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Abstract A novel meshfree weak–strong (MWS) form
method is proposed based on a combined formulation of
both the strong-form and the local weak-form. In the MWS
method, the problem domain and its boundary is repre-
sented by a set of distributed points or nodes. The strong
form or the collocation method is used for all nodes whose
local quadrature domains do not intersect with natural
(Neumann) boundaries. Therefore, no numerical integra-
tion is required for these nodes. The local weak-form,
which needs the local numerical integration, is only used
for nodes on or near the natural boundaries. The locally
supported radial point interpolation method and the
moving least squares approximation are used to construct
the meshfree shape functions. The final system matrix will
be sparse and banded for computational efficiency.
Numerical examples of two-dimensional solids are pre-
sented to demonstrate the efficiency, stability, accuracy
and convergence of the proposed meshfree method.

Keywords Computational mechanics, Strong-form, Weak-
form; Meshfree method, Meshless method, Collocation
method, Numerical analysis

1
Introduction
In recent years, meshfree or meshless methods have been
developed and used to solve partial differential equations
(PDE). More and more researchers are devoting them-
selves to the research of the meshfree methods, due to the
fact that there are still many difficult issues to be solved. A
detailed review of meshfree methods can be found in the
recent monograph by Liu (2002). Meshfree methods can be
largely categorized into two major categories (Liu, 2002):
meshfree methods based on strong forms (or short for
meshfree strong-form methods), such as the meshfree
collocation method (Zhang et al. 2001; Zong, 2003), and
meshfree methods based on the weak forms (or short for
meshfree weak-form methods), such as the element-free
Galerkin (EFG) method (Belytschko et al. 1994), the point

interpolation method (PIM) (Liu and Gu 2001a), etc. There
are also meshfree methods based on the integral repre-
sentation method for functional approximations, such as
the particle methods, many of which are introduced in the
book of Liu and Liu (2003).

The meshfree strong-form method has a long history of
development. Compared with meshfree weak-form
method, the meshfree strong-form method has following
attractive advantages:

1) It is simple to implement;
2) It is computationally efficient;
3) It is the truly meshless method without using any mesh

for both field variable approximation and integration.

Because of the above advantages, meshfree strong-form
methods have been successfully used in computational
mechanics. For example, they have been widely used in the
analysis for problems of fluid mechanics. However,
shortcomings of meshfree strong-form methods are also
very obvious. They are often unstable and less accurate,
especially for problems governed by partial differential
equations with Neumann (derivative) boundary condi-
tions, such as solid mechanics problems with stress
(natural) boundary conditions. In the direct meshfree
strong-form methods, Neumann boundary conditions are
satisfied using a series of separate equations, which are
different with the governing equations in the problem
domains. The error induced from the boundaries cannot
be efficiently controlled in meshfree strong-form methods.
Hence, meshfree strong-form methods are unsuccessful in
applications of solid mechanics.

On the other hand, meshfree weak-form methods are
also proposed and developed. They are included: the dif-
fuse element method (DEM) (Nayroles et al. 1992), the
EFG method (Belytschko et al. 1994), the PIM (Liu and Gu
2001a), and so on. The following advantages of meshfree
weak-form methods are very attractive.

1) They exhibit very good stability and excellent accuracy.
The reason is that the weak form can smear the error
over the integral domain and control the error level.

2) The Neumann (natural) boundary conditions can be
naturally satisfied by the weak form (hence, the stress
boundary conditions are often called the natural
boundary conditions in these methods).

Therefore, meshfree weak-form methods have been suc-
cessfully applied in problems of solid mechanics. However,
in particular, the above-mentioned meshfree weak-form
methods are ‘‘meshless’’ only in terms of the interpolation
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of the field variables, as compared to the usual FEM. Most
of them have to use background cells to integrate a weak
form over the global problem domain. The numerical
integration makes them computationally expensive, and
the background mesh for integration is responsible for not
being ‘‘truly’’ meshless. In order to alleviate the global
integration background mesh, a group of meshfree meth-
ods based on the local Petrov-Galerkin weak forms (or
short as meshfree local weak-form methods) are proposed
and developed, such as the meshless local Petrov-Galerkin
(MLPG) method (Atluri and Zhu, 1998, 2002; Atluri et al.
1999; Gu and Liu 2001a,c), the method of finite spheres
(De and Bathe 2000), the local Boundary Integral Equation
(LBIE) method (Zhu et al. 1998), the local point interpo-
lation method (LPIM) developed based on the idea of
MLPG (Gu and Liu 2001b; Liu and Gu 2001b,c; Liu et al.
2002), and so on.

In these meshfree local weak-form methods, local weak
forms integrated in a regular-shaped local domain are
used. The local integral domain can be as simple as pos-
sible (such as circles, ellipses, rectangles, or triangles in
2-D; spheres, rectangular parallelepipeds, or ellipsoids in
3-D) and can be automatically constructed. These mesh-
free local weak-form methods have obtained satisfactory
results in analyses of solid mechanics and fluid mechanics
(Atluri and Zhu 1998, 2000; Atluri et al. 1999; Gu and Liu
2001a,b,c; Wu et al. 2002).

However, the local weak form used in meshfree local
weak-form methods can only solve a part problem of the
numerical integration in meshfree weak-form methods.
The numerical integration is still a burden for nodes on or
near the boundaries with a complex shape. The local
integration may be also computationally expensive for
many practical problems.

The meshfree strong-form methods and the meshfree
local weak-form methods have their own advantages and
their own shortcomings in the same time. A question
will be naturally asked ‘‘can we couple the local weak-
form with the strong-form together in a proper manner
to fully take their advantages and avoid their disad-
vantages and how?’’ Liu and Gu (2002) wanted to find a
answer for this question. This paper addresses this
question in details.

Close examination of the meshfree strong-form method
and the meshfree local weak-form method, reviews the
following facts.

1) The implementation scheme of these two types of
meshfree methods is very similar. They all construct
and assemble discrete equations node-by-node.

2) If the delta function is used as the weight function in the
meshfree local weak-form method, it becomes the
meshfree strong-form method.

3) In the meshfree strong-form method, the instability and
computational error is mainly induced by the natural
boundary condition. On the contrary, the natural
boundary condition can be easily and exactly enforced
using the local weak form.

4) The number of nodes on the natural boundary is less
than that of the internal nodes and nodes on the
essential boundary. In the meshfree local weak-form

method, the most computational cost of numerical
integrations comes from the integration of internal
nodes and nodes on the essential boundary.

The above properties provide us a possibility to com-
bine the local weak form and the strong form together
to fully take their advantages and avoid their disad-
vantages. In this paper, a novel meshfree method, the
meshfree weak–strong (MWS) form method, is proposed
based on a combined formulation of both the strong
and the local weak forms. In the MWS method, the
problem domain and its boundary is represented by a
set of distributed points or nodes. The strong form or
collocation method is used for all nodes whose local
quadrature domains do not intersect with natural
boundaries. Therefore, there are no numerical integra-
tions at all for these nodes. The local weak form is only
used for nodes on or near the natural boundaries. The
natural boundary conditions can then be easily imposed
to produce stable and accurate solutions. The locally
supported radial point interpolation method (RPIM) and
the moving least squares (MLS) approximation is used
to construct the shape functions. Numerical examples of
two-dimensional solids are presented to demonstrate the
efficiency, stability and accuracy of the proposed MWS
method.

2
Meshfree shape function construction
A number of ways to construct shape functions have been
proposed. In this section, a briefing of RPIM and MLS is
given. More details can be found in the book by Liu (2002)
that introduces standard ways for creating different types
of shape functions as well as their properties. It should
mention here that RPIM and MLS denote two techniques
to construct meshfree shape functions.

2.1
Radial basis point interpolation method (RPIM)
RPIM interpolation form is written as:

uhðxÞ ¼
Xn

i¼1

RiðrÞai þ
Xm

j¼1

pjðxÞbj ð1Þ

with the constraint condition

Xn

i¼1

pijðxÞai ¼ 0; j ¼ 1 . . . m ð2Þ

where RiðrÞ is the radial basis functions (RBF), n is the
number of nodes in the neighborhood of x;pjðxÞ is
monomials in the space coordinates xT ¼ ½x; y�;m is the
number of polynomial basis functions, coefficients ai and
bj are interpolation constants. In the radial basis function
RiðrÞ, the variable is only the distance, r, between the
interpolation point x and a node xi.

There are a number of radial basis functions. Char-
acteristics of radial functions have been widely investi-
gated (Powell 1992; Wendland 1998; Liu 2002). In this
paper, the following Multi-quadrics (MQ) radial basis is
used.
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RiðxÞ ¼ ðr2
i þ C2Þq ð3Þ

There are two parameters (C and q) will influence the
performance of RPIM using the MQ radial basis function.
C is defined as

C ¼ a0di ð4Þ
where a0 is a dimensionless coefficient chosen, and di is a
parameter of the nodal distance. For the regularly dis-
tributed nodal case, di is the shortest distance between
node i and neighbor nodes. Effects of a0 and q have been
studied in detail in Liu’s book (2002). In static analysis of
2-D solids, it has been found that a0 ¼ 1:0 and q ¼ 1:03
lead to good results for most problems considered (Liu
2002). Hence, a0 ¼ 1:0 and q ¼ 1:03 will also be used in
this paper.

The second term of Eq. (1) consists of polynomials. To
ensure invertible interpolation matrix of RBF, the poly-
nomial that is added into RBF cannot be arbitrary (Scha-
back and Wendland 2000; Cheng et al. 2003). A low degree
polynomial is often needed to augment RBF to guarantee
the non-singularity of the matrix. Because of the charac-
ters of the MQ RBF that is used in the following com-
puting, the linear polynomial can ensure an invertible
interpolation matrix of RBF. In addition, the linear poly-
nomial added into the RBF can also ensure linear consis-
tence and improve the interpolation accuracy (Liu 2002).
Hence, the linear polynomial can be added into the MQ
RBF.

Coefficients ai and bi in Eq. (1) can be determined by
enforcing Eq. (1) to be satisfied at the n nodes surround-
ing point x. Equation (1) can be re-written in matrix form
as follows

u
0

� �
¼ R0 Pm

PT
m 0

� �
a
b

� �
¼ Ga0 ð5Þ

where

PT
m ¼

1 1 � � � 1

x1 x2 � � � xn

y1 y2 � � � yn

2
64

3
75;

R0 ¼

B1ðr1Þ B2ðr1Þ � � � Bnðr1Þ
B1ðr2Þ B2ðr2Þ � � � Bnðr2Þ
� � � � � � � � � � � �

B1ðrnÞ B2ðrnÞ � � � BnðrnÞ

2
6664

3
7775 ð6Þ

aT
0 ¼ ½a1; a2; � � � ; an; b1; b2; b3; � ð7Þ

Because the matrix R0 is symmetric, the matrix G will also
be symmetric. In order to avoid computing inversion
matrix G�1, the following algorithm to solve Eq. (5) can be
used. From Eq. (1), we have

a ¼ R�1
0 ue � R�1

0 Pmb ð8Þ
Substituting of the above expression into Eq. (2) gives

b ¼ Sbue ð9Þ
where

Sb ¼ ½PT
mR�1

0 Pm��1PT
mR�1

0 ð10Þ

Substituting Eq. (9) back into Eq. (8), we obtain

a ¼ Saue ð11Þ
where

Sa ¼ R�1
0 ½1� PmSb� ð12Þ

The interpolant Eq. (1) is finally expressed as

uðxÞ ¼ ½RTðxÞSa þ pTðxÞSb�ue ¼ UðxÞue ð13Þ
where the shape function UðxÞ is defined by

UðxÞ ¼ ½/1ðxÞ;/2ðxÞ; � � � ;/nðxÞ� ¼ RTðxÞSaþ pTðxÞSb

ð14Þ
Mathematicians have proven the existence of the radial
interpolation for arbitrary scattered nodes (Schaback and
Wendland 2000). Therefore, RPIM usually has no inter-
polation singularity problem.

It can be found from above discussion that RPIM passes
through the nodal values. Therefore, RPIM shape
functions given in Eq. (14) satisfy the Kronecker delta
condition. Thus,

/iðxjÞ ¼ dij ¼
1 i ¼ j

0 i 6¼ j

(
ð15Þ

2.2
Moving least squares (MLS) approximation
The MLS interpolant (Lancaster and Salkauskas 1986)
uhðxÞ is defined in the domain X by

uhðxÞ ¼
Xm

j¼1

pjðxÞajðxÞ ¼ pTðxÞaðxÞ ð16Þ

where m is the number of basis functions, the coefficient
ajðxÞ in Eq. (16) is also functions of x; pðxÞ is the poly-
nomial basis; a(x) is obtained at any point x by mini-
mizing a weighted discrete L2 norm of:

J ¼
Xn

i¼1

wðx� xiÞ½pTðxiÞaðxÞ � ui�2 ð17Þ

where n is the number of nodes in the neighborhood of x
for which the weight function wðx� xiÞ 6¼ 0, and ui is the
nodal value parameter of u at x ¼ xi.

Using the stationarity condition for J with respect to
a(x), we can solve a(x). And then, substituting it into
Eq. (16), we have

uhðxÞ ¼
Xn

i¼1

/iðxÞui ð18Þ

where the MLS shape function /iðxÞ is defined by

/iðxÞ ¼
Xm

j¼1

pjðxÞðA�1ðxÞBðxÞÞji ð19Þ

where A(x) and B(x) are the matrices defined by

AðxÞ ¼
Xn

i¼1

wiðxÞpTðxiÞpðxiÞ; wiðxÞ ¼ wðx� xiÞ

ð20Þ
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BðxÞ ¼ ½w1ðxÞpðx1Þ;w2ðxÞpðx2Þ; . . . ;wnðxÞpðxnÞ�
ð21Þ

It can be found from above discussion that the MLS
approximation does not pass through the nodal values.
Therefore the MLS shape functions given in Eq. (19) do
not, in general, satisfy the Kronecker delta condition.

3
Strong–weak form for 2-D solids
Consider the following two-dimensional problem of solid
mechanics in a domain X bounded by C, as shown in
Fig. 1:

rij;j þ bi ¼ 0 in X ð22Þ
where rij is the stress tensor, which corresponds to the
displacement field ui; bi is the body force tensor, and ðÞ;i
denotes o=oxi. The boundary conditions are given as
follows:

rijnj ¼ �tti on the natural boundary Ct ð23Þ
ui ¼ �uui on the essential boundary Cu ð24Þ
in which the �uui and �tti denote the prescribed displacements
and tractions, respectively, and nj is the unit outward
normal to domain X.

3.1
Strong form for internal nodes and nodes
on essential boundaries
As shown in Fig. 1, the problem domain and boundaries
are represented by properly scattered nodes. The key idea
of the MWS method is that in establishing the discrete
system equations, both the strong form and the local weak
form are used for the same problem, but for different
nodes. In Fig. 1, Xq is the local quadrature domain for a
field node. If Xq does not intersect with the natural
boundaries, the strong form is used for this node. Other-
wise, the local weak form is used.

For an internal node or a node on the essential
boundary, whose local quadrature domain does not
intersect with the natural boundary, the following strong
form is used.

E

1� m2

o2u

ox2
þ 1� m

2

o2u

oy2
þ o2v

oxoy

� �
þ bx ¼ 0

E

1� m2

o2v

oy2
þ 1� m

2

o2v

ox2
þ o2u

oxoy

� �
þ by ¼ 0

ð25Þ

where E and m are Young’s modulus and Poisson ratio, bx

and by are body forces at x direction and y direction,
respectively.

3.2
Local weak form for nodes on natural boundaries
A generalized local weak form of the partial differential
Equation (22), over a local quadrature domain Xq boun-
ded by Cq, can be obtained using the weighted residual
methodZ

Xq

wiðrij;j þ biÞdX�
Z

Cqu

awiðui � �uuiÞdC ¼ 0 ð26Þ

where wi is the weight function. It should note here that
the last term in (26) is to enforce the essential boundary
condition. If RPIM shape functions are used, this term
does not need. However, if MLS shape functions are used,
this term is necessary.

The first term on the left hand side of Eq. (26) can be
integrated by parts to becomeZ

Cq

wirijnj dC�
Z

Xq

ðwi;jrij � wibiÞdX

�
Z

Cqu

awiðui � �uuiÞdC ¼ 0 ð27Þ

The local quadrature domain Xq of a node xi is a domain in
which wiðxÞ 6¼ 0. An arbitrary shaped local quadrature do-
main can be used. A circle or rectangular quadrature do-
main is used in this paper for convenience. It can be found
that the boundary Cs for the local quadrature domain usu-
ally comprises three parts: the internal boundary Cqi, the
boundaries Cqu and Cqt , over which the essential and natural
boundary conditions are specified. Imposing the natural
boundary condition and noticing that rijnj ¼ ou=on � ti

into Eq. (27), it is obtained thatZ

Csi

witi dCþ
Z

Csu

witi dCþ
Z

Cst

wi�tti dC

�
Z

Xs

ðwi;jrij � wibiÞdX�
Z

Cqu

awiðui � �uuiÞdC ¼ 0

ð28Þ
And then, we can obtainZ

Xq

wi;jrij dXþ
Z

Cqu

awiui dC�
Z

Csi

witi dC�
Z

Csu

witi dC

¼
Z

Cst

wi�tti dCþ
Z

Xs

wibi dXþ
Z

Cqu

awi �uui dX

ð29Þ

Fig. 1. To analyze a problem using MWS: the local support
domain Xs, local quadrature domain Xq
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Using Eq. (28) for any node xi, instead of dealing with a
global boundary value problem, the problem becomes a
localized boundary value problem over a local quadrature
domain. In the present formulation, the equilibrium
equation and boundary conditions are satisfied in all local
quadrature domains Xq and on their boundary Cq. Al-
though the quadrature domains affect the solution, as long
as the union of all the local quadrature domains covers the
global domain X, the equilibrium equation and the
boundary conditions will theoretically be satisfied in the
global domain X and in its boundary C (Atluri and Zhu
1998; Liu and Gu 2001b).

The test (weight) function plays an important role in the
performance of the local weak form. Theoretically, any
weight function is acceptable as long as the condition of
continuity is satisfied. However, it has been found that test
functions which decrease in magnitude with increasing
distance from the sampling point xQ to the node xi yield
better results. Therefore, test functions, which only depend
on the distance between the two points, are considered.
Following the idea of the Galerkin FEM, the test functions
can also be constructed by RPIM or MLS (Liu 2002). In
order to simplify, we can deliberately select the test
functions such that they vanish over Cqi, although it is not
necessary. This can be easily satisfied using the following
4th-order spline weight function.

wiðxÞ ¼ 1� 6 di

rw

� �2
þ8 di

rw

� �3
�3 di

rw

� �4
0 � di � rw

0 di � rw

(

ð30Þ
where di ¼ jxQ � xij is the distance from node xi to point
xQ, and rw is the size of the support for the weight
function. Hence, Eq. (29) can be simplified because the
integration along the internal boundary Cqi vanishes.
Equation (29) can be re-written as:
Z

Xq

wi;jrij dXþ
Z

Cqu

awiui dC�
Z

Cqu

witi dC

¼
Z

Cqt

wi�tti dCþ
Z

Xq

wibi dXþ
Z

Cqu

awi �uui dX ð31Þ

3.3
Discrete formulations and the numerical implementations
The global problem domain X is represented by distrib-
uted nodes. Using RPIM equation (13) or MLS equaton
(18), respectively, we can get

uðxÞ ¼
u

v

� �
¼
Xn

j¼1

/j 0

0 /j

" #
uj

vj

( )
¼
Xn

j¼1

Ujuj

ð32Þ
where ue is the vector of nodal displacements, w is the
matrix of shape functions. Substituting Eq. (32) into the
strong form, Eq. (25) and local weak form (29) for all
nodes leads to the following discrete equations

KU ¼ F ð33Þ

where U is the vector of displacements for all nodes in the
entire problem domain. K and F are defined as

Kij ¼

R

Xq

v
_T

i ðx; xiÞDBjðxÞdX�
R
Cqi

w
_ðx; xiÞNDBjðxÞdC

�
R

Cqu

w
_ðx; xiÞNDBjðxÞdC

þa
R

Cqu

w
_ðx; xiÞUjðxÞdC; XqðxiÞ \ Ct 6¼ ;

LTDL UjðxiÞ; XqðxiÞ \ Ct ¼ ;

8
>>>>>>>>>><

>>>>>>>>>>:

ð34Þ

FiðtÞ ¼
Z

Cqt

w
_ðx; xiÞ�tt dCþ

Z

Cq

w
_ðx; xiÞb dX

þ a
Z

Cqu

w
_ðx; xiÞ�uu dC; Xqðx�uuÞ \ Ct 6¼ ; ð35Þ

with w
_ðx; xiÞ being the value of the weight function matrix,

corresponding to node i, evaluated at the point x;Uj is the
matrix of shape functions, and

N ¼ nx 0 ny

0 ny nx

� �
; ð36Þ

BjðxÞ ¼
/j;xðxÞ 0

0 /j;yðxÞ
/j;yðxÞ /j;xðxÞ

2
4

3
5 ; ð37Þ

w
_ðx; xiÞ ¼

w
_ðx; xiÞ 0

0 w
_ðx; xiÞ

" #
; ð38Þ

v
_

i
ðx; xiÞ ¼

w
_

i;xðx; xiÞ 0

0 w
_

i;yðx; xiÞ
w
_

i;yðx; xiÞ w
_

i;xðx; xiÞ

2
64

3
75 ð39Þ

where (nx; ny) is the unit outward normal to the boundary
Cq; L is the differential operator matrix, D is the
stress–strain matrix as given in follows.

L ¼

o
ox 0

0 o
oy

o
oy

o
ox

2
64

3
75; ð40Þ

D ¼ E

1� v2

1 v 0
v 1 0
0 0 ð1� vÞ=2

2
4

3
5 ; for plane stress

ð41Þ

From Eq. (34), it can be easily seen that the system ‘‘stiff-
ness matrix’’ K in the present methods is banded because
the support domain is compact. However, K is usually
asymmetric. The asymmetry is caused by the use of the
weak–strong forms. In addition, the asymmetric boundary
integration of K in Eq. (34) also leads to asymmetry of K.

For nodes are located on the natural boundaries, the
local weak forms are used. Therefore, as shown in Fig. 1,
for a node xi, there exist two local domains:

6



a) the local quadrature domain Xq for node xi (size rq) for
numerical integration;

b) the support domain Xs for xQ (size rs) for construction
shape functions.

These two local domains are independent. The size of the
local quadrature domain (rq) for node i and the size of the
support domain (rs) are defined as

rq ¼ aqdi ð42Þ
rs ¼ asdi ð43Þ
where, aq and as are coefficients chosen. di is a parameter
of the distance between the node i and neighbor nodes.

For internal nodes that use the strong forms, as shown
in Fig. 1, there is only one local domain: the support do-
main Xs, needed. The size of the local support domain has
been defined in Eq. (43).

Although a part of nodes need numerical integrations
and integrations in the present method are only performed
in regular-shaped local quadrature domains, attentions are
still needed to obtain the exact numerical integration. The
Xq is divided into small regular partitions and sufficient
Gauss quadrature points should be used in each small
partition. A detailed discussion of local numerical inte-
grations can be seen in the book of Liu (2002).

3.4
The flowchart
The flowchart of the MWS method can be given briefly as
follows:

4
Numerical examples
Several numerical examples of two-dimensional
elastostatics are studied to examine the efficiency and
performance of the MWS method.

It should be noted here that there is a locking problem in
the incompressible case when m � 0:5. As one of advantages
for mesh-free method (e.g. EFG), it has been claimed that
the mesh-free methods are locking-free in incompressible

analysis. However, these conclusions were drawn primarily
by only studying the analysis results of a few example
problems and not considering the inf-sup condition. Re-
cently, it has been reported that the mesh-free method (e.g.
EFG) does indeed suffer from locking in incompressible
deformations. De and Bathe (De and Bathe 2001) found this
problem and studied it in very detail (Bathe 2001; De and
Bathe 2001). However, in our studies, m ¼ 0:25 or m ¼ 0:3 is
used in the following numerical examples. Hence, incom-
pressible conditions are not considered.

4.1
Standard patch test
The first numerical example is the standard patch test.
Three patches shown in Fig. 2 are tested. Figure 2a shows
a patch with 15 irregular distributed nodes. Figure 2b
shows a patch of 25 nodes including nine irregularly-
placed interior nodes. Figure 2c shows a patch of 55 nodes
including 39 irregularly distributed internal nodes.

The dimensions of these patch tests are listed in figures.
The parameters are taken as E ¼ 1:0 and m ¼ 0:3. In these
patch tests, the displacements are prescribed on all outside
boundaries by a linear function of x and y:

ui ¼ xi þ yi; vi ¼ xi � yi ; ð44Þ
Satisfaction of the patch test requires that the displace-
ment of any interior node be given by the same linear
functions and that the strains and stresses be constant in
the patch. Because there is no natural boundary in the
patch test, all nodes use strong forms to construct the
system equation. as ¼ 1:6 (defined in Eq. (43)) is used for
the support domain. Both RPIM (added linear polynomial
terms) and MLS shape function are used.

The MWS method can exactly pass all patch tests. If
RPIM shape functions are used, the relative displacements
error less than 10�15. If MLS shape functions are used, the
relative displacements error, which is mainly affected by
the penalty coefficient chosen for the enforcement of
essential boundary conditions, less than 10�6.

It should be mentioned here the requirements for the
numerical method based on the weak -strong forms to
pass the patch test are listed as follows (Liu 2002):

1) The shape functions are of at least linear consistency;
2) The essential boundary conditions have to be accurately

imposed;
3) Accurate numerical operations are required, such as the

numerical integration.

The last requirement can be easily satisfied in the present
method. All nodes use strong forms to construct system
equation. No numerical integrations are used at all. The
accurate numerical operations can be easily ensured.

RPIM (added the linear polynomial term) and MLS
shape functions can satisfy the first requirement easily
because linear polynomials are included in the basis.
Without linear terms, RPIM shape functions do not satisfy
the first requirement. Hence, it will leads to error in these
patch tests.

RPIM shape function can also satisfy the third
requirement, as it possesses the Kronecker delta function
property. However, the MLS shape function has no delta

1 loop over all nodes of the problem domain
2 construct the local quadrature domain for the node i
3 if the local quadrature domain intersects with the natural

boundaries, then
3.1 loop over quadrature points xQ in the local quadrature

domain
a. compute shape function based on the local support

domain;
b. evaluate contributions to equation using the local weak

form;
3.2 end loop of local quadrature domain
3.3 go to 1

4 else, if the local quadrature does not intersect with the
natural boundaries, then

4.1 compute shape function based on the local support
domain;

4.2 evaluate contributions to equation using the strong
form;

4.3 go to 1
5 end loop for nodes
6 solve system equation to get results.
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function properties. The second requirement cannot be
exactly satisfied when MLS shape function is used. The
penalty method is used in this paper to enforce the
essential boundary conditions. Although MWS can pass
the standard patch test, the penalty method will induce to
numerical error. Hence, for the standard patch test prob-
lem, the error of MWS using MLS is larger than that of
MWS using RPIM.

4.2
Higher-order patch test
In the above examples, there is no natural boundary
condition. Hence, no local weak-form is used. In order to
test the efficiency of the combination of weak–strong
forms, the following high-order patch tests are studied.

As shown in Fig. 3, a patch is subjected to two types of
loading at the right end.

1) Case 1: a uniform axial stress of unit intensity is applied
on the right end. The exact solution for this problem
with E ¼ 1 and v ¼ 0:25 is:

ui ¼ xi; vi ¼ yi=4 ; ð45Þ

2) Case 2: a linearly varying normal stress is applied on the
right end. The exact solution for this problem with
E ¼ 1 and v ¼ 0:25 is:

ui ¼ xy=3; vi ¼ �ðx2 þ y2=4Þ=3 ; ð46Þ
For construction of shape functions, the support
domains in RPIM and MLS with as ¼ 2:5 are used. It
can be found that case 1 is passed exactly by the presented
MWS method using both RPIM (added the linear poly-
nomial terms) and MLS. In the case 1, it demonstrates that
the MWS method exactly implement the natural (force)
boundary condition and lead to an exact solution for this
problem whose analytical displacement solution is a
linear function.

The computational results for case 2 are shown in
Table 1. In the analysis of case 2, the second order (m ¼ 6)
basis is used in MLS and the linear polynomial is added in
RPIM. It can be seen that there exist error in solving the
case 2 by the MWS method using both RPIM and MLS
shape functions.

The reason for the computational error mainly comes
from the errors of numerical implementations: the
numerical integrations. In order to study the effect of
numerical integration, two different sizes of quadrature
domains are used and listed in Table 1. It can be found
that the error will decrease when a lager quadrature

Fig. 3. A higher-order patch and regular nodal distribution

Fig. 2. Patch tests a a patch with 15
irregular nodes b a patch with 25
irregular nodes c a patch with 55
irregular nodes
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domain is used. When aq ¼ 1:0, the local quadrature
domain is too small to smears the error along the natural
boundary. It can also be found that the accuracy of the
solution improves with the improvement of the numerical
integration by use of more Gauss quadrature points and
sub-divisions for integration.

The irregularly distributed nodes, as shown in Fig. 4,
are also used. Results are listed in Table 2. It can be found
that the MWS method can obtain good results for this
irregularly nodal distribution.

For comparison, results by local radial point interpo-
lation method (LRPIM) and MLPG methods, which are
meshfree local weak-form methods using local weak forms
for all field nodes, are also obtained and listed in Tables 1
and 2. It can be seen that LRPIM and MLPG methods
usually lead to more accurate results than the MWS
method because of the higher accuracy of the weak form
method.

The purely meshfree collocation method that uses
strong forms for all nodes is also used to get results for the
high order patch test. It has been found that the colloca-

tion method can also get satisfactory results for the case 1,
whose force boundary condition is simple. However, it
leads to big errors (> 15%) for the case 2. Displacement
results of irregular nodes using meshfree collocation
method and RPIM is also listed in Table 2. The error is
more than 40%. The solution of the collocation method is
also instable. It is sensitive to the nodal distribution and
computational parameters. The error and instability
mainly come from the error of the implementation of the
complex force boundary condition in the case 2. Com-
pared with the purely collocation method, the present
MWS method has good accuracy and stability for this high
order patch test.

Results of several meshfree methods above used for
patch tests are summarized in Table 3.

4.3
Cantilever beam
The cantilever beam shown in Fig. 5 is considered. The
beam is of length L and height D subjected to a parabolic
traction at the free end. The beam has a unit thickness and
a plane stress problem is considered. This is a benchmark
problem because the analytical solution is available. The
analytical displacements are given by

ux ¼ �
Py

6EI
ð6L� 3xÞxþ ð2þ mÞ y2 � D2

4

� �� �
ð47Þ

uy ¼ �
P

6EI
3my2ðL� xÞ þ ð4þ 5mÞD2x

4
þ ð3L� xÞx2

� �

ð48ÞFig. 4. The irregular nodal distribution for the high order
patch test

Table 2. Relative errors (%) of
ux at point A for higher-order
patch test case 2 (using irre-
gular nodes)

Exact MWS
(RPIM)

LRPIM Collocation
(RPIM)

MWS
(MLS)

MLPG

u )6.00 )6.38 )5.95 )8.78 )5.97 )5.98
Error / 6.49% )0.81% 46.60% )0.39% )0.29%
v )12.18 )13.23 )12.02 )16.20 )12.16 )12.17
Error / 8.58% )1.41% 49.30% )0.16% )0.16%

Table 1. Relative errors (%)
of ux at point A for higher-
order patch test case 2 (using
regular nodes)

aq ¼ 1:0 aq ¼ 1:5

u v u v

MWS (RPIM) )6.68 (11.36%) )13.79 (13.17%) )6.09 (1.64%) )12.57 (3.15%)
LRPIM )6.40 (6.71%) )13.10 (7.48%) )6.07 (1.21%) )12.54 (2.92%)
MSW (MLS) )5.95 ()0.75%) )12.11 ()0.61%) )5.97 ()0.45%) )12.14 ()0.38%)
MLPG )5.95 ()0.72%) )12.12 ()0.57%) )5.98 ()0.24%) )12.16 ()0.19%)
Exact )6.00 )12.18 )6.00 )12.18

Table 3. Summarization of
patch tests Standard patch test Higher-order patch

test (case 1)
Higher-order patch
test (case 2)

MWS(RPIM) Pass Pass Pass with small error
MWS(MLS) Pass Pass Pass with small error
LRPIM Pass Pass Pass with small error
MLPG Pass Pass Pass with small error
Collocation method Pass Pass Cannot pass
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The stress components can also be obtained. The param-
eters are taken as E ¼ 3:0� 107; m ¼ 0:3;D ¼ 12; L ¼ 48,
and P ¼ 1000. Both regular and irregular distributions of
nodes as shown in Fig. 6 are employed. In the analyses of
this beam, the second order (m ¼ 6) basis is used in MLS
and the linear polynomial is added in RPIM.

(a) Numerical results
Figure 7 shows a comparison of the analytical solution and
the MWS solution for the beam deflection along the x -axis.
The plot shows excellent agreement between the analytical
and numerical results. Figures 8 and 9 illustrates the com-
parison between the stresses rx and sxy at the section
x ¼ L=2 calculated analytically and using the MWS

methods using regular 189 nodes. Very good agreement is
observed. The irregularly distributed nodes are also used to
obtain the solutions. Figure 10 illustrates the comparison
between the shear stress sxy at the section x ¼ L=2 calcu-
lated analytically and using the MWS methods. Again, very
good agreement is observed for these irregular distributions
of nodes.

The meshfree collocation method that uses purely
strong forms is also used to get results for this problem. It
has been found that the collocation method leads to big
errors for this problem. It even fails for the irregular nodal
distribution. The solution of the collocation method is also
instable. Compared with the purely collocation method,
the present MWS method has good accuracy and stability
for this problem.

Fig. 5. A cantilever beam and boundary conditions

Fig. 6 a Regular distribution of nodes for cantilever beam.
b Irregular distribution of nodes for cantilever beam

Fig. 7. Displacement ðuyÞ of the beam along y ¼ 0 using 189
regular nodes

Fig. 8. Stress ðrxxÞ of the beam along x ¼ L=2 using 189 regular
nodes

Fig. 9. Stress ðsxxÞ of the beam along x ¼ L=2 using 189 regular
nodes

Fig. 10. Stress ðsxxÞ of the beam along x ¼ L=2 using 189 irreg-
ular nodes
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For the error analysis, the following energy norm is
defined as the error indicator, as the accuracy in strain or
stress is much more critical than the displacements.

ee ¼
Z

X

ðeLPIM � eEXACTÞTDðeLPIM � eEXACTÞdX

8
<

:

9
=

;

1=2

ð47Þ

(b) Convergence study
The convergences of MWS are studied. Regularly distrib-
uted 18 (3 � 6), 55 (5�11), 112(7�16), 189 (9� 21) and
403(13� 31) nodes are used. The convergence curves with
node refinement are shown in Fig. 11. For comparison, the
convergence curves for LRPIM and MLPG are also plotted
in the same figure. In LRPIM and MLPG methods, all
nodes use local weak forms. The h is equivalent to the
maximum element size (in x direction) in the FEM analysis
in this case. The convergence rates, R, are also given in
Fig. 11. The convergence rate is computed via linear
regression. From Fig. 11, we can get:

1) Using local weak forms for all nodes, LRPIM and MLPG
have better accuracy than the MWS methods. It is be-
cause the using strong-forms in the MWS methods will
slightly decrease the accuracy.

2) Using MLS, the MWS method has very good convergence
rate and the accuracy. Compared with MLPG, MWS with
MLS has nearly same convergence and accuracy.

3) The convergence process of MWS using RPIM is not
good although the accuracy is acceptable.

The properties of MQ RPIM have been studied by Gu and
Liu (2003) in details. It has been found that purely MQ
RBF cannot always ensure to exactly reproduce a linear
field function. This could be one of the major reasons for
the poor h-convergence in using MQ RBF for field variable
interpolations. Another reason for a bad convergence is
the shape parameters chosen in RBFs. When a proper

parameter (C in MQ) is used, the convergence will be
improved. Unfortunately, there is no theoretical best value
for this parameter. Using MQ RPIM, a strong-form
method is more sensitive for the shape parameters than a
weak-form method. This is reason that the meshfree weak-
form method using RPIM (e.g. LRPIM) usually has good
convergence and the MWS method has bad convergence.

To improve the convergence of the MWS based on
RPIM, another RBF (e.g. Gaussian RBF, the compactly
supported RBFs, etc.) could be used to obtain good h
convergence in the future work. However, to find an effi-
cient method to improve the convergence of the RBF
interpolations is still an open issue. Some further research
is needed about improvement of convergence of the MWS
method based on the RPIM.

(c) Efficiency of MWS
In the efficiency study, regularly distributed 55, 189 and
403 nodes are used. The support domain with as ¼ 3:0 is
used to construct shape functions. The CPU time of MWS,
LRPIM and MLPG are listed in Table 4. Form this table, it
can be found that MWS uses much more less CPU time
than LRPIM and MLPG, respectively.

The computational cost must be considered together
with the accuracy. A successful numerical method should
obtain high accuracy at a lower computational cost. The
error–computation time curves of MWS are obtained and
plotted in Fig. 12. For comparison, the curve of LRPIM
and MLPG is also computed and plotted in the same fig-
ure.

It should be noted that the computational cost of a
meshfree method mainly comes from three parts:

1) The first part is the cost of interpolation, which mainly
comes from computing the inverse of the moment
matrix.

2) The second part is the numerical integrations, which
mainly determined by the number of Gauss points used.

3) The third part is the cost to solve the finial discrete
system equation, which depends on the maximum
bandwidth of the global stuffiness matrix.

In our study, the size of the support domain is kept always
same. Hence, the cost of the third part is same for MWS,
LRPIM and MLPG.

From Fig. 12, the following remarks can be observed:

a) The MLS approximation has better efficiency than
RPIM (Liu 2002). Hence, MWS with MLS and MLPG
have better efficiency than MWS with RPIM and
LRPIM, respectively.

b) For a desired accuracy (such as 10�1 error), the cost of
MWS methods is lower than corresponding local
meshfree methods.

In the MWS method, numerical integrations of a big
part of nodes are avoided by the use of the strong form.
The more nodes are used to discretize the problem
domain, the bigger proportion of nodes use the strong
form to avoid numerical integrations. For example, in
the case of 403 nodes, less than 150 (one-third) nodes
use local weak form. Numerical integrations of two-
third of nodes are avoided. The saving of computational

Fig. 11. Convergence in energy norm
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cost is considerable. In addition, using the strong form
can also save some computational cost for the inter-
polation because less interpolation points are used.

c) For a given cost (say 20s or 100s), the accuracy of MWS
is the better than corresponding local meshfree meth-
ods.

Summarizing the above discussions, one can conclude that
the efficiencies of MWS methods are better than corre-
sponding local meshfree methods.

Compared with a standard FEM, much more field nodes
are usually used in the mesh-free interpolations. The
mesh-free interpolation in MWS requires much more
computational cost than FEM. In addition, the coefficient
matrix in the MWS method is usually asymmetric. In the
meantime, the bandwidth of the coefficient matrix in the
MWS method is much bigger than that in FEM. Hence, the
MWS method is computationally more expensive than
FEM. In fact, the computational efficiency is a common
issue for most of mesh-free methods. Further research is
necessary to improve the efficiency of mesh-free methods.

4.4
Hole in an infinite plate
Consider now a plate with a central circular hole:
x2 þ y2 � a2, subjected to a unidirectional tensile load of
1.0 in the x-direction as shown in Fig. 13. Due to sym-
metry, only the upper right quadrant of the plate is
modeled. Plane strain conditions are assumed, and the
material constants are E ¼ 1:0� 103, and m ¼ 0:3. Sym-
metry conditions are imposed on the left and bottom
edges, and the inner boundary of the hole is traction free.
The exact solution for an infinite plate with a central

circular hole is available. Traction boundary conditions
given by the exact solution (Liu and Gu 2001a) are im-
posed on the right (x ¼ 5) and top (y ¼ 5) edges. This
problem has more complex natural boundary conditions
than the beam problem.

The nodal arrangement of 165 nodes is shown in
Fig. 14. It is found that the results for the displacements
are identical. As the stresses are more critical, detailed
results of stresses are presented here. The stress rxx at
x ¼ 0 obtained using the MWS is shown in Fig. 15. It can
be observed from Fig. 15 that the MWS method yields
satisfactory results for this problem considered.

It should mention here that it is very difficult to
theoretically prove the stability of the MWS method due

Fig. 12. Computational cost vs. accuracy

Table 4. CPU time (s)*
MWS(RPIM) LRPIM MWS(MLS) MLPG

55 nodes 43.7 50.1 2.1 2.1
189 nodes 66.7 310.6 7.3 9.6
403 nodes 123.1 822.7 13.8 24.8

*System: DataMini PC, Intel Pentium 4 CPU 1.80 GHz

Fig. 13. A plate with a central hole subjected to a unidirectional
tensile load

Fig. 14. Nodes and boundary conditions in a plate with a central
hole subjected to a unidirectional tensile load in the x direction
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to the complexity. Hence, the stability of the MWS
method has been demonstrated by some numerical
examples. However, these examples are simple bench-
mark problems. Further studies of the stability of the
present MWS method are required, especially to find a
theoretical proof.

5
Remarks
A novel meshfree method, the meshfree weak-strong
(MWS) form method, is proposed based on a combined
formulation of both the strong and local weak forms. The
strong form or the collocation method is used for all nodes
whose local quadrature domains do not intersect with
natural (Neumann) boundaries. Therefore, no numerical
integration is required for these nodes. The local Petrov-
Galerkin weak-form, which needs the local numerical
integration, is only used for nodes on or near the natural
boundaries. The natural boundary conditions can then be
easily imposed to produce stable and accurate solutions.
Numerical examples have demonstrated the effectiveness
for elastostatics of the present MWS method. Compared
with other meshfree methods, the present MWS method is
an improvement for the following reasons:

(a) In MWS, the strong form and local weak form are
novelly combined together.

(b) MWS is an efficient meshless method based on the
least mesh.

(c) The MWS method fully plays the advantages of
meshfree methods based on the strong form and the
weak form. It is more accurate and stable than mesh-
free methods based on the strong form. In the mean-
time, it is more efficient than meshfree methods based
on the weak form.

(d) Numerical examples demonstrate that the present
method is very easy to implement, and very flexible
and efficient for calculating displacements and stresses
of desired accuracy in solids.

As an efficient meshfree method, the present MWS method
opens an alternative avenue to develop adaptive analysis

codes for stress analysis in solids and structures. Of
course, further research work is needed to improve it.
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