. Numerical
investigation into the relative accuracy of the other two
approaches may be the topic of a future work.

9
Applications

9.1
One dimensional elastic-plastic stress wave problem
A finite element program based on the above ALE for-
mulation has been developed. Several large strain metal
forming examples have been solved using the program. In
the first example, a wave propagation problem in a one-
dimensional infinitely long elastic-plastic rod is used to
test the ALE formulation with dynamic effects. The same
problem was reported in [13] and [8]. It should be noted
that this problem doesn’t require an ALE analysis and was
selected because of the availability of analytical and
numerical solutions. The infinitely long rod is discretized
using 400 elements with a mesh size of 0.1 units as shown
in Fig. 3. The material properties of the rod are assumed to
be: density = 10000.0, Young’s modulus = 10000.0, plastic
modulus = 3333.33, yield stress = 75.0 and Poisson’s ratio
= 0.0. The rod is subjected to a compressive stress wave
100.0 in amplitude and 4.5 in width. The stress wave and
the time interval under consideration are depicted in
Fig. 4.

Figures 5 and 6 compare the longitudinal stress distri-
bution obtained using ALE with the analytical solution for
both the elastic and elastic-plastic cases. ALE results are in
good agreement with the analytical solution and with those
of [13] and [8].

9.2
Sheet metal extrusion
Extrusion is a typical metal forming problem in which
large strains are expected and in which remeshing and
boundary condition updating are required if the
traditional Lagrangian formulation is employed. In this
problem, quasi-static plane strain sheet metal extrusion is
simulated. The extrusion die produces a 25% reduction in

Fig. 3. Mesh for the one-dimensional wave propagation problem

Fig. 4. Stress wave amplitude and duration for wave propagation
problem
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sheet thickness and is shaped in the form of a 5th order
polynomial with zero curvature and slope at both ends. An
aluminum billet of thickness 2a is forced through the die
by a rigid piston pressing against the rear face of the billet
and moving with a prescribed displacement. The length of
the die is taken as 1.2a. The same problem was solved
using the updated Lagrangian approach in [12]. The
material properties for the aluminum billet are taken as:
Young’s modulus = 104 ksi, Poisson’s ratio = 0.3, initial
yield stress = 57 ksi and hardening parameter = 165 ksi.
Figure 7 shows the initial geometry and mesh used in the
simulation. Only the upper half of the billet was analyzed.

Using the ALE formulation, all the nodes confined to
the die area are chosen to be Eulerian during the whole
course of deformation. The nodes on the boundaries are
taken as Lagrangian. The motion of all the other nodes is
controlled by the ALE mesh motion scheme. Figure 8
shows the plastic strain distribution and the deformed
shape after a piston displacement of 2a units. Contact
between the billet and the die was set as boundary con-
straint equations. The ALE approach was able to eliminate
the need for remeshing or boundary condition updating
and the desired deformation level was reached without any
user intervention or special contact treatments. Variations
in the longitudinal stress component in the die region at

different lateral positions from the mid-plane of the initial
configuration are shown in Fig. 9. Results are in good
agreement with those in [12].

9.3
Bar impact benchmark test
The bar impact problem has been investigated by many
researchers [3, 10, 14, 18] and is considered a standard
benchmark test for transient dynamic computer codes. In
this problem, a cylindrical copper bar of initial radius
3.2 mm and length 32.4 mm strikes a rigid frictionless
surface. The impact velocity is 227 m/s. The material is
assumed to be elasto-plastic with Young’s modulus =
117 GPa, plastic modulus = 100 MPa, Poisson’s ratio =
0.35, initial yield stress = 400 MPa, and density = 8930
kg/m3. A von Mises yield surface with linear isotropic
hardening is assumed. Contact conditions are imposed by
simply constraining the nodes in contact with the rigid
surface. An axisymmetric mesh of 250 8-noded elements is
used. Computations are carried out up to a time of 80 ls.

Figure 10 compares the deformed shape and finite ele-
ment mesh obtained using both the Lagrangian and ALE
formulations at different stages during the deformation
process. In the ALE solution, boundary nodes are allowed
to move in the tangential directions to the boundaries to
maintain their uniform distribution while satisfying the
ALE boundary constraint. The Lagrangian solution is ob-
tained as a special case from the more general developed
ALE formulation. It is clear that while the Lagrangian
solution suffered severe mesh distortion, ALE was able to
maintain a uniform mesh throughout the deformation
history. Table 1 compares the final bar length and mush-
room radius obtained using the developed code with
numerical results obtained by other researchers. It is clear
that the results obtained using the fully-coupled implicit
dynamic ALE formulation are in agreement with other
well-established numerical techniques and codes.

Fig. 5. Longitudinal stress distribution comparison, elastic case

Fig. 6. Longitudinal stress distribution comparison, elastic–
plastic case

Fig. 7. Geometry and mesh for extrusion problem

Fig. 8. Plastic strain contours and
deformed shape for extrusion problem
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Figure 11 gives the equivalent stress and plastic strain
contours.

9.4
Quasi-static and dynamic punch indentation
In this example, a punch indentation process is simulated
to show the effectiveness of the ALE formulation in
handling contact boundary conditions and in preventing
mesh distortion. This process is simulated using both
quasi-static and dynamic analyses to investigate the sig-
nificance of dynamic effects. Figure 12 shows the geometry
and initial mesh of the body. The workpiece is placed
between two rigid frictionless tools moving with constant
velocity under plane strain conditions. Because of sym-
metry, only one quarter of the domain is modeled. The
deformation process is continued up to a 60% reduction of
the original workpiece height. The material is assumed to
be an elastic-plastic material with a Young’s modulus of
200 GPa, a Poisson’s ratio of 0.3, an initial yield stress of
250 MPa and a hardening parameter of 1 GPa.

Figure 13 shows the evolution of the deformed shape
obtained using the developed ALE formulation. The figure
shows that the contact condition between the punch and
the workpiece is accurately satisfied. This was easily
achieved by allowing the degrees of freedom of the nodes

directly under the punch to be Lagrangian in the vertical
direction (to satisfy the boundary constraint) and Eulerian
in the horizontal direction (to maintain the same punch
size under deformation). No special contact algorithm was
needed to handle the contact conditions. In addition, ALE
was able to maintain a homogeneous mesh throughout the
deformation history.

The significance of dynamic effects is investigated by
examining the indentation problem at different punch
velocities. Figure 14 compares the final deformed shape
and equivalent plastic strain distributions for the quasi-
static case and for four different punch velocities. Dynamic
effects are not significant for punch velocities less than 1 m/
s since the deformed shape and plastic strain distribution
are quite similar to those of the quasi-static simulation.
One can also notice that low punch velocities allow the
workpiece to flow horizontally away from the punch, while
at high velocities the workpiece tends to back extrude.

10
Conclusions
In this paper, an implicit fully coupled ALE formulation
for large deformation solid mechanics applications is
presented. Starting from the basic principles of
continuum mechanics, ALE equilibrium equations are
derived for both quasi-static and dynamic analyses. A
new method for the treatment of convective terms that
sidesteps the computation of the spatial gradients of
stresses is used in the derivation. Details of the finite
element discretization are presented and full expressions
for the resulting matrices and vectors for both quasi-
static and dynamic analyses are given. Details of the
mesh motion scheme and stress update are also pre-
sented. The developed formulation is implemented into
a 2-D finite element code for elastic-plastic materials.
Several quasi-static and dynamic large deformation
problems are simulated using the program. The results
show the effectiveness of the ALE approach in handling
contact boundary conditions and in preventing mesh
distortion.

Fig. 9. Longitudinal stress at different lateral positions for
extrusion problem

Fig. 10. Comparison of the
Lagrangian and ALE solutions
for bar impact problem
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Appendix A
Matrices for 2-D quasi-static analysis
Letting hk be the element shape function corresponding to
nodal point k and N is the number of element nodal
points, matrices H, tB

L1, tB
L2, tB

A1, tB
A2, tS

L2 and tS
A1 are

given by

H ¼ . . .
hk 0
0 hk

. . .

� �

2�2N

ðA:1Þ

tB
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ohk

otx 0

0 ohk

oty
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oty
ohk

otx
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PN

j¼1

hj
t�xj

0

. . .

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

4�2N

ðA:2Þ

tB
L2 ¼ . . .

ohk

otx 0
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oty 0

0 ohk

otx

0 ohk

oty
hk
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j¼1
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t�xj

0

. . .

2

6
6
6
6
6
6
6
6
6
4
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7
7
7
7
7
5

5�2N

ðA:3Þ

Fig. 11. Equivalent stress and plastic strain contours for bar
impact problem

Fig. 12. Geometry and initial mesh for punch indentation
problem

Table 1. Comparison of re-
sults for bar impact Reference (Code/Method) Final length

(mm)
Final mushroom
radius (mm)

Kamoulakos [10]
MARC 21.66 7.02
DYNA2D 21.47 7.13
DYNA3D 21.47 7.03
NIKE2D 21.47 7.07

Zhu and Cescotto [18]
Lagrangian (different element types) 21.26–21.49 6.97–7.18

Camacho and Ortiz [3]
Lagrangian (different remeshing schemes) 21.42–21.44 7.21–7.24

Liu et al. [14]
Lagrangian 21.42 7.15
ALE (explicit) 21.53 6.87

Current Work
Lagrangian 21.48 7.22
ALE (implicit) 21.69 6.90

Fig. 13. Evolution of the deformed shape during the punch
indentation problem
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tB
A1 ¼ . . .
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tþDtrði�1Þ is the stress vector defined by

tþDtrði�1Þ ¼

tþDtrði�1Þ
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Appendix B
Matrices for 2-D dynamic analysis
Matrix tMA is given by

tMA ¼ . . .

..

.

tMA
2i�1;2j�1
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in which i and j indicate node numbers from 1 to N, and

tMA
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Matrix tCA1 is given by
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Fig. 14. Deformed shape and equivalent plastic strain at different
punch velocities
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in which
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