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Abstract A new time-domain method is suggested in this
paper for simultaneous identification of the structural
parameters and the time history of the input excitation
using output-only measurements. The proposed method is
based on an iterative identification procedure consisting of
the least-squares identification technique and a modifica-
tion process between each iterative step. The modification
process is introduced to convert the spatial information of
the external excitation into mathematical conditions. First,
the unknown force vector is conjectured through the
equation of motion using the initial guess of the structural
parameters and the measured structural responses. The
estimated input force vector is then modified to force it
comply with the spatial distribution of the external excita-
tions. The modified input force vector is further used to
provide new estimation of structural parameters. Repeat the
aforementioned procedure until the structural parameters
satisfy the preset convergence criterion. Numerical exam-
ples as shear building and truss bridge model are employed
to evaluate the feasibility of the proposed method. In the
numerical examples, typical scenario of complete and
noise-free as well as incomplete and noise-contaminated
output measurements are considered. The results demon-
strate that the proposed method can accurately identify
both the structural parameters and the input time history
for the cases that the structural responses are not polluted
or slightly contaminated by measurement noise.

Keywords Structural identification, Unknown input, Time
domain approach, Incomplete output measurements,
Shear building

1
Introduction
Structural health monitoring (SHM) technology has re-
cently received increasing attention in different disciplines
such as civil, mechanical and aerospace engineering. A
typical SHM system consists of several components of
different functions, including network of data acquisition
instrument, signal processing and analysis scheme. Among
them, the system identification algorithm is regarded as
the key part of a SHM system [1], which elicits the
structural physical or modal parameters, such as stiffness,
mass or natural frequency, mode shape and modal
damping ratio, from the raw measurement data. Signifi-
cant changes in the identified parameters will be then used
to unveil damage of structures.

Many system identification methods, either in fre-
quency-domain or in time-domain, have been proposed in
the past decades. Since input excitation to structure is
difficult to be precisely measured in practice, the fre-
quency domain approach is commonly used to identify
natural frequencies, modal damping ratios and mode
shapes of a structure from measured structural responses
without requiring the information on the external excita-
tion but assuming it to be a white noise random process.
However, this assumption is not tenable for practical input
situations such as earthquake-induce ground motion,
strong wind and impact force etc. Improper treatment of
the input excitation can thus significantly affect the iden-
tification accuracy of the structural parameters, and the
excitation itself may be of interest to the researcher in
many cases. Furthermore, the natural frequencies and
mode shapes are not sensitive indicators to the damage of
individual structural members. Thus, the simultaneous
identification of both structural parameters at the element
level and the input excitation time history in the time
domain attracts more and more attentions from
researchers and engineers.

In contrast to plenty of methods applicable for identi-
fying structural parameters when the input information is
known, there is a paucity of methods available for situa-
tion that the time history or the statistical characteristic of
the input excitation is unknown. As far as methods in time
domain are concerned, they can be categorized according
to the identification techniques involved, which are mainly
the random decrement technique (RDT), the extended
Kalman filter (EKF) and the recursive least-squares
method (RLS). The Ibrahim time domain (ITD) method
[2] can be adopted to identify the structural parameters
when free-decay response of the structure is measured.
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The free-decay response, however, is hard to be measured
for structures under operational condition. The random
decrement technique (RDT) developed by Cole [3] is
probably the most commonly used method for solving the
unknown input identification problem. Through this
method, segments of the measured responses of a linear
structure under random excitation (white noise time
series) are ensemble averaged to form a signature, which is
the representative of the free vibration decay curve of the
structures, by removing the responses due to the excitation
and the initial velocity. Vandiver et al. [4] proposed the
mathematical basis for applying the random decrement
technique and concluded that if the input excitation is a
stationary Guassian white noise process, then the ran-
domdec signatures of the displacement responses of the
system are equivalent to the free decay response of the
system. Spanos and Zeldin [5] investigated some theoret-
ical and computational issues involving in the application
of RDT. They pointed out that the randomdec signature of
a linear system is influenced by the parameters of the input
excitation and it will converge to the system’s free vibra-
tion curve with the excitation tends to be a white noise
process. Another widely used technique is the extended
Kalman filter (EKF). Hoshiya and Saito [6] developed an
approach to identify optimal structural parameters using
the extended Kalman filter by taking the system parame-
ters as unknown state variables. They [7] then used the
weighted global iteration (WGI) technique to improve the
identification accuracy of EKF, and applied the EKF-WGI
to physical parameters identification of a static finite-
element model. A further extension of this work [8] was to
identify the input seismic excitation and system parame-
ters of the shear-type building. More recently, Shi et al. [9]
successfully applied the EKF to identification problem of
single-degree-of-freedom system with unknown input.
Numerical and experimental investigation showed that the
input characteristics as well as the natural frequency and
damping parameters of the system can be accurately
estimated. The time-history of the input excitation, how-
ever, cannot be directly obtained by their approach. As for
the RLS method, Wang and Haldar [10] used it to identify
structural parameters at element level when the input
excitation is unknown. They further extended the method
by combining with the EKF-WGI technique to deal with
the situation of limited measurement data [11]. Li and
Chen [12–15] developed a different method termed sta-
tistical average algorithm based on RLS for simultaneous
identification of structural parameters and time-history of
seismic ground motion.

Most of the above-mentioned methods, however, are
generally developed for the case of ambient vibration
surveys of structure, in which environmental excitation are
considered. These methods are therefore not readily
applied to the case of forced vibration surveys of structure
system, where the structure is excited to vibration by
actuators installed on several key locations of the
structure. In this connection, this paper thus proposes a
method in time domain for simultaneous identification of
structural parameters and the time history of input exci-
tation using measurements from forced vibration surveys
of structure. With the inspiration of the previous work

[12–15], an iterative identification approach is developed
based on the least-squares technique to solve this problem.
The basic assumption of this method is that the external
forces are applied on limited number of degree-of-freedom
(DOF) of the structure and are less than the number of
DOF whose response are measured. The locations of the
applied force are known though its time history is un-
known. The spatial distribution of the external excitation
is then taken as additional information for the parameter
identification. The implementation procedure of the
proposed method is discussed in detail in the following
section. Followed are numerical investigations to evaluate
the feasibility of the method.

2
Methodology

2.1
Basic equations
Consider a discrete N DOF linear system (see Fig. 1)
whose equation of motion at certain time instant ti is given
by

M€X tið Þ þ C _X tið Þ þ KX tið Þ ¼ F tið Þ ð1Þ
where M, C, K is, respectively, the mass, damping and
stiffness matrices respectively, each of order N by N ; X, _X
and €X is the system displacement, velocity and accelera-
tion vector of order N � 1; F is the external dynamic force
applied on the system of order N � 1. The Rayleigh
damping model is adopted in this study to describe the
energy dissipation mechanism of the system. The damping
matrix is thus expressed as

C ¼ aMþ bK ð2Þ
In the traditional structural identification problem, the
mass matrix, the external excitation and the dynamic
responses are assumed to be known, while the damping
and stiffness parameters are to be identified. In this study,
the known quantities are the mass matrix and the dynamic
responses, the damping and stiffness parameters as well as
the time history of the input force are targeted.

From Eqs. (1) and (2), one has

M€X tið Þ þ aM _X tið Þ þ KX tið Þ þ bK _X tið Þ ¼ F tið Þ ð3Þ

Fig. 1. N degrees of freedom spring–mass system
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It is seen from Eq. (3) that the unknown damping
parameters a, b and the stiffness parameters in matrix K
are coupled with each other, leading Eq. (3) to be a non-
linear equation regarding to the unknown parameters. In
order to avoid solving non-linear identification problem,
Eq. (3) are rearranged into the following formulas

K X tið Þ þ b _X tið Þ
� �

¼ F tið Þ �M€X tið Þ � aM _X tið Þ ð4Þ
aM _X tið Þ þ bK _X tið Þ ¼ F tið Þ �M€X tið Þ � KX tið Þ ð5Þ
Rearrange Eq. (4), the following identification equation
can be obtained

HK tið ÞhK ¼ PK tið Þ ð6Þ
Assembling Eq. (6) at all sampling time instants ti,
i ¼ 1; . . . ; L together, one has

HKhK ¼ PK ð7Þ
in which

HK ¼ HK t1ð Þ;HK t2ð Þ; . . . ;HK tLð Þ½ �T ð8Þ
hK ¼ k1; k2; . . . ; kJ½ �T ð9Þ
PK ¼ PK t1ð Þ;PK t2ð Þ; . . . ;PK tLð Þ½ �T ð10Þ
where matrix HK contains the velocity, displacement
responses and the damping coefficient b. HK is actually a
rectangular matrix of order ðL� NÞ � J, where L is the
number of sampling points in the measured structural
response time history and J is the number of unknown
stiffness parameters. Vector h of order ðJ � 1Þ contains all
the unknown stiffness parameters, and vector PK of order
ðL� NÞ � 1 is related to the input force F, the inertia
forces and the parameter of a. In particular, for the
N-story shear building considered here, J equals N and at
any sample time instant tið1 � i � LÞ one has

PK tið Þ ¼

f1 �m1€x1 � am1 _x1

f2 �m2€x2 � am2 _x2

� � �
fN �mN€xN � amN _xN

2

66664

3

77775

N�1

ð12Þ

where xj ¼ xjðtiÞ and fj ¼ fjðtiÞ are the displacement
response and external excitation force of the jth DOF
(j ¼ 1; . . . ;N) at the time instant ti.

From, Eq. (7) the stiffness parameters can be identified
by the least-squares technique [16] as

hK ¼ HT
KHK

� ��1
HT

KPK ð13Þ

Similarly, the identification equation for damping
coefficients can be derived from Eq. (5) as

HChC ¼ PC ð14Þ
in which,

HC ¼ HC t1ð Þ;HC t2ð Þ; . . . ;HC tLð Þ½ �T ð15Þ
hC ¼ a; b½ �T ð16Þ
PC ¼ PC t1ð Þ;PC t2ð Þ; . . . ;PC tLð Þ½ �T ð17Þ
where HC is a matrix of order ðL� NÞ � 2 and vector PC is
related to the input force F, the inertia force and the spring
force. Similarly, at any sample time instant tið1 � i � LÞ
one has

HC tið Þ ¼

m1 _x1 k1 _x1 þ k2 _x1 � _x2ð Þ
m2 _x2 k2 _x2 � _x1ð Þ þ k3 _x2 � _x3ð Þ
� � � � � �

mN _xN kN _xN � _xN�1ð Þ

2

664

3

775

N�2

ð18Þ

PC tið Þ ¼

f1 �m1€x1 � k1x1 � k2 x1 � x2ð Þ
f2 �m2€x2 � k2 x2 � x1ð Þ � k3 x2 � x3ð Þ

� � �
fN �mN€xN � kN xN � xN�1ð Þ

2

664

3

775

N�1

ð19Þ
Finally, the damping parameters can be identified from
Eq. (13) by

hC ¼ HT
CHC

� ��1
HT

CPC ð20Þ
Problem faced here is that Eqs. (13) and (20) cannot be
readily solved to determine the stiffness and damping
parameters since there are unknown quantities involved in

calculating HK , HC, PK and PC. The following method is
thus suggested to deal with this problem.

2.2
Identification procedure
The identification method developed here is based on the
assumption that the locations of the external forces are
known even though their time histories are unknown. And
the number of DOF with applied force is less than the
number of DOF whose responses are measured. This
assumption reflects the situation of forced vibration sur-
vey of structure, where generally a small and often limited
number of actuators are installed on key locations of the

HK tið Þ ¼

x1 þ b _x1 x1 þ b _x1ð Þ � x2 þ b _x2ð Þ 0 ..
.

0

0 x2 þ b _x2ð Þ � x1 þ b _x1ð Þ x2 þ b _x2ð Þ � x3 þ b _x3ð Þ ..
.

0

0 0 x3 þ b _x3ð Þ � x2 þ b _x2ð Þ ..
.

0

� � � � � � � � � � � � ..
.

0 0 0 ..
.

xN þ b _xNð Þ � xN�1 þ b _xN�1ð Þ

2

6666666664

3

7777777775

N�J

ð11Þ
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structure to excite it. In this regard, the input excitation
vector F in Eq. (1) can be expressed as

F ¼ Fu; 0½ �T ð21Þ
where Fu denotes those DOFs with unknown external
excitation, and ‘0’ stands for those DOFs without applied
force. Consequently, the vector PK and PC in Eqs. (7) and
(14) can be expressed as

PK ¼ PK Fuð Þ;PK 0ð Þ½ �T ð22Þ
PC ¼ PC Fuð Þ;PC 0ð Þ½ �T ð23Þ
Noting that in Eqs. (22) and (23) only the entries PK Fuð Þ
and PC Fuð Þ are related to the unknown external force.

Using the above-mentioned equations, the implemen-
tation procedure of the suggested identification method
has been divided into the following eight steps.

Step 1: Assign initial values for the unknown structural
parameters h0

K and h0
C. For instance, let

h0
K ; h

0
C ¼ 1; 1; . . . ; 1ð ÞT, where the superscript ‘0’

denotes the number of iteration. The matrix HK and
HC are then computed by Eqs. (11) and (18) using
h0

K , h0
C and the measured responses X, _X and €X.

Step 2: Assuming first that all the damping coefficients hC

are known as h0
C , the vector PK can be computed by

Eq. (7) resulting in ~PK ¼ HKh0
K . Hereafter, symbol

‘�’ means estimated value of vector PK or PC,
whilst symbol ‘^’ denotes modified value of the
vector PK or PC .

Step 3: From Eq. (22) it is clear that the estimated vector
~PK ¼ ~PK Fuð Þ; ~PK 0ð Þ

� �T
. Note that PK 0ð Þ can be di-

rectly computed using Eq. (12) because the exter-
nal force on these DOFs are exactly zero at each
sample point. We can thus replace the estimated
value of ~PK 0ð Þ by the computed value of PK 0ð Þ
leading to the modified vector P̂K , which is

P̂K ¼ ~PK Fuð Þ;PK 0ð Þ
� �T ð24Þ

A schematic diagram of the modification process
of ~PK is shown in Fig. 2.

Step 4: Then, the structural stiffness parameters can be
estimated by the modified vector P̂K from Eq. (13)

h1
K ¼ HT

KHK

� ��1
HT

K P̂K ð25Þ

Step 5: Now, assuming that all the stiffness parameters h1
K

are known, the vector PC can be computed by
Eq. (14) resulting in ~PC ¼ HCh0

C.

Step 6: Similarly, vector ~PC consists of two parts, which is
~PC ¼ ~PC Fuð Þ; ~PC 0ð Þ

� �T
. The component ~PC 0ð Þ is

then replaced by PC 0ð Þ, which is computed from
Eq. (19) using the measured responses and the
updated stiffness parameter h1

K , giving the modified
vector P̂C

P̂C ¼ ~PC Fuð Þ;PC 0ð Þ
� �T ð26Þ

Step 7: A new estimation of the damping parameter h1
C can

be obtained by Eq. (20) as

h1
C ¼ HT

CHC

� ��1
HT

CP̂C ð27Þ

Step 8: Replace h0
K and h0

C by h1
K and h1

C in Step 1 and
repeat Steps 2–8 until the following convergence
criterion is satisfied.

max
hiter lð Þ�hiter�1 lð Þ

hiterðlÞ

����

����<e; h¼hK orhC ð28Þ

where the subscript iter stands for the current
iterative step, l means the lth element of vector h; e
is the predetermined convergence index for the
structural parameter, which is generally a small
number of the magnitude between 10�4 and 10�6.

Once the iterative procedure converges, the updated
parameter vectors identified in Step 4 and 7 give the final
identification result of all the structural parameters, whilst
the time history of the input F can be easily determined by
Eq. (1). For cases that the damping coefficients a and b are
already known, only the stiffness parameters and the input
excitation are to be identified, the identification procedure
can be adjusted by skipping Step 5 to Step 7, i.e. skipping
the steps for identifying the damping parameters. The
convergence and uniqueness of the proposed method can
be mathematically proved by the similar proof procedure
as adopted in Ref. [13] for simultaneous identification of
structural parameters and seismic ground motion. And it
will be illustrated later by the numerical examples that
convergence and uniqueness of the identification problem
can also be achieved when enough measurement data are
used.

As can be seen from the above procedure, the proposed
method is actually an iterative identification procedure that
consists of the least-squares technique for parameter
identification and a modification procedure to force the
identified force to comply with the spatial distribution of the
external force along the structure. The key point of this
method is the modification procedure as used in Steps 3 and
6, which provides a measure to convert the spatial location
of the external force into additional information for
parameter identification. The proposed method has no
limitation on the type of the external excitation. Besides, the
modification procedure is independent from the parameter
identification algorithm chose, which implies that different
parameter identification methods can be used instead of the
least-squares technique. For instance, when Eqs. (7) and
(14) became ill-conditioned due to the presence of mea-
surement noise in matrix HK and HC, direct solution to these
equations by least-squares technique may produce instable
and wrong results. In that case, regularization methods [17]Fig. 2. The modification procedure of the identified vector P
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can be used for the treatment of ill-conditioned problem
and to improve the identification accuracy.

3
Numerical examples

3.1
General
The applicability of the proposed method is demonstrated
in this section through numerical examples of a 4-DOF
undamped dynamic system, a 15-storey tall building and a
truss bridge model. For all the examples, the mass matrix
of system is assumed to be known. The theoretical
responses of all DOFs of the numerical model are first
calculated in terms of displacement, velocity and acceler-
ation using the Wilson-h method [18]. For the situation of
complete and noise-free output measurements, all these
calculated responses quantities (acceleration, velocity and
displacement) will be used by the proposed method to
identify the parameters and input excitation. On the other
hand, to simulate practical situation of incomplete and
noise-polluted output measurements, only the calculated
acceleration are taken as measurements. It is further pol-
luted by adding numerically generated zero-mean Gauss-
ian white noise time series. The noise level is controlled by
the root-mean-square ratio between the noise process and
the corresponding acceleration response time-history to be
polluted. The velocity and displacement responses at each
DOF are then obtained by integrating the contaminated
acceleration response using the SIMULINK toolbox in
MATLAB. During the numerical integration, a high-pass
filter is applied in order to remove the linear trend in the
resulting time histories. All the following calculations are
carried out on the same computational hardware platform.
Therefore, the CPU time of each case is presented to
evaluate the numerical cost of the method.

3.2
Example1: 4-DOF dynamic system under harmonic
excitation
Figure 3 shows a four-degree-of-freedom undamped
spring-mass dynamic system which is excited by actuators

on Mass2 and Mass4. The equation of motion of this
system is given as follow.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6664

3

7775

€x1

€x2

€x3

€x4

8
>>><

>>>:

9
>>>=

>>>;

þ

2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 1

2

6664

3

7775

x1

x2

x3

x4

8
>>><

>>>:

9
>>>=

>>>;

¼

0

p2ðtÞ
0

p4ðtÞ

8
>>><

>>>:

9
>>>=

>>>;

The applied forces are sinusoidal excitation, which are
p2ðtÞ ¼ 2 sinð0:8ptÞN and p4ðtÞ ¼ sinð1:2ptÞN respec-
tively. The component Fu of the input excitation vector F in
Eq. (21) is therefore Fu ¼ p2ðtÞ; p4ðtÞf g for this example.

For this example, parameter identification results of
four cases with complete and noise-free output measure-
ments are given in Table 1. It is seen from Table 1 that for
all the cases the unknown parameters can be accurately
identified by the proposed method with short duration of
measurements and very poor initial values. For Case 2,
where only 100 sampling points are used, the maximum
identification error is 0.14% for k4 and the CPU time is
8.62 sec. When more sampling points are used, as that for
Cases 1, 3, and 4, the identification accuracy can be sig-
nificantly improved to about 0.01% for all parameters and
the numerical cost can also be greatly reduced. Further-
more, different initial values are selected in Cases 2, 3, and
4, comparison between the results suggests that the pro-
posed method is robust to the initial values, which is an
attractive potential for practical application.

To learn the evolution of the identified time history of
input excitation with the iteration steps, the identified
time-histories at the 2nd and 4th DOF for Case 1 in
iterative steps 1, 22 and 66 are depicted in Fig. 4a and b
respectively. The solid line in Fig. 4 is the time history of
the actual input excitation, while the dash, dot and dash-
dot line is the identified input excitation at Steps 1, 22 and
66, respectively. Figure 4 is a double y-axis plot in which
the right y-axis corresponds to the identification results
at the first iterative step, while the left y-axis corresponds
to the results at iterative Steps 22 and 66. It is seen from
Fig. 4 that due to the poor initial guess of the parameters,
the estimated input at the Step 1 deviates from the actual
one significantly. The maximum amplitude of the inversedFig. 3. Four-degree-of-freedom dynamic system

Table 1. Identification results
with complete noise-free
measurements (Example 1)

Parameter and
its real values

Case 1 Case 2 Case 3 Case 4

h0
K ĥk h0

K ĥk h0
K ĥk h0

K ĥk

k1 1 100 1.0001 100 1.0010 )1000 1.0001 0.001 1.0000
k2 1 100 1.0000 100 1.0001 1000 1.0000 0.001 1.0000
k3 1 100 1.0000 100 1.0007 0.001 1.0000 0.001 1.0000
k4 1 100 1.0000 100 0.9986 )2000 1.0000 0.001 1.0000
CPU time 0.53 s 8.62 s 0.58 s 0.78 s
L 200 100 200 200

h0
K : Initial values of the parameters, ĥk: identified values, L: number of sampling points used,

e ¼ 10�5 for all cases
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input is about 60 times larger than that of the actual input
force. With the evolution of the iteration procedure, the
inversed input time history will gradually and steadily
approach to the real input curve, and at last overlap with
the real input when the algorithm converges.

Let us then consider the situation of incomplete and
noise-included output measurements. Table 2 shows
parameter identification results for four cases with various
measurement noise levels. In Case 1 of Table 2, the noise
level is 1% and the sampling point used is 200. It is seen
that the maximum identification error is 11.8% for this
case which is unsatisfied. In Case 2 the same noise level of
1% is considered but 900 sampling points are used. It is
seen that the identification accuracy has been significantly
improved when more sampling points are involved. The
maximum identification error is lowered to about 1.2%.
From results of other cases listed in Table 2, one may see
that the proposed method can accurately identify the

stiffness parameter using incomplete output measure-
ments with slight noise contamination.

3.3
Example 2: 15-storey high rise building
To show the feasibility of the proposed method for com-
plex structure, it is applied to an existing 15-storey high
rise building, which is idealized as 15-DOF shear building
model consisting of lumped mass and massless springs.
The concentrated mass of each story is calculated as
m1 ¼ 30� 103 kg, m2–m14 ¼ 28:896� 103 kg,
m15 ¼ 27:741� 103 kg. The elastic shear stiffness of each
story is computed as k1 ¼ 43; 051, k2 ¼ 42; 776,
k3 ¼ 42; 761, k4 ¼ 42; 536, k5 ¼ 42; 496, k6 ¼ 42; 422,
k7 ¼ 42; 398, k8 ¼ 42; 372, k9 ¼ 42; 291, k10 ¼ 42; 172,
k11 ¼ 42; 114, k12 ¼ 42; 093, k13 ¼ 41; 898, k14 ¼ 41; 649
and k15 ¼ 41; 464 kN/m, respectively. The two damping
coefficients of the Rayleigh damping model are chosen as
a ¼ 0:2936 and b ¼ 6:406� 10�3 providing approximately
5% damping ratio for the first two modes of vibration. The
structure is assumed to be excited at the top floor by a
sinusoidal force p ¼ 1000 � sinð5 � tÞ kN.

The measured dynamic responses without noise con-
tamination are first used to identify the unknown struc-
tural stiffness and damping parameters and to estimate the
time history of the input excitation. The identification
results are summarized in Table 3, in which the conditions
in Cases 1, 3 and 4 are all the same except for the initial
values for the structural parameters selected, whereas
Cases 1 and 2 are the cases using the different number of
sampling points L but with the same initial value. For all
the cases, the convergence indices e are set as 10�5. It is
seen from Table 3 that the structural parameters identified
by the proposed method are almost the same as the true
values for all the cases including Case 2 where the sample
points of only 200 are used. It can also been seen that even
for very poor initial values selected as in Case 4, the
structural parameters can be still identified. Thus, one may
conclude that the accuracy of the identification method is
not sensitive to the initial values of the structural param-
eters. For all the cases, the identified time history of the
input excitation is found the same as the actual one.

To assess the capacity of the proposed method against
the measurement noise in the response, the proposed
method is then applied to incomplete measurements
contaminated by noise. Three typical noise levels of 1%,
3% and 5% are considered. The identification results are

Fig. 4. Identified input time history at different iteration step.
a Mass2. b Mass4

Table 2. Identification results with incomplete noise-polluted measurements (Example 1)

Parameter and
its real values

Case 1 (Noise = 1%) Case 2 (Noise = 1%) Case 3 (Noise = 3%) Case 4 (Noise = 5%)

ĥk Error ĥk Error ĥk Error ĥk Error

k1 1 1.118 11.8% 0.996 0.38% 0.985 1.53% 0.975 2.53%
k2 1 1.023 2.31% 1.000 0.01% 1.003 0.25% 1.004 0.42%
k3 1 0.972 2.80% 0.994 0.63% 0.993 0.75% 0.989 1.03%
k4 1 1.122 12.2% 1.012 1.21% 1.013 1.25% 1.016 1.55%
CPU time 0.52 s 2.31 s 2.26 s 2.15 s
L 200 900 900 900

ĥk: Identified values, h0
K ¼ 100; 100; 100; 100½ �T and e ¼ 10�5 for all cases
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summarized in Table 4. From Table 4, one may see that
the proposed method can accurately identify the stiffness
parameters even though the noise contamination in the
responses reaches a 5% level. The maximum identification
error of the stiffness parameter is lower than 1%, 4% and
9% for noise level of 1%, 3% and 5%. For the damping
coefficients, the capacity of the method against noise
contamination seems to be relative weak.

It is interesting to compare the inverse input time
history of the top floor with that of the first floor on

which no external force was applied. The identified input
forces of these two floors for 5% noise level are shown in
Fig. 5, where the solid line is the actual force curve, the
dash line is the inversed curve of the first floor and the
dotted line is the identified input force time history of
the top floor. It can be seen that the inverse curve of the
top floor matches well with the actual force. Amplitude
of the inverse curve of the first floor, on the other hand,
is approximately zero compared with that of the top
floor.

Table 3. Identification results with complete and noise-free measurements (Example 2)

Real value of unknown
parameter (k� 104 kN/m)

Case 1 Case 2 Case 3 Case 4

h0 ĥ h0 ĥ h0 ĥ h0 ĥ

k1 4.3051 1E5 4.3051 1E4 4.3056 1E4 4.3051 10 4.3051
k2 4.2766 1E5 4.2776 1E4 4.2780 1E4 4.2776 10 4.2776
k3 4.2761 1E5 4.2761 1E4 4.2763 1E4 4.2761 10 4.2761
k4 4.2536 1E5 4.2536 1E4 4.2537 1E4 4.2536 10 4.2536
k5 4.2496 1E5 4.2496 1E4 4.2496 1E4 4.2496 10 4.2496
k6 4.2422 1E5 4.2422 1E4 4.2422 1E4 4.2422 10 4.2422
k7 4.2398 1E5 4.2398 1E4 4.2398 1E4 4.2398 10 4.2398
k8 4.2372 1E5 4.2372 1E4 4.2371 1E4 4.2372 10 4.2372
k9 4.2291 1E5 4.2291 1E4 4.2290 1E4 4.2291 10 4.2291
k10 4.2172 1E5 4.2127 1E4 4.2126 1E4 4.2127 10 4.2127
k11 4.2114 1E5 4.2114 1E4 4.2113 1E4 4.2114 10 4.2114
k12 4.2093 1E5 4.2093 1E4 4.2092 1E4 4.2093 10 4.2093
k13 4.1898 1E5 4.1897 1E4 4.1896 1E4 4.1898 10 4.1898
k14 4.1649 1E5 4.1648 1E4 4.1647 1E4 4.1649 10 4.1649
k15 4.1464 1E5 4.1463 1E4 4.1462 1E4 4.1464 10 4.1464
a 0.2936 1 0.2935 100 0.2934 100 0.2936 1 0.2936
b 0.0064 0.1 0.0064 100 0.0064 100 0.0064 0.1 0.0064
CPU time 725 s 3710 s 2937 s 1440 s
L 900 200 900 900

h0: Initial values of the parameters, ĥ: identified values, L: number of sampling points used, e ¼ 10�5 for all cases

Table 4. Identification results with incomplete and noise-polluted measurements (Example 2)

Real value of unknown
parameter (k� 104 kN/m)

Case 1 (Noise = 1%) Case 2 (Noise = 3%) Case 3 (Noise = 5%)

Identified Error (%) Identified Error (%) Identified Error (%)

k1 4.3051 4.2920 0.30 4.2434 1.43 4.1560 3.46
k2 4.2766 4.2647 0.30 4.2166 1.43 4.1301 3.45
k3 4.2761 4.2632 0.30 4.2155 1.42 4.1295 3.43
k4 4.2536 4.2409 0.29 4.1938 1.41 4.1088 3.40
k5 4.2496 4.2371 0.29 4.1904 1.39 4.1061 3.38
k6 4.2422 4.2299 0.29 4.1838 1.38 4.1003 3.34
k7 4.2398 4.2279 0.28 4.1823 1.36 4.0996 3.31
k8 4.2372 4.2257 0.27 4.1810 1.33 4.0992 3.26
k9 4.2291 4.2184 0.25 4.1748 1.28 4.0943 3.19
k10 4.2172 4.2031 0.23 4.1613 1.22 4.0826 3.09
k11 4.2114 4.2038 0.18 4.1646 1.11 4.0881 2.93
k12 4.2093 4.2055 0.09 4.1708 0.91 4.0981 2.64
k13 4.1898 4.1935 0.09 4.1674 0.54 4.1016 2.11
k14 4.1649 4.1786 0.33 4.1641 0.02 4.1074 1.38
k15 4.1464 4.1638 0.42 4.1567 0.25 4.1055 0.99
a 0.2936 0.2829 3.63 0.2314 18 0.1536 –
b 0.0064 0.0070 9.37 0.0089 39 0.0114 –
CPU time 2295 s 2178 s 1766 s
L 2500 2500 2500

For all cases, identical initial value of 1E5 is used for all stiffness parameter, h0
c ¼ 0:1; 0:01½ �T and e ¼ 10�5
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3.4
Example 3: truss bridge
In this example, a bridge truss supported at two ends as
shown in Fig. 6 is considered. The mass and stiffness
matrix of this structure can be computed by

K ¼
Xn

e¼1

Ke ¼
Xn

e¼1

aeLekeLT
e

M ¼
Xn

e¼1

Me ¼
Xn

e¼1

qeLemeLT
e

where, n is the number of element (n ¼ 11 for this
example), qe = mass density of truss element, ae ¼ EeAe

axial stiffness, Le = locating vector of element. ke and me

are respectively

ke ¼
1

l

C2 CS �C2 �CS

CS S2 �CS �S2

�C2 �CS C2 CS

�CS �S2 CS S2

2

6664

3

7775

me ¼
1

6

2C2 2CS C2 CS

2CS 2S2 CS S2

C2 CS 2C2 2CS

CS S2 2CS 2S2

2

6664

3

7775

where C � cos /ð Þ and S � sin /ð Þ, l = the length of the
element. The used parameters in calculating the dynamic
characteristics of this structure are listed in Table 5.

The structure is excited by f1 tð Þ and f2 tð Þ acting on node
4 and 5 in the y-direction. A proportional damping as-
sumption is used here again. The two damping coefficients
a and b are chosen as 0.9619 and 0.0024 respectively
resulting in 5% damping ration for the first two mode of
vibration. The objective is to determine the axial stiffness
(i.e. EiAi=li, see Table 5) of all members, two damping
coefficents and the time histories of f1 tð Þ and f2 tð Þ from the
response measurements.

Table 6 shows the identification results for Cases 1 to 3
with complete and noise-free output measurements, and
Case 4 with incomplete and noise-polluted output mea-
surements. It is seen from Table 6 that for situation of
noise-free and complete measurements the proposed

method can identify accurately the unknown structural
parameters with very limited number of sampling points
no matter what initial values are selected. For Case 1, the
convergence curve, which is defined as the variation of
the identified value normalized by the actual value against
the iterative number, is depicted in Figs. 7 and 8 for the
stiffness and the damping parameters respectively. It is
clearly demonstrated that with the increase of iteration
times the estimated parameters converge rapidly to the
true values. Figure 9a–c further show the identified time
histories of the external excitations applied on Nodes 4, 5
and 1 in the y-direction. The external forces identified at
Nodes 4 and 5 are found to be the same as the real input
forces, whereas the amplitude of the identified force at
Node 1, as well as that at Nodes 2 and 3, is nearly zero
compared with that of Nodes 4 and 5. Thus, the external
force time history can be accurately identified. The results
of Cases 2 and 3 support this observation. For situation of
incomplete and slight noise contamination output mea-
surements, as that of Case 4, the parameter identification
results are broadly acceptable.

4
Concluding remarks
This paper describes a time domain identification method
for simultaneously identification of structural parameters
and the time-history of the external excitation. The
proposed method is an iterative identification procedure
consisting of the least-squares technique and a modifica-
tion process between each recursive step. Numerical
simulations are carried out to evaluate the feasibility of the
proposed method. Main observations from this study are
summarized as follows:

(1) The core idea of this method is the introduction of a
modification procedure that converts the spatial

Fig. 5. Inversed time history at noise level of 5%

Fig. 6. Truss bridge model

Table 5. Structural properties of Example 3

No. of Element EiAi=li qili=6 /

1 14,142 540 p
4

2 11,000 520 0
3 16,617 530 3 p

4
4 11,500 510 0
5 15,627 550 p

4
6 10,000 560 0
7 15,627 550 3 p

4
8 11,500 510 0
9 16,617 530 p

4
10 11,000 520 0
11 14,142 540 3 p

4
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information of the external forces into a mathematical
condition to grantee the convergence of the method.
This modification procedure has no limitation on the
type of the excitation.

(2) The modification procedure is independent from the
least-square identification technique involved in the
method, which implies that other advanced identifi-
cation techniques can easily be adopted to deal with
problems such as ill-conditioning and measurement
noise.

(3) For situation of complete and noise-free output
measurements, numerical studies show that the pro-
posed method can reliably and efficiently identify both
the structural parameters and the input time history
using a short duration of measurements. Moreover,
the accuracy and convergence of the method is robust
to the initial values selected for the unknown
parameters.

(4) For situation of incomplete and noise-polluted
measurements, the stiffness parameters as well as the
input excitation can be identified satisfactorily even
with high noise level. The identification accuracy of
the damping coefficients is broadly acceptable at low
noise level, and become relative poor at high noise
level, which needs further improvements.

(5) The direct identification of the parameters and the
input excitation using output-only measurements is
quite challenging for real structures. The investigation

Table 6. Identification results for Example 3

Real value of unknown
parameter (k� 104 kN/m)

Case 1 (Noise-free) Case 2 (Noise-free) Case 3 (Noise-free) Case 4 (Noise = 1%)

h0 ĥ h0 ĥ h0 ĥ ĥ Error (%)

k2 4.3051 1 1.4142 1 1.4142 )100 1.4142 1.3021 7.93
k2 4.2766 1 1.1000 1 1.1000 )100 1.1000 0.9980 9.27
k3 4.2761 1 1.6616 1 1.6616 )100 1.6616 1.5656 5.78
k4 4.2536 1 1.1500 1 1.1500 )100 1.1500 1.0752 6.50
k5 4.2496 1 1.5626 1 1.5626 )100 1.5626 1.4884 4.75
k6 4.2422 1 1.0000 1 1.0000 )100 1.0000 0.9282 7.18
k7 4.2398 1 1.5626 1 1.5626 )100 1.5626 1.5522 0.67
k8 4.2372 1 1.1500 1 1.1500 )100 1.1500 1.0751 6.51
k9 4.2291 1 1.6615 1 1.6615 )100 1.6615 1.7695 6.50
k10 4.2172 1 1.1000 1 1.1000 )100 1.1000 1.0301 6.35
k11 4.2114 1 1.4142 1 1.4142 )100 1.4142 1.3131 7.14
a 0.9619 10 0.9619 100 0.9618 )100 0.9618 0.9181 4.55
b 0.0024 0.1 0.0024 100 0.0024 )100 0.0024 0.0027 12.5
CPU time 81.1 s 121.5 s 107.8 s 698 s
L 800 800 800 2000

h0: Initial values of the parameters, ĥ: identified values, L: number of sampling points used, e ¼ 10�5 for all cases

Fig. 7. Convergence curve for stiffness parameter. a Convergence
curve of stiffness parameter 1 to 5. b Convergence curves of
stiffness parameter 6 to 11

Fig. 8. Convergence curve of damping coefficients
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in this study brings up one possible solution of
using the spatial information of the external force
as additional optimal criterion for parameter
identification. The identification results based on the
proposed approach for numerical examples are quite

accurate or reasonable. Nevertheless, experimental
studies are needed and being made to thoroughly
evaluate its potential for practical application on real
structure.
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Fig. 9. Time–history of the inversed force at different nodes.
a Inversed input force at Node 4 in y-direction. b Inversed input
force at Node 5 in y-direction. c Inversed input forces at Node 1
in y-direction
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