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Abstract Electromagnetic devices can be analysed by the
coupled BE-FE method, where the conducting and mag-
netic parts are discretized by finite elements. In contrast,
the surrounding space is described with the help of the
boundary element method (BEM). This discretization
scheme is well suited especially for problems including
moving parts (see [12]). The BEM discretization of the
boundary integral operators usually leads to dense
matrices without any structure. A naive strategy for the
solution of the corresponding linear system would need at
least OðN2Þ operations and memory, where N ist the
number of unknowns. Methods such as fast multipole [6]
and panel clustering [9] provide an approximation to the
matrix in almost linear complexity. These methods are
based on explicitly given kernel approximations by
degenerate kernels, i.e. a finite sum of separable functions,
which may be seen as a blockwise low-rank approximation
of the system matrix. The blockwise approximant permits
a fast matrix-vector multiplication, which can be exploited
in iterative solvers, and can be stored efficiently. In con-
trast to the methods mentioned we will generate [2] the
low-rank approximant from the matrix itself using only
few entries and without using any explicit a priori known
degenerate-kernel approximation. Special emphasis is put
on the handling of symmetry conditions in connection
with ACA. The feasibility of the proposed method is
demonstrated by means of a numerical example.

Keywords Boundary element methods, low-rank
approximation, Symmetry exploitation

1
Introduction
The application of the boundary element method for the
solution of linear electromagnetic problems has many
advantages. Only the boundaries of the considered do-
mains need to be discretized, open boundary problems
pose no additional difficulties, and problems including
motion can be treated elegantly. The BE-FE coupling

procedure is elaborated in [12]. However, application of
the BEM leads to dense matrices. The storage require-
ments and computational costs are of OðN2Þ, where N is
the number of unknowns. One remedy could be the use of
an approximation algorithm with almost linear complex-
ity. Section 2 presents the adaptive cross approximation
(ACA) algorithm [13] which generates blockwise low rank
approximants for the BEM matrices without using an
explicit kernel expansion. The exploitation of symmetry is
another possibility to reduce computational costs and has
been presented in [1, 4, 5] using linear representation
theory for finite groups. The aim is a decomposition of
function spaces into orthogonal subspaces of symmetric
functions, such that each subproblem is defined on a so
called symmetry cell. The global solution can then be
reconstructed from these components. Sections 3.1–3.2
give an overview of using symmetry in FE and BE meth-
ods. Next, in Sect. 3.3 the major contribution of this paper,
a symmetry-exploiting ACA algorithm is discussed, which
not only reduces the problem size due to symmetry but
also yields additional benefit by compression of BEM
matrices and possesses an almost linear complexity w.r.t.
the number of unknowns. Numerical results obtained by
using the symmetry-exploiting ACA algorithm are
presented in Sect. 4.

2
Adaptive cross approximation
Large dense matrices coming from integral equations have
no explicit structure in general. However, it is possible to
find a permutation so that the matrix with permuted rows
and columns contains rather large blocks close to some
low-rank matrices [2, 3, 7, 8].

To find a suitable permutation, a cluster tree is con-
structed by recursively partitioning the collocation points
according to some geometrical criterion. A simple example
for such a clustering is given in Fig. 1. A large distance
between two collocation points results in a large difference
of the respective equation numbers. Next, cluster pairs
which are geometrically well separated are identified. They
will be regarded as ‘‘admissible’’ cluster pairs, i.e. the
clusters f1; 2; 3; 4; 5g and f8; 9; 10g in Fig. 1. The cluster
tree together with the set of ‘‘admissible’’ cluster pairs
allows the matrix to be split into a collection of blocks of
various sizes. The block structure for the simple example
is shown in Fig. 2. Since the off-diagonal blocks which
describe remote interactions are close to some low-rank
matrices, it might be a good idea to approximate them by
low-rank matrices. We are thus led to the following matrix
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approximation problem for the individual blocks of the
given matrix.

Given a matrix A 2 Rn�m and an accuracy e > 0, find an
approximant ~A 2 Rn�m with kA� ~AkF � ekAkF and

provide the minimal possible value for rankð~AÞ.
Here kAkF denotes the Frobenius norm of the matrix A.

The solution of this problem is given by the singular value
decomposition (SVD) of the block A

~A ¼
Xr

k¼1

rkukvT
k

where ðrk; uk; vkÞ denote the greatest singular triples of the
matrix A and the rank r is chosen so that the required
accuracy of the approximation is fulfilled.

Since the SVD requires the computation of the whole
matrix A in advance and since SVD is rather expensive
with respect to numerical work Oðn3 þm3Þ this analytical
solution is not practicable.

We now present the algorithm of ACA, which allows the
matrix A to be approximated by generating only few of its
rows and columns.

Let S0 ¼ 0, i1 ¼ 1 and for k ¼ 0; 1; 2; . . . compute

1. eT
ikþ1

Rk ¼ eT
ikþ1

A�
Pk

l¼1ðulÞikþ1
vT

l ;
2. jkþ1 : jðRkÞikþ1;jkþ1

j ¼ maxj jðRkÞikþ1;j
j;

3. vkþ1 ¼ eT
ikþ1

Rk=ðRkÞikþ1;jkþ1
;

4. ukþ1 ¼ Aejkþ1
�
Pk

l¼1ðvlÞjkþ1
ul;

5. ikþ2 : jðukþ1Þikþ2
j ¼ maxi 6¼ikþ1

jðukþ1Þij;
6. Skþ1 ¼ Sk þ ukþ1vT

kþ1:

This algorithm produces a sequence of decompositions of
the matrix A into a sum A ¼ Rk þ Sk, where Sk is a low-
rank matrix ðrankðSkÞ � kÞ and Rk denotes the error of the
approximation. It is important to remark that neither the
matrix A nor the error Rk will be computed completely. In
the first step of the algorithm the row with index ikþ1 of the
matrix A will be generated and the corresponding row of
the error Rk will be computed. During this computation
the position and the value of the maximum element in the
ikþ1�row of Rk will be determined (Step 2). This element
will be called the pivot element. In Step 3, the ikþ1-row of
Rk will be normalized and denoted by vkþ1. Since the po-
sition jkþ1 of the pivot element in the ikþ1-row of Rk is
known we are able to compute the corresponding column
of this matrix and denote it as ukþ1 (Step 4). During the
computation the position of the next pivot element in the
jkþ1 column will be fixed (ikþ2) in Step 5. The last step of
the algorithm updates the approximation Sk to Skþ1. Note
that the approximation Sk contains the exact pivot rows
and pivot columns of the matrix A for all k � 1. An
appropriate stopping criterion is given by

kukkFkvkkF � ekSkkF :

Since the matrix A will not be generated completely only
the norm of the approximation Sk is available. This norm
can be computed recursively the following way

kSkk2
F ¼ kSk�1k2

F þ 2
Xk�1

j¼1

ðuj; ukÞðvj; vkÞ þ kukk2
Fkvkk2

F :

The amount of numerical work required by the ACA
algorithm is Oðr2ðmþ nÞÞ. Thus if the numerical rank r of
the approximation remains constant (which is usually the
case) then the total numerical work for the approximation
and the memory requirements are both of the order
Oðmþ nÞ.

3
Symmetries in the boundary element methods
The exploitation of symmetry properties allows to de-
crease the dimension of the problem and therefore achieve
a significant reduction of computational costs. Symmetry
is a basic principle in nature and describes the invariane of
a problem under a certain transformation group. Several
methods have been proposed in the literature (e.g. [1, 4,
5]) which allow a reduction of the entire problem to
subproblems and following reconstruction of the global
solution.

3.1
FE domain
A (complete) geometrical symmetry of the FE domain X is
given if there exists a finite group Q of isometries of R3,
such that X is invariant under Q. For each element of the
symmetry group Q there is an orthogonal matrix Q 2 R3

Fig. 1. Clustering for a simple example with 10 collocation
points. A large distance between two collocation points results in
a large difference of the respective equation numbers

Fig. 2. The permuted matrix for the example depicted in Fig. 1
contains rather large off-diagonal blocks which describe remote
interactions and which are close to some low-rank matrices
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(i.e. QQT ¼ QTQ ¼ I) and a symmetry point x0 2 R3 such
that

x0 ¼ x0 þ Qðx� x0Þ 2 X; 8 x 2 X : ð1Þ
For the sake of simplicity we assume in the sequel x0 ¼ 0.
For a symmetric problem only a part, the so called sym-
metry cell C � X, needs to be discretized and considered.
C is the smallest subdomain which generates the entire
domain X under the action of the symmetry group.

In the FE domain we consider the Coulomb gauged
~A� / formulation [12]

curl m curl ~A� grad m0 div ~A ¼ ~jE;

div ~jE ¼ 0 ;

where ~A is the magnetic vector potential, m the field
dependent reluctivity and ~jE the eddy current density

~jE ¼ �rðot
~Aþ grad /Þ :

The electrical conductivity is denoted by r and the electric
scalar potential by /. For x0 ¼ Qx the potentials satisfy the
condition

~Aðx0Þ ¼ Q~AðxÞ;
/ðx0Þ ¼ /ðxÞ :
Hence, the symmetry condition

~A
/

� �
ðx0Þ ¼ Q 0

0 1

� �
~A
/

� �
ðxÞ

should be taken into account when setting up the FEM
equation system and reconstructing the global solution.

3.2
BE domain
In this subsection we consider most simple case when the
system matrix A can be renumbered and partitioned into
m�m blocks structure having blocks of size exactly
n ¼ N=m. This is the case for a piecewise constant dis-
cretization scheme, where N is the number of unknowns,
m is the size of the symmetry group and n is the number of
unknowns in each symmetry cell. Let

Ch ¼
[NEl

j¼1

Cj

be a union of boundary elements Cj approximating a given
surface C ¼ oX and

f/j; j ¼ 1; . . . ;Ng ð2Þ
a system of ansatz functions having a compact support

supp /j � Ch :

The usual form of the entries of the collocation BEM
matrix is as follows

aij ¼
Z

Ch

Kðx; yiÞ/jðxÞdFx; i; j ¼ 1; . . . ;N : ð3Þ

Thus the full BEM matrix requires N2 memory units.
Using the symmetry of the problem is one of the obvious

possibilities for reducing computer memory consumption.
Several symmetry conditions should be fulfilled to yield a
really effective procedure.

Besides the geometrical symmetry of X we require the
geometrical symmetry of its boundary C, i.e. for the
symmetry mappings Q from above holds

x0 ¼ Qx 2 C; 8 x 2 C : ð4Þ
For smooth surfaces Ch the condition (4) implies the
following connection of unit normal vectors to Ch at x
and x0 ¼ Qx

Qnx ¼ nQx ¼ nx0 ; 8 x 2 Ch : ð5Þ
The system of boundary elements, collocation points and
the ansatz functions (2) have discretization symmetry if
there is a permutation fr1; . . . ; rNg of the index set
f1; . . . ;Ng with the following properties

Qyi ¼ yri ; i ¼ 1; . . . ;N ; ð6Þ

Qðsupp /jÞ ¼ supp /rj
; j ¼ 1; . . . ;N ; ð7Þ

/jðxÞ ¼ /jðQTx0Þ ¼ /rj
ðx0Þ ¼ /rj

ðQxÞ;

8 x 2 supp /j; j ¼ 1; . . . ;N :
ð8Þ

The permutation fr1; . . . ; rNg offers the possibility for
renumbering unknowns corresponding to the symmetry of
the problem:

f1; 2; . . . ;N=2; r1; r2; . . . ; rN=2g ; ð9Þ
where the pairs ði; riÞ are arbitrarily chosen from the set

f1; . . . ;Ngnf1; 2; . . . ; i� 1; r1; r2; . . . ; ri�1g :
The problem has the symmetry of the kernel if the
function Kðx; yÞ features the following property

Kðx; yÞ ¼ Kððx� y; x� yÞ; ðx� y; nxÞÞ : ð10Þ

Lemma 1 The symmetrical BEM discretization (6)–(8) of
the geometrically symmetrical problem (5) having sym-
metrical kernel (10) leads, by the numbering of unknowns
corresponding to (9), to the following property of the
matrix A in (3):

aij ¼ arirj
; 8 i; j : ð11Þ

Proof. Definition (3) leads after substitution (4) to

aij ¼
Z

supp /j

Kðx; yiÞ/jðxÞdFx

¼
Z

Qðsupp /jÞ

KððQTx0 � yi;Q
Tx0 � yiÞ; ðQTx0 � yi; nxÞÞ

� /jðQTx0ÞdFx0

¼
Z

supp /rj

Kððx0 � Qyi; x
0 � QyiÞ; ðx0 � Qyi;QnxÞÞ

� /rj
ðx0ÞdFx0
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¼
Z

supp /rj

Kððx0 � yri
; x0 � yri

Þ; ðx0 � yri
; nx0 ÞÞ

� /rj
ðx0ÞdFx0 ¼ arirj

;

where the properties (5)–(8) have been used.

Since rri
¼ i for all i the property (11) implies

airj
¼ arij; 8 i; j :

Thus the system of linear equations of the symmetrical
BEM takes the following block-circulant form

A11 A12

A12 A11

� �
u1

u2

� �
¼

b1

b2

� �
; ð12Þ

where the vectors u1, u2, b1 and b2 have half of the initial
dimension.

If the problem possesses more than one symmetry then
the same procedure can be applied for each block of the
matrix (12) and the system obtains the more general
block-circulant form

A1 A2 . . . Am

Am A1 . . . Am�1

. . . . . . . . . . . .

. . . . . . . . . . . .

A2 A3 . . . A1

0
BBBBB@

1
CCCCCA

u1

u2

. . .

. . .

um

0
BBBBB@

1
CCCCCA
¼

b1

b2

. . .

. . .

bm

0
BBBBB@

1
CCCCCA

: ð13Þ

Thus only the basis matrices A1;A2; . . . ;Am should be
generated and stored. The amount of numerical work and
of memory will therefore be reduced from N2 to N2=m.
This factor can be very useful for practical computations.
The numerical solution of the system of linear equations
having a block-circulant matrix can also be implemented
much more efficiently than a straightforward direct elim-
ination method which would lead to OðN3Þ arithmetical
operations [16]. The main property of the circulant
matrices

A ¼

a1 a2 a3 . . . am�1 am

am a1 a2 a3 . . . am�1

am�1 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . a2

a2 a3 . . . am�1 am a1

0
BBBBBBBB@

1
CCCCCCCCA

2 Cm�m

is that all of them are simultaneously diagonalized by the
matrix of the discrete Fourier transform Fm:

A ¼ 1

m
FmKF�m; K ¼ diagðFmaÞ;

fk;l ¼ xðk�1Þðl�1Þ
m ¼ ei2p

mðk�1Þðl�1Þ :

ð14Þ

The most simple nontrivial circulant matrix

J ¼

0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 . . . 1

1 0 0 . . . 0

0
BBBBBBB@

1
CCCCCCCA

has the following eigenvalues

K ¼ diag xl�1
m ; l ¼ 1; . . . ;m

� �
:

Using the Kronecker product � of matrices we rewrite the
block-circulant matrix A of the system (13) in the form
(cf. (14))

A ¼
Xm

k¼1

Jk�1 � Ak ¼
1

m

Xm

k¼1

ðFmKk�1F�mÞ � Ak ;

where the dimension of the matrices Ak is now n ¼ N=m.
Since

FmF�m ¼ F�mFm ¼ Im

and using the known property of the Kronecker product

ðA� BÞðC � DÞ ¼ ðACÞ � ðBDÞ
we obtain

ðF�m � InÞAðFm � InÞ ¼
Xm

k¼1

Jk�1 � Ak

¼ m
Xm

k¼1

Kk�1 � Ak :

The system (13) can now be rewritten in the block-
diagonal form

D1 0 . . . 0

0 D2 . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 . . . Dm

0
BBBBB@

1
CCCCCA

~u1

~u2

. . .

. . .

~um

0
BBBBB@

1
CCCCCA
¼

~b1

~b2

. . .

. . .
~bm

0
BBBBB@

1
CCCCCA

; ð15Þ

where

Dl ¼
Xm

k¼1

xðl�1Þðk�1Þ
m Ak 2 Cn�n ð16Þ

and

~u ¼ ðF�m � InÞu; ~b ¼ ðF�m � InÞb :

Thus the following algorithm has been derived (similar to
proposed in [1])

1. Compute all basis matrices Ak; k ¼ 1; . . . ;m
2. Compute

~b ¼ ðF�m � InÞb
using n Fast Fourier Transforms (FFT).

3. For l ¼ 1; . . . ;m
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3.1 Generate the matrix

Dl ¼
Xm

k¼1

xðl�1Þðk�1Þ
m Ak

3.2 Solve the system

Dl ~ul ¼ ~bl

4. Compute

u ¼ 1

m
ðFm � InÞ~u

using n FFT’s.

The straightforward implementation of this algorithm
leads to Oðmn2Þ operations and memory units in Step 1,
Oðn logðmÞÞ operations in Step 2, Oðmn2Þ operations and
memory units in Step 3.1, Oðmn3Þ operations for solving
all systems in Step 3.2 and finally Oðnm logðmÞÞ opera-
tions in the last Step 4. Thus Step 3.2 is the most
expensive and defines the final amount of numerical work
for the whole algorithm Oðmn3Þ ¼ OðN3=m2Þ. This
amount remains of the same capital order of OðN3Þ, but it
is reduced by a remarkable factor m2 which can be 64 for a
domain which is symmetrical with respect to the reflec-
tions over all three coordinate planes – as we will consider
in the next section.

3.3
Symmetry of excitation and symmetry-exploiting ACA
In the BE domain the equation

D~A ¼ �l0
~jS

is to be solved, where ~A is the Coulomb gauged magnetic
vector potential and ~jS is an impressed source current
density. This vector equation decouples into three scalar
Laplace equations for the Cartesian components of ~A, so
that we are left with the equation system (13).

Electromagnetic devices often possess the symmetry of
excitation, which means, that the symmetry mappings Q
fulfill

~jSðQxÞ ¼ Q~jSðxÞ; 8 x 2 C : ð17Þ
In case of an excitation symmetry we don’t perform the
Fourier transform as described in the previous section but
simplify the equation system (13) in a different way. As a
consequence from (17) we obtain a linear dependency of
the components of the r.h.s. in (13)

b2 ¼ a2b1; . . . ; bm ¼ amb1 with a2; . . . ; am 2 R :

Thus the equation system can be reduced for each po-
tential component (Ax, Ay and Az) to one subsystem of
dimension N=m, where N is the total number of unknowns
per potential component. Since the excitation symmetry
can differ for different potential components, there are up
to three subsystems to be solved. Let Dx, Dy and Dz be the
corresponding system matrices, which can be calculated as
linear combination of basis matrices A1; . . . ;Am. Thus the
exploitation of the excitation symmetry leads to reduction
of computational costs from N2 to at most 3N2=m2.

Instead of assembly of Dx, Dy and Dz from A1; . . . ;Am

during the matrix computation we could compute and

store the basis matrices A1; . . . ;Am and perform the
assembly during the matrix-vector product. This is of
course not reasonable in full computation of matrices.
However, when applying the ACA method the individual
approximation and storage of all m basis matrices is rea-
sonable, because most of them can be approximated very
efficiently. The assembly of the system matrices by means
of linear combination is carried out in the matrix-vector
multiplication. Due to the almost linear complexity of the
ACA algorithm [2] the size of a compressed matrix Aj is
approximately cjN=m, where cj is some constant depend-
ing on geometry and accuracy of the approximation. Thus
the memory requirements for the entire system matrix
consisting of A1; . . . ;Am as well as the costs of matrix-
vector multiplication amount to approximately cN with
c ¼

Pm
j¼1 cj=m. Numerical results presented in the next

section show the almost linear behaviour of the method
w.r.t. the number of unknowns N .

4
Numerical results
Electromagnetic devices can be analysed by the coupled
BEM–FEM method, where the conducting and magnetic
parts are discretized by finite elements. In contrast, the
surrounding space is described with the boundary element
method. This discretization scheme is well suited for
problems including moving parts and has been described
in detail elsewhere [10–12].

For numerical tests we consider TEAM workshop
problem 10 [14] (TEAM = Testing Electromagnetic Anal-
ysis Methods). An exciting coil is set between two steel
channels, and a steel plate is inserted between the chan-
nels. The geometry is symmetrical with respect to all three
coordinate planes. In order to examine the behaviour of
the ACA algorithm and the Full BEM method when
exploiting symmetries, we consider along with the full
mesh three further meshes exploiting one, two and all

Fig. 3. TEAM problem 10. An exciting coil is set between two steel
channels, and a steel plate is inserted between the channels. This
geometry is symmetrical with respect to all coordinate planes
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three symmetries respectively (Fig. 3). Additionally, for
each mesh of this mesh sequence we gradually perform
two mesh refinements to show the linear behaviour of the
ACA algorithm with respect to the problem size. Thus we
obtain three mesh sequences with altogether 12 meshes.
Hexahedral second order FEM elements (20 nodes) are
used in connection with rectangular second order BEM
elements (8 nodes).

In the case when there are some fixed collocation points
(e.g. points on a symmetry face in case of a mirror sym-
metry), the size of each subblock in (13) is close to, but not
exactly equal to, n ¼ N=m and the matrices Dx, Dy, Dz for
the single layer potential become singular. However, the
global system has a unique solution [1]. There are several
methods to handle the subsystems via regularization or via
projections proposed in [1]. Since in our solver no
inversion of approximated matrices takes place, also

singular matrices can be handled and the unique global
solution can still be reconstructed without further
difficulties.

TEAM problem 10 is treated as a magnetostatic problem
(for details see [15]). In all computations we set the ACA
accuracy e ¼ 10�4. The problem is solved using both the
ACA algorithm and the Full BEM method. Table 1 shows
for both algorithms the memory requirement of BEM
matrices as well as the CPU time needed for the solution.
All values refer to a 450-MHz Sun Ultra workstation. We
compared the average flux density in the center of the
inner steel plate ( �Bz ¼ 1:663 T) with measurements
( �Bz ¼ 1:654 T) [15] and found good agreement. The
difference of the computed flux densities with and without
ACA is neglectable (D �Bz � 3 	 10�4 T).

One can observe for any kind of symmetry that the
growth of the problem size due to the mesh refinements

Table 1. Resources needed for
the ACA and the Full BEM.
Both methods have been com-
pared on three different mesh
sequences. The ACA accuracy
has been set at 10)4

Mesh No symmetry 1 symmetry 2 symmetries 3 symmetries
m = 1 m = 2 m = 4 m = 8

Coarse n = 4230 n = 2287 n = 1164 n = 596
ACA 59.5 Mb 38.1 Mb 18.8 Mb 9.2 Mb

847 s 447 s 254 s 117 s
Full BEM 273.0 Mb 159.6 Mb 62.0 Mb 16.2 Mb

567 s 213 s 72 s 25 s

Medium n = 8142 n = 4399 n = 2234 n = 1131
ACA 157.3 Mb 94.1 Mb 46.1 Mb 22.2 Mb

1648 s 903 s 468 s 251 s
Full BEM 1011.6 Mb 590.6 Mb 228.5 Mb 58.5 Mb

3087 s 1148 s 315 s 82 s

Fine n = 16902 n = 8795 n = 4438 n = 2246
ACA 416.1 Mb 231.5 Mb 112.1 Mb 54.0 Mb

3770 s 1902 s 1024 s 508 s
Full BEM 4359.1 Mb 2360.6 Mb 901.7 Mb 230.9 Mb

– – 1893 s 411 s

Fig. 4. Memory requirements
(left) and CPU times (right)
versus problem size for fixed
mðm ¼ 4Þ and variable mesh

Fig. 5. Memory requirements
(left) and CPU times (right)
with respect to the symmetry
for variable m and fixed mesh
(medium discretization)

428



results in a linear growth of the memory consumption and
the CPU time for the ACA algorithm. Figure 4 shows the
comparison between the ACA and the Full BEM for one
kind of symmetry. Although the ACA algorithm is slower
for coarse meshes, its linear complexity makes it superior
for large n.

Now we examine the effect of the symmetry exploita-
tion. It is clear that the profit using Full BEM should be of
order Oðn2Þ whereas the memory requirement and CPU
time reduction using ACA is expected to be linear.
Figure 5 shows the behaviour of the memory usage and
CPU time for the medium mesh sequence. As mentioned
above in the case of ACA the individual approximation
and storage of all m basis matrices will be performed. The
relative size of the basis matrices resulting from the single
layer potential is shown in Table 2. The assembly of the
system matrices by means of linear combination is carried
out in the matrix-vector multiplication.

The full BEM method performs the assembly of Dx, Dy,
Dz during the matrix computation. The number of dif-
ferent matrices depends on the kind of geometrical and
excitational symmetry. For the TEAM 10 example it holds
that Dx ¼ Dy ¼ Dz in the case without symmetry,
Dx 6¼ Dy ¼ Dz in the case of one symmetry, and three
different matrices arise in case of two or three symmetries.
For this reason the curve corresponding to the total
memory requirements of the Full BEM method in Fig. 5
does not actually decrease like Oðn2Þ but the memory
requirements for each single matrix do.

The numerical example considered here exhibits the
property of excitation symmetry. Note that in the general
case of non-symmetric excitation the memory require-
ments would decrease linearly w.r.t the size m of the
symmetry group, as can be seen from the Eq. (15), and
therefore like OðnÞ.

5
Conclusions
The memory requirement as well as the computational
time for the solution of electromagnetic problems can be
reduced by application of the ACA algorithm or by
exploitation of symmetry. Whereas the latter method still
possesses the complexity OðN2Þ, the ACA algorithm shows
almost linear behaviour with respect to the number of
unknowns N . The combination of both methods gives the
possibility for the asymptotically optimal and practically
feasible solution of electromagnetic problems.
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Table 2. Relative size of BEM
matrices coming from the
single layer potential for the
medium mesh sequence. The
percentage gives the compres-
sion rate obtained by the ACA
algorithm for each individual
submatrix using the approx-
imation accuracy � ¼ 10�4.
Submatrices which involve
transformed nodes show a very
good compression

Matrix No symmetry 1 symmetry 2 symmetries 3 symmetries
m = 1 m = 2 m = 4 m = 8
n = 8142 n = 4399 n = 2234 n = 1131

A1 12.5% (63.2 Mb) 15.4% (22.7 Mb) 20.5% (7.8 Mb) 32.8% (3.2 Mb)
A2 – 10.1% (14.9 Mb) 12.9% (4.9 Mb) 18.4% (1.8 Mb)
A3 – – 8.7% (3.3 Mb) 12.3% (1.2 Mb)
A4 – – 6.3% (2.4 Mb) 8.2% (0.8 Mb)
A5 – – – 6.1% (0.6 Mb)
A6 – – – 5.1% (0.5 Mb)
A7 – – – 5.1% (0.5 Mb)
A8 – – – 3.1% (0.3 Mb)

Total memory 63.2 Mb 37.6 Mb 18.4 Mb 8.9 Mb
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