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Abstract This paper presents two new interaction inte-
grals for calculating stress-intensity factors (SIFs) for a
stationary crack in two-dimensional orthotropic func-
tionally graded materials of arbitrary geometry. The
method involves the finite element discretization, where
the material properties are smooth functions of spatial
co-ordinates and two newly developed interaction inte-
grals for mixed-mode fracture analysis. These integrals can
also be implemented in conjunction with other numerical
methods, such as meshless method, boundary element
method, and others. Three numerical examples including
both mode-I and mixed-mode problems are presented to
evaluate the accuracy of SIFs calculated by the proposed
interaction integrals. Comparisons have been made
between the SIFs predicted by the proposed interaction
integrals and available reference solutions in the literature,
generated either analytically or by finite element method
using various other fracture integrals or analyses. An
excellent agreement is obtained between the results of the
proposed interaction integrals and the reference solutions.

Keywords Crack, Orthotropic functionally Graded
materials, Finite element method, Stress-intensity factor,
J-integral, Interaction integral

1
Introduction
In recent years, functionally graded materials (FGMs) have
been introduced and applied in the development of
structural components subject to non-uniform service
requirements. FGMs, which possess continuously varying
microstructure and mechanical and/or thermal properties,
are essentially two-phase particulate composites, such as
ceramic and metal alloy phases, synthesized such that the
composition of each constituent changes continuously in
one direction, to yield a predetermined composition pro-
file [1]. Even though the initial developmental emphasis of
FGMs was to synthesize thermal barrier coating for space

applications [2], later investigations uncovered a wide
variety of potential applications, including nuclear fast
breeder reactors [3], piezoelectric and thermoelectric
devices [4–6], graded refractive index materials in audio-
video disks [7], thermionic converters [8], dental and
medical implants [9], and others [10]. The absence of
sharp interfaces in FGM largely reduces material property
mismatch, which has been found to improve resistance to
interfacial delamination and fatigue crack propagation
[11]. However, the microstructure of FGM is generally
heterogeneous, and the dominant type of failure in FGM is
crack initiation and growth from inclusions. The extent to
which constituent material properties and microstructure
can be tailored to guard against potential fracture and
failure patterns is relatively unknown. Such issues have
motivated much of the current research into the numerical
computation of crack-driving forces and the simulation of
crack growth in FGMs.

Analytical work on functionally graded materials begins
as early as 1960 when soil was modeled as a non-homoge-
neous material by Gibson [12]. Thereafter, extensive re-
search on various aspects of isotropic FGMs fracture under
mechanical [13–15] or thermal [16–22] loads has been
carried out by various investigators. Crack problems under
both mode-I [23, 24] and mixed mode [25, 26] loading
conditions were studied using finite element method (FEM)
and J�k -integral method. Gu et al. [27] presented a simplified
method for calculating the crack-tip field of FGMs using the
equivalent domain integral technique. Bao and Wang [28]
studied multi-cracking in an FGM coating. Bao and Cai [29]
studied delamination cracking in a functionally graded
ceramic/metal substrate. Kim and Paulino [26] evaluated
the mixed-mode fracture parameters in FGMs using FEM
analysis with three different approaches: the path-inde-
pendent J�k -integral method, the modified crack-closure
integral method, and the displacement correlation tech-
nique. In the J�k -integral method [16, 26], there is need to
perform integration along the crack face of the disconti-
nuity (e.g., in calculating J�2 ). Recently, Rao and Rahman
[30] developed two new interaction integrals in conjunction
with the element-free Galerkin method for mixed-mode
fracture analysis in isotropic FGM. Dolbow and Gosz [31]
have also derived a similar path independent interaction
integral method. However, most analytical methods
reviewed above are developed to quantify crack-driving
force in isotropic FGMs.

Given the nature of processing techniques, graded
materials can become anisotropic. For example, graded
materials processed by a plasma spray technique generally
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have a lamellar structure [32], whereas processing by
electron beam physical vapor deposition would lead to a
highly columnar structure [33]. Such materials would not
be isotropic, but orthotropic with material directions that
can be considered perpendicular to one other as an initial
approximation. Gu and Asaro [34] performed theoretical
studies on a four-point bend specimen consisting of or-
thotropic FGMs with a fluctuating Poisson’s ratio. Ozturk
and Erdogan [35, 36] used integral equations to investigate
mode-I and mixed-mode crack problems in an infinite
nonhomogeneous orthotropic medium with the crack
aligned with one of the material directions, and a constant
Poisson’s ratio. Recently, Kim and Paulino [37] employed
the FEM for fracture analysis of orthotropic FGMs involv-
ing the modified crack-closure (MCC) and the displacement
correlation technique (DCT). Hence, there is considerable
interest in developing efficient method for extracting
appropriate crack-driving force in orthotropic FGMs.

This paper presents two new interaction integrals for
calculating the fracture parameters of a stationary crack in
orthotropic FGM of arbitrary geometry. This method
involves FEM, where the material properties are smooth
functions of spatial co-ordinates and two newly developed
interaction integrals for mixed-mode fracture analysis. In
conjunction with the proposed method, both mode-I and
mixed-mode two-dimensional problems have been solved.
Three numerical examples are presented to evaluate the
accuracy of SIFs calculated by the proposed method.
Comparisons have been made between the SIFs predicted
by the proposed method and the existing results available
in the current literature.

2
Crack tip fields in orthotropic FGM
Consider a plane problem in rectilinear anisotropic elas-
ticity. The basic equations that describe the deformation of
anisotropic materials are the same as those for isotropic
materials except for the adoption of a generalized Hooke’s
law. The most general anisotropic form of linear elastic
stress-strain relation is given by

eij ¼ Sijklrkl ði; j; k; l ¼ 1; 2; 3Þ ð1Þ
where rkl is the stress tensor, eij is the strain tensor, and
Sijkl is the fourth-order compliance tensor. Due to the
symmetry of rkl and eij, 81 independent components of the
compliance tensor reduces to 36 independent components.
The existence of a strain energy function provides a fur-
ther reduction in the number of independent components
to 21 ðSijkl ¼ SklijÞ. In order to represent Sijkl in compact
form, a contracted notation aij is introduced as follows:

ei ¼
X6

j¼1

aijrj i; j ¼ 1; 2; . . . ; 6 ð2Þ

where aij are compliance coefficients with aij ¼ aji and

e1 ¼ e11; e2 ¼ e22; e3 ¼ e33;

e4 ¼ 2e23; e5 ¼ 2e13; e6 ¼ 2e12

r1 ¼ r11; r2 ¼ r22; r3 ¼ r33;

r4 ¼ r23; r5 ¼ r13; r6 ¼ r12 :

ð3Þ

At each point through the thickness of transversely isotropic
materials there is a plane of material symmetry that runs
parallel to the plane of the problem. For this special case, the
compliance coefficients in Eq. (2) can be reduced to depend
upon six independent elastic constants, aij i; j ¼ 1; 2; 6 for

plane stress conditions and bij ¼ aij � ai2aj3

a33
i; j ¼ 1; 2; 6 for

plane strain conditions.
Figure 1 shows a crack tip that is referred to the

Cartesian coordinate system in orthotropic FGMs. Two
dimensional anisotropic elasticity problems can be for-
mulated in terms of the analytic functions /jðzjÞ of the
complex variable zj ¼ xj þ iyjð j ¼ 1; 2Þ, where

xj ¼ xþ ajy; yj ¼ bjy ð j ¼ 1; 2Þ ð4Þ
The parameters aj and bj are the real and imaginary parts
of lj ¼ aj þ ibj, which can be determined from [38]

a11l
4 � 2a16l

3 þ ð2a12 þ a66Þl2 � 2a26lþ a22 ¼ 0

ð5Þ
The roots lj are always either complex or purely imaginary
in conjugate pairs as l1; �ll1; l2, and �ll2. Hence, the linear-
elastic singular stress field near the crack tip can be
obtained as [39]

r11 ¼
1ffiffiffiffiffiffiffi
2pr
p KIf

I
11ðl1; l2; hÞ þ KIIf

II
11ðl1; l2; hÞ

� �
; ð6Þ

r22 ¼
1ffiffiffiffiffiffiffi
2pr
p KIf

I
22ðl1; l2; hÞ þ KIIf

II
22ðl1; l2; hÞ

� �
; ð7Þ

r12 ¼
1ffiffiffiffiffiffiffi
2pr
p KIf

I
12ðl1; l2; hÞ þ KIIf

II
12ðl1; l2; hÞ

� �
; ð8Þ

where f I
ijðl1; l2; hÞ and f II

ij ðl1; l2; hÞ (i, j = 1, 2) are the
standard angular functions for a crack in an orthotropic
elastic medium, given by

f I
11ðl1; l2; hÞ ¼ Re

l1l2

l1 � l2

l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p
 "

� l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p
!#

; ð9Þ

Fig. 1. A crack in an orthotropic functionally graded material
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f II
11ðl1; l2; hÞ ¼ Re

1

l1 � l2

l2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ l2 sin h
p
 "

� l2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ l1 sin h
p

!#
; ð10Þ

f I
22ðl1; l2; hÞ ¼ Re

1

l1 � l2

l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p
 "

� l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p
!#

; ð11Þ

f II
22ðl1; l2; hÞ ¼ Re

1

l1 � l2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p
 "

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p
!#

; ð12Þ

f I
12ðl1; l2; hÞ ¼ Re

l1l2

l1 � l2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p
 "

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p
!#

; ð13Þ

f II
12ðl1; l2; hÞ ¼ Re

1

l1 � l2

l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p
 "

� l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p
!#

: ð14Þ

The near tip displacement field u ¼ fu1; u2gT can be
obtained as [39]

u1 ¼
ffiffiffiffiffi
2r

p

r
KIg

I
1ðl1; l2; hÞ þ KIIg

II
1 ðl1; l2; hÞ

� �
; ð15Þ

and

u2 ¼
ffiffiffiffiffi
2r

p

r
KIg

I
2ðl1; l2; hÞ þ KIIg

II
2 ðl1; l2; hÞ

� �
; ð16Þ

where gI
i ðl1; l2; hÞ and gII

i ðl1; l2; hÞ, i = 1, 2 are the stan-
dard angular functions for a crack in an orthotropic elastic
medium, given by

gI
1ðl1; l2; hÞ ¼ Re

1

l1 � l2

l1p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p��

�l2p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p �i
; ð17Þ

gII
1 ðl1; l2; hÞ ¼ Re

1

l1 � l2

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p��

�p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p �i
; ð18Þ

gI
2ðl1; l2; hÞ ¼ Re

1

l1 � l2

l1q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p��

�l2q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p �i
; ð19Þ

gII
2 ðl1; l2; hÞ ¼ Re

1

l1 � l2

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p��

�q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p �i
: ð20Þ

In Eqs. (6–20), l1 and l2 denote the crack-tip parameters
calculated as the roots of Eq. (5), which are taken such that
bj > 0 ðj ¼ 1; 2Þ, and pj and qj are given by

pj ¼ a11l
2
j þ a12 � a16lj ; ð21Þ

qj ¼ a12lj þ
a22

lj

� a26 : ð22Þ

Even though the material gradient does not influence the
square-root singularity or the singular stress distribution,
the material gradient does affect the SIFs. Hence, the
fracture parameters are functions of the material
gradients, external loading, and geometry.

3
The interaction integral method
The interaction integral method is an effective tool for
calculating mixed-mode fracture parameters in homoge-
neous orthotropic materials [40, 41]. In this section the
interaction integral method for homogeneous orthotropic
materials is first briefly summarized, then extended for
cracks in orthotropic FGM. In fact, the study of ortho-
tropic FGM would enhance the understanding of a fracture
in a generic material, since upon shrinking the gradient
layer in FGM is expected to behave like a sharp interface,
and upon expansion, the fracture behavior would be
analogous to that of an orthotropic homogeneous material.

3.1
Homogeneous materials
The path independent J-integral for a cracked body is gi-
ven by [42]

J ¼
Z

C

Wd1j � rij
oui

ox1

� �
njoC ; ð23Þ

where W ¼
R

rij deij is the strain energy density and nj is
the jth component of the outward unit vector normal to an
arbitrary contour C enclosing the crack tip. For linear-
elastic material models it can shown that
W ¼ rijeij=2 ¼ eijDijklekl=2, where Dijkl are the components
of the constitutive tensor. Applying the divergence theo-
rem, the contour integral in Eq. (23) can be converted into
an equivalent domain form, given by [43]

J ¼
Z

A

rij
oui

ox1
�Wd1j

� �
oq

oxj
dA

þ
Z

A

o

oxj
rij

oui

ox1
�Wd1j

� �
q dA ; ð24Þ

where A is the area inside the contour and q is a weight
function chosen such that it has a value of unity at the
crack tip, zero along the boundary of the domain, and
arbitrary elsewhere. By expanding the second integrand,
Eq. (24) leads to
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J ¼
Z

A

rij
oui

ox1
�Wd1j

� �
oq

oxj
dAþ

Z

A

orij

oxj

oui

ox1

�

þ rij
o2ui

oxjox1
� rij

oeij

ox1
� 1

2
eij

oDijkl

ox1
ekl

�
q dA ; ð25Þ

Using equilibrium (orij=oxj ¼ 0) and strain–displacement
(eij ¼ oui=oxj) conditions and noting that oDijkl=ox1 ¼ 0 in
homogenous orthotropic materials, the second integrand
of Eq. (25) vanishes, yielding

J ¼
Z

A

rij
oui

ox1
�Wd1j

� �
oq

oxj
dA ; ð26Þ

which is the classical domain form of the J-integral in
homogenous materials.

Consider two independent equilibrium states of the
cracked body. Let state 1 correspond to the actual state for
the given boundary conditions, and let state 2 correspond
to an auxiliary state, which can be either mode-I or mode-
II near tip displacement and stress fields in an orthotropic
elastic medium. Superposition of these two states leads to
another equilibrium state (state S) for which the domain
form of the J-integral is

JðSÞ ¼
Z

A

rð1Þij þ rð2Þij

� � o u
ð1Þ
i þ u

ð2Þ
i

� �

ox1
�WðsÞd1j

2
4

3
5

� oq

oxj
dA ; ð27Þ

where superscript i = 1, 2, and S indicate fields and
quantities associated with state i and

WðSÞ ¼ 1

2
rð1Þij þ rð2Þij

� �
eð1Þij þ eð2Þij

� �
: ð28Þ

By expanding Eqs. (27),

JðSÞ ¼ Jð1Þ þ Jð2Þ þMð1;2Þ ; ð29Þ
where

Jð1Þ ¼
Z

A

rð1Þij

ou
ð1Þ
i

ox1
�Wð1Þd1j

" #
oq

oxj
dA ð30Þ

and

Jð2Þ ¼
Z

A

rð2Þij

ou
ð2Þ
i

ox1
�Wð2Þdj

" #
oq

oxj
dA ð31Þ

are the J-integrals for states 1 and 2, respectively, and

Mð1;2Þ ¼
Z

A

rð1Þij

ou
ð2Þ
i

ox1
þ rð2Þij

ou
ð1Þ
i

ox1
�Wð1;2Þd1j

" #
oq

oxj
dA

ð32Þ
is an interaction integral. In Eqs. (30–32), Wð1Þ ¼ 1

2 rð1Þij eð1Þij ,
Wð2Þ ¼ 1

2 rð2Þij eð2Þij , and Wð1;2Þ ¼ 1
2 ðr

ð1Þ
ij eð2Þij þ rð2Þij eð1Þij Þ repre-

sent various strain energy densities, which satisfy

WðSÞ ¼ Wð1Þ þWð2Þ þWð1;2Þ : ð33Þ

For linear-elastic homogeneous orthotropic solids under
mixed-mode loading conditions, the J-integral is also
related to the stress intensity factors as

J ¼ a11K2
I þ a12KIKII þ a22K2

II ; ð34Þ
where

a11 ¼ �
a22

2
Im

l1 þ l2

l1l2

� �
; ð35Þ

a22 ¼
a11

2
Imðl1 þ l2Þ ; ð36Þ

and

a12 ¼ �
a22

2
Im

1

l1l2

� �
þ a11

2
Imðl1l2Þ : ð37Þ

Applying Eq. (34) to states 1, 2, and the superimposed
state S gives

Jð1Þ ¼ a11K
ð1Þ2
I þ a12K

ð1Þ
I K

ð1Þ
II þ a22K

ð1Þ2
II ; ð38Þ

Jð2Þ ¼ a11K
ð2Þ2
I þ a12K

ð2Þ
I K

ð2Þ
II þ a22K

ð2Þ2
II ; ð39Þ

and

JðSÞ ¼ a11 K
ð1Þ
I þK

ð2Þ
I

� �2
þa12 K

ð1Þ
I þK

ð2Þ
I

� �
K
ð1Þ
II þK

ð2Þ
II

� �

þa22 K
ð1Þ
II þK

2ð Þ
II

� �2

¼ a11K
ð1Þ2
I þa12K

ð1Þ
I K

ð1Þ
II þa22K

ð1Þ2
II þa11K

ð2Þ2
I

þa12K
ð2Þ
I K

ð2Þ
II þa22K

ð2Þ2
II þ2a11K

ð1Þ
I K

ð2Þ
I

þa12 K
ð1Þ
I K

ð2Þ
II þK

ð2Þ
I K

ð1Þ
II

� �
þ2a22K

ð1Þ
II K

ð2Þ
II

¼ Jð1Þ þ Jð2Þ þ2a11K
ð1Þ
I K

ð2Þ
I

þa12 K
ð1Þ
I K

ð2Þ
II þK

ð2Þ
I K

ð1Þ
II

� �
þ2a22K

ð1Þ
II K

ð2Þ
II ð40Þ

Comparing Eqs. (29) and (40),

Mð1;2Þ ¼ 2a11K
ð1Þ
I K

ð2Þ
I þ a12 K

ð1Þ
I K

ð2Þ
II þ K

ð2Þ
I K

ð1Þ
II

� �

þ 2a22K
ð1Þ
II K

ð2Þ
II : ð41Þ

The individual SIFs for the actual state can be obtained by
judiciously choosing the auxiliary state (state 2). For
example, if state 2 is chosen to be state I, i.e., the mode-I
near tip displacement and stress field is chosen as the
auxiliary state, then K

ð2Þ
I = 1 and K

ð2Þ
II = 0. Hence, Eq. (41)

reduces to

Mð1;IÞ ¼ 2a11K
ð1Þ
I þ a12K

ð1Þ
II : ð42Þ

Similarly, if state 2 is chosen to be state II, i.e., the mode-II
near tip displacement and stress field is chosen as the
auxiliary state, then K

ð2Þ
I = 0 and K

ð2Þ
II = 1. Following

similar considerations,

Mð1;IIÞ ¼ a12K
ð1Þ
I þ 2a22K

ð1Þ
II : ð43Þ

The interaction integrals Mð1;IÞ and Mð1;IIÞ can be evaluated
from Eq. 32. Equations (42) and (43) provide a system of
linear algebraic equations which can be solved for SIFs,
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K
ð1Þ
I andK

ð1Þ
II under various mixed-mode loading condi-

tions.

3.2
Functionally graded materials
For non-homogeneous materials, even though the equi-
librium and strain–displacement conditions are satisfied,
the material gradient term of the second integrand of Eq.
(25) does not vanish. So Eq. (25) leads to a more general
integral, henceforth referred to as the ~JJ-integral [27],
which is

~JJ ¼
Z

A

rij
oui

ox1
�Wd1j

� �
oq

oxj
dA�

Z

A

1

2
eij

oDijkl

ox1
eklq dA :

ð44Þ
By comparing Eq. (44) to the classical J-integral (see Eq.
26), the presence of material non-homogeneity results in
the addition of the second domain integral. Although this
integral is negligible for a path very close to the crack tip,
it must be accounted for with relatively large integral do-
mains, so that the ~JJ-integral can be accurately calculated.
The ~JJ-integral in Eq. (44) is actually the first component of
the J� ¼ fJ�1 ; J�2g

T vector integral (i.e., J�1 ) proposed by
Eischen [25]. Hence, ~JJ also represents the energy release
rate of an elastic body.

In order to derive interaction integral for orthotropic
FGMs, consider again actual (state 1), auxiliary (state 2),
and superimposed (state S) equilibrium states. For the
actual state, Eq. (44) can be directly invoked to represent
the ~JJ-integral. However, a more general form, such as Eq.
(24), must be used for auxiliary and superimposed states.
For example, the ~JJ-integral for the superimposed state S
can be written as

~JJðSÞ

¼
Z

A

rð1Þij þrð2Þij

� �o u
ð1Þ
i þu

ð2Þ
i

� �

ox1
�WðSÞd1j

0
@

1
A oq

oxj
dA

þ
Z

A

o

oxj
rð1Þij þrð2Þij

� �o u
ð1Þ
i þu

ð2Þ
i

� �

ox1
�WðSÞd1j

0

@

1

AqdA :

ð45Þ
Clearly, the evaluations of ~JJð2Þ and the resulting interaction
integral depend on how the auxiliary field is defined. There
are several options in choosing the auxiliary field. Two
methods, developed in this study, are described in the
following.

3.2.1
Method I – homogeneous auxiliary field
The method I involves selecting the auxiliary stress and
displacement fields in an orthotropic elastic medium given
by Eqs. (6–8) and Eqs. (15, 16) and calculating the auxil-
iary strain field from the symmetric gradient of the aux-
iliary displacement field. In this approach, the auxiliary
stress and strain fields are related through a constant
constitutive tensor evaluated at the crack tip. Hence, both
equilibrium (orð2Þij =oxj ¼ 0) and strain–displacement

(eð2Þij ¼ ou
ð2Þ
i =oxj) conditions are satisfied in the auxiliary

state. However, the non-homogeneous constitutive
relation of FGM is not strictly satisfied in the auxiliary
state, which would introduce gradients of stress fields as
extra terms in the interaction integral.

Using Eq. (33) and invoking both equilibrium and
strain-displacement conditions, Eq. (45) can be further
simplified to

~JJðSÞ ¼
Z

A

rð1Þij þ rð2Þij

� � o u
ð1Þ
i þ u

ð2Þ
i
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By expanding Eq. (46),

~JJðSÞ ¼ ~JJð1Þ þ ~JJð2Þ þ ~MMð1;2Þ ; ð47Þ
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are the ~JJ-integrals for states 1 and 2, respectively, and
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is the modified interaction integral for non-homogeneous
materials.

3.2.2
Method II - non-homogeneous auxiliary field
The method II entails selecting the auxiliary stress and
displacement fields in an orthotropic elastic medium given
by Eqs. (6–8) and Eqs. (15, 16) and calculating the auxil-
iary strain field using the same spatially varying constit-
utive tensor of FGM. In this approach, the auxiliary stress

field satisfies equilibrium (orð2Þij =oxj ¼ 0); however, the
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auxiliary strain field is not compatible with the auxiliary
displacement field (eð2Þij 6¼ ou

ð2Þ
i oxj). If the auxiliary fields

are not compatible, extra terms that will arise due to lack
of compatibility should be taken into account while eval-
uating the interaction integral, even though they may not
be sufficiently singular in the asymptotic limit to con-
tribute to the value of the integral [30]. Hence, this method
also introduces additional terms to the resulting interac-
tion integral.

Following similar considerations, but using only equi-
librium condition in the auxiliary state, Eq. (45) can also
be simplified to
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Comparing Eqs. (47) and (51),
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are the ~JJ-integrals for states 1 and 2, respectively, and
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is another modified interaction integral for non-homoge-
neous materials. Note that, to evaluate the second inte-
grand of Eq. 54 needs only higher order derivatives of the
auxiliary fields, which can be easily obtained from Eqs. (6–
20). However to evaluate the second integrand of Eq. (50)
needs higher order derivatives of the actual displacement
fields also, which requires higher-order elements in FEM
and also more computational effort.

Note, for homogeneous materials, oDijkl=ox1 ¼ 0,

eð2Þij ¼ ou
ð2Þ
i =oxj, rð1Þij oeð2Þij =ox1 ¼ orð2Þij =ox1e

ð1Þ
ij and

rð2Þij oeð1Þij =ox1 ¼ orð1Þij =ox1e
ð2Þ
ij , regardless of how the auxil-

iary field is defined. As a result, the ~JJð1Þ; ~JJð2Þ, and ~MMð1;2Þ

integrals in methods I and II degenerate to their corre-
sponding homogeneous solutions, as expected.

3.2.3
Stress-intensity factors
For linear-elastic solids, the ~JJ�integral also represents the
energy release rate and, hence,

~JJ ¼ a11;tipK2
I þ a12;tipKIKII þ a22;tipK2

II ; ð55Þ
where a11;tip; a12;tip, and a22;tip are evaluated at the crack tip.
Regardless of how the auxiliary fields are defined, Eq. (55)
applied to states 1, 2, and S yields
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and
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Comparing Eqs. (47) and (58),
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Following a similar procedure and judiciously choosing
the intensity of the auxiliary state as described earlier,
the SIFs for non-homogenous materials can also be
derived as

~MMð1;IÞ ¼ 2a11;tipK
ð1Þ
I þ a12;tipK

ð1Þ
II ; ð60Þ

and

~MMð1;IIÞ ¼ a12;tipK
ð1Þ
I þ 2a22;tipK

ð1Þ
II ; ð61Þ

where ~MMð1;IÞ and ~MMð1;IIÞ are two modified interaction
integrals for modes I and II, respectively. The interaction
integrals ~MMð1;IÞ and ~MMð1;IIÞ can be evaluated using either Eq.
(50) or Eq. (54) depending on the auxiliary field. Equations
(60) and (61) provide a system of linear algebraic equa-
tions which can be solved for SIFs K

ð1Þ
I and K

ð1Þ
II under

various mixed-mode loading conditions. Both methods
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developed in this study were used in performing numerical
calculations, to be presented in a forthcoming section.

Note, Eqs. (60) and (61) are the result of a simple
generalization of the interaction integral method for cal-
culating fracture parameters in linear-elastic non-homog-
enous materials. When both the elastic modulus and the
Poisson’s ratio have no spatial variation, ~MMð1;2Þ ¼ Mð1;2Þ.
Consequently, Eqs. (60) and (61) degenerate into Eqs. (42)
and (43), as expected.

4
Numerical examples
The newly modified interaction integrals (methods I and
II) developed in this study were applied to evaluate the
SIFs of cracks in othrotropic FGMs. Both single- (mode I)
and mixed-mode (modes I and II) conditions were con-
sidered and three examples are presented here. The pro-
posed two interaction integrals (methods I and II) are
fairly domain independent, however in all the examples a
domain (2b1 � 2b2 ), with size 2b1 ¼ 2b2 ¼ crack length 2a
surrounding each crack tip is chosen for evaluating the
integrals. The results obtained in the current study were
compared with the semi-analytical solutions by Ozturk
and Erdogan [35, 36]. For the sake of comparison the
independent engineering constants, E11;E22;G12; m12; and
m21 are replaced by a stiffness parameter E, a stiffness ratio
d4, an average Poisson’s ratio m , and a shear parameter j
[35, 36], which are defined as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22

p
; d4 ¼ E11

E22
¼ m12

m21
;

m ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m12m21
p

; j ¼ E

2G12
� m ;

ð62Þ

for plane stress, and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E11E22
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s
; d4 ¼ E11

E22

ð1� m23m32Þ
ð1� m13m31Þ

;

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm12 þ m13m32Þðm21 þ m23m31Þ
ð1� m13m31Þð1� m23m32Þ

s

; j ¼ E

2G12
� m

;

ð63Þ
for plane strain.

4.1
Example 1: plate with an interior crack parallel to material
gradation under mode-I
Consider an orthotropic square plate of dimensions
2L ¼ 2W ¼ 20 units (L/W = 1) with a central crack of
length 2a = 2.0 units, subjected to crack-face pressure
loading, as shown in Fig. 2a. A plane stress condition was
assumed. The crack is parallel to the material gradation and
the following material property data were employed for
FEM analysis: E11ðx1Þ ¼ E0

11ebx1 , E22ðx1Þ ¼ E0
22ebx1 ,

G12ðx1Þ ¼ G0
12ebx1 , where the average modulus of elasticity

Eðx1Þ ¼ E0ebaðx1=aÞ; with E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

11E0
22

p
. The non-homoge-

neity parameter ba is varied from 0.0 to 1.0. Two different
values of the shear parameter j ¼ �0:25 and 5.0 were
employed. The stiffness ratio d4 ¼ 0:25 and the average
Poisson’s ratio m ¼ 0:3 were used in the FEM analysis.

The applied load corresponds to r22

(�1 � x1 � 1;�0)= �r0 ¼ �1:0 along top and bottom
crack faces. The displacement boundary condition is
prescribed such that u1 ¼ u2 ¼ 0 for the node in the
middle of the left edge, and u2 ¼ 0 for the node in the
middle of the right edge. The FEM discretization involves
5756 nodes, 1696 8-noded quadrilateral elements, 214
6-noded triangular elements, and 8 focused quarter-point
6-noded triangular elements in the vicinity of each crack
tip, as shown in Fig. 2b. Figure 2c depicts the enlarged
view of discretization around the crack tips. A 2 � 2
Gaussian integration was employed.

Ozturk and Erdogan [35] investigated an infinite plate
with the same configuration. Obviously, a FEM model
cannot represent the infinite domains addressed in the
analysis of Ozturk and Erdogan [35], but as long as the

Fig. 2. Plate with an interior crack parallel to material gradation
under mode-I: a geometry and loads; b FEM discretization (5756
nodes, 1696 8-noded quadrilateral elements, 214 6-noded trian-
gular elements, and 16 focused quarter-point 6-noded triangular
elements); and c enlarged view of discretization around the crack
tips
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ratios a=W and a=L are kept relatively small (e.g,
a=W ¼ a=L � 1=10), the approximation is acceptable.
Tables 1 and 2 provide a comparison between predicted
normalized stress intensity factors KIðaÞr0

ffiffiffiffiffiffi
pa
p

and
KIð�aÞ=r0

ffiffiffiffiffiffi
pa
p

at both crack tips for several values of
non-homogeneous parameter ba, obtained by proposed
interaction integral methods I and II, and those of Ozturk
and Erdogan [35] for shear parameters j = �0.25 and 5.0,
respectively. The numerical results from proposed meth-
ods I and II shows that effect of j on normalized stress
intensity factors is less significant than that of ba. Also the
stress intensity factor on the stiffer side of the medium is
always greater than that on the less stiff side. The agree-
ment between the present results of proposed methods and
Ozturk and Erdogan’s [35] analytical solution is excellent,
regardless of methods I and II.

4.2
Example 2: plate with an interior crack perpendicular
to material gradation (mixed mode)
Consider an orthotropic square plate of dimensions 2L =
2W = 20 units (L/W = 1) with a central crack of length 2a
= 2.0 units, as shown in Fig. 3. Except for material prop-
erties and loading conditions, all other conditions
including FEM discretization were same as in Example 1.
However, the crack is perpendicular to the material gra-
dation. In Example 2, both crack-face pressure loading and
crack-face shear loading were considered separately. The
following material property data were employed for FEM
analysis: E11ðx2Þ ¼ E0

11ebx2 ; E22ðx2Þ ¼ E0
22ebx2 ;

G12ðx2Þ ¼ G0
12ebx2 ; where the average modulus of elasticity

Eðx2Þ ¼ E0ebaðx2=aÞ; with E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

11E0
22

p
. The non-homo-

geneity parameter ba is varied from 0.0 to 2.0. Two dif-
ferent values of the shear parameter j ¼ 0:5 and 5.0 and
two different stiffness ratio d4 ¼ 0:25, and 10 were em-
ployed in the FEM analysis. Three different values of the
average Poisson’s ratio m ¼ 0:15; 0:30; and 0.45 were used
in the computations.

For crack-face pressure loading the applied load corre-
sponds to r22ð�1 � x1 � 1;�0Þ ¼ �r0 ¼ �1:0 and for
crack-face shear loading the applied load corresponds to
r12ð�1 � x1 � 1;�0Þ ¼ �s0 ¼ �1:0 along top and bottom
crack faces. A 2 � 2 Gaussian integration was adopted.

The effect of the non-homogeneity parameter ba and
effect of the average Poisson’s ratio m on the normalized
stress intensity factors for both crack-face pressure load-

ing and crack-face shear loading were studied. The present
results obtained by proposed interaction integral methods
I and II are compared with those reported by Ozturk and
Erdogan [36], who investigated an infinite plate with the
same configuration. Tables 3 and 4 provide a comparison
between predicted normalized stress intensity factors
under uniform crack-face pressure loading and uniform
crack-face shear loading, respectively, obtained by
proposed interaction integral methods I and II, and those

Table 1. Normalized stress
intensity factors for an
orthotropic plate under
uniform crack face pressure
loading (j = )0.25)

ba Proposed
method-I ~MMð1;2Þ

� � Proposed
method-II ~MMð1;2Þ

� � Ozturk and
Erdogan [35]

KIðaÞ
r0
ffiffiffiffi
pa
p KIð�aÞ

r0
ffiffiffiffi
pa
p KI ðaÞ

r0
ffiffiffiffi
pa
p KI ð�aÞ

r0
ffiffiffiffi
pa
p KIðaÞ

r0
ffiffiffiffi
pa
p KIð�aÞ

r0
ffiffiffiffi
pa
p

0.0 1.0003 1.0003 1.0009 1.0008 1.0 1.0
0.01 1.0013 0.9997 1.0016 1.0005 1.0025 0.9975
0.1 1.0176 0.9689 1.0354 0.9844 1.0246 0.9747
0.25 1.0587 0.9335 1.0770 0.9497 1.0604 0.9364
0.50 1.1099 0.8699 1.1297 0.8823 1.1177 0.8740
0.75 1.1709 0.8099 1.1695 0.8169 1.1720 0.8154
1.00 1.2287 0.7703 1.2137 0.7621 1.2235 0.7616
1.50 1.2999 0.6698 1.3065 0.6722 1.3184 0.6701
2.00 1.3899 0.5909 1.3908 0.6016 1.4043 0.5979

Table 2. Normalized stress intensity factors for an orthotropic
plate under uniform crack face pressure loading (j = 5.0)

ba Proposed
method-I ~MMð1;2Þ

� � Proposed
method-II ~MMð1;2Þ

� � Ozturk and
Erdogan [35]

KIðaÞ
r0
ffiffiffiffi
pa
p KI ð�aÞ

r0
ffiffiffiffi
pa
p KI ðaÞ

r0
ffiffiffiffi
pa
p KIð�aÞ

r0
ffiffiffiffi
pa
p KIðaÞ

r0
ffiffiffiffi
pa
p KI ð�aÞ

r0
ffiffiffiffi
pa
p

0.0 0.9967 0.9967 1.0005 1.0005 1.0 1.0
0.01 1.0014 1.0002 1.0052 1.0049 1.0025 0.9975
0.1 1.0199 0.9833 1.0247 0.9867 1.0231 0.9733
0.25 1.0499 0.9289 1.0587 0.9289 1.0531 0.9306
0.50 1.0961 0.8543 1.0887 0.8602 1.0946 0.8594
0.75 1.1203 0.7878 1.1301 0.8069 1.1281 0.7932
1.00 1.1499 0.7298 1.1603 0.7363 1.1556 0.7339
1.50 1.2007 0.6295 1.2015 0.6401 1.1979 0.6367
2.00 1.2305 0.5586 1.2307 0.5598 1.2290 0.5636

Fig. 3. Plate with an interior crack perpendicular to material
gradation: geometry and loads
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of Ozturk and Erdogan [36] for various values of non-
homogeneity parameter ba, and d4 ¼ 0:25; m ¼ 0:3; and j
= 0.5. Tables 5 and 6 provide a comparison between pre-
dicted normalized stress intensity factors under uniform
crack face pressure loading for d4 ¼ 0:25, and d4 ¼ 10
respectively, obtained by proposed interaction integral
methods I and II, and those of Ozturk and Erdogan [36]
for m ¼ 0:15; 0:3, and 0.45 and ba ¼ 0:5, and 1.0. Tables 7
and 8 provide a similar comparison for an orthotropic

plate under uniform crack face shear loading. The agree-
ment between the results of the proposed methods and
Ozturk and Erdogan’s [36] analytical solution is excellent,
irrespective of methods I and II.

4.3
Example 3: slanted crack in a plate under mixed-mode
Consider a centrally located, inclined crack of length 2a =
2
ffiffiffi
2
p

units in a finite two-dimensional orthotropic rectan-
gular plate of size 2L = 40 units and 2W = 20 units, as
shown in Fig. 4a. A plane stress condition was assumed.
This example is investigated with material variation fol-
lowing exponential functions and the following material
property data were used for FEM analysis:
E11ðx1Þ ¼ E0

11eax1 , E22ðx1Þ ¼ E0
22ebx1 , G12ðx1Þ ¼ G0

12ecx1 ,
E0

11 ¼ 3:5� 106, E0
22 ¼ 12� 106, G0

12 ¼ 3� 106,
m12 ¼ 0:204, and E11=E22 ¼ m12=m21. The following two
cases were examined: (1) an orthotropic FGM with pro-
portional material variation ða; b; cÞ ¼ ð0:2; 0:2; 0:2Þ, and
(2) an orthotropic FGM with non-proportional material
variation ða; b; cÞ ¼ ð0:5; 0:4; 0:3Þ.

The applied load corresponds to r22 (�10 � x1 � 10;
�20Þ ¼ �r1 ¼ �1:0 along top and bottom edges. The
displacement boundary condition is prescribed such that
u1 ¼ u2 ¼ 0 for the node in the middle of the left edge, and
u2 ¼ 0 for the node in the middle of the right edge. The
FEM discretization involves 3606 Nodes, 898 8-noded
quadrilateral elements, 354 6-noded triangular elements,
and 8 focused quarter-point 6-noded triangular elements
in the vicinity of each crack tip, as shown in Fig. 4b. Figure
4c depicts the enlarged view of discretization around the
crack tips.

Table 9 provides a comparison between predicted SIFs
KþI ðaÞ, KþII ðaÞ, K�I ðaÞ, and K�II ðaÞ at both crack tips, ob-
tained by proposed interaction integral methods I and II,
and existing results obtained by Kim and Paulino from
the literature [37]. A good agreement is obtained between
the results of the proposed methods and Kim and
Paulino’s [37] numerical results by using the MCC
and DCT.

Table 3. The effect of the non-homogeneity parameter on the
normalized stress intensity factors for an orthotropic plate under
uniform crack face pressure loading (d4 = 0.25, m=0.3, j = 0.5)

ba Proposed
method-I ~MMð1;2Þ

� � Proposed
method-II ~MMð1;2Þ

� � Ozturk and
Erdogan [36]

KIðaÞ
r0
ffiffiffiffi
pa
p KII ðaÞ

r0
ffiffiffiffi
pa
p KI ðaÞ

r0
ffiffiffiffi
pa
p KIIðaÞ

r0
ffiffiffiffi
pa
p KIðaÞ

r0
ffiffiffiffi
pa
p KII ðaÞ

r0
ffiffiffiffi
pa
p

0.0 1.0067 0.0 1.0059 0.0 1.0 0.0
0.1 1.0206 0.0248 1.0193 0.0246 1.0115 0.0250
0.25 1.0502 0.0599 1.0513 0.0609 1.0489 0.0627
0.50 1.1373 0.1303 1.1355 1.1299 1.1351 0.1263
1.00 1.3398 0.2497 1.3406 0.2501 1.3494 0.2587
2.00 1.8623 0.5493 1.8598 0.5564 1.8580 0.5529

Table 4. The effect of the non-homogeneity parameter on the
normalized stress intensity factors for an orthotropic plate under
uniform crack face shear loading (d4 = 0.25, m=0.3, j = 0.5)

ba Proposed
method-I ~MMð1;2Þ

� � Proposed
method-II ~MMð1;2Þ

� � Ozturk and
Erdogan [36]

KI að Þ
s0
ffiffiffiffi
pa
p KII að Þ

s0
ffiffiffiffi
pa
p KI að Þ

s0
ffiffiffiffi
pa
p KII að Þ

s0
ffiffiffiffi
pa
p KI að Þ

s0
ffiffiffiffi
pa
p KII að Þ

s0
ffiffiffiffi
pa
p

0.0 0.0 0.9998 0.0 1.0007 0.0 1.0
0.1 )0.0487 1.0005 )0.0496 0.9999 )0.0494 0.9989
0.25 )0.1156 0.9971 )0.1167 0.9973 )0.1191 0.9968
0.50 )0.2196 0.9964 )0.2203 0.9969 )0.2217 0.9965
1.00 )0.3874 0.9999 )0.3799 1.0006 )0.3862 1.0071
2.00 )0.5698 1.0399 )0.5708 1.0453 )0.5725 1.0499

Table 5. The effect of the
Poisson’s ratio on the normal-
ized stress intensity factors for
an orthotropic plate under
uniform crack face pressure
loading (j = 5.0)

ba d4 = 0.25 Proposed
method-I ~MMð1;2Þ

� � Proposed
method-II ~MMð1;2Þ

� � Ozturk and
Erdogan [36]

m 0.15 0.30 0.45 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=r0

ffiffiffiffiffiffi
pa
p

1.2531 1.2578 1.2599 1.2528 1.2583 1.2608 1.2516 1.2596 1.2674
KIIðaÞ=r0

ffiffiffiffiffiffi
pa
p

0.1217 0.1219 0.1219 0.1267 0.1270 0.1271 0.1259 0.1259 0.1259

1.0 KIðaÞ=r0

ffiffiffiffiffiffi
pa
p

1.5603 1.5729 1.5845 1.5599 1.5748 1.5836 1.5589 1.5739 1.5884
KIIðaÞ=r0

ffiffiffiffiffiffi
pa
p

0.2600 0.2599 0.2516 0.2583 0.2581 0.2499 0.2555 0.2557 0.2558

Table 6. The effect of the
Poisson’s ratio on the
normalized stress intensity
factors for an orthotropic plate
under uniform crack face
pressure loading (j = 5.0)

ba d4 = 10 Proposed
method-I ~MMð1;2Þ

� � Proposed
method-II ~MMð1;2Þ

� � Ozturk and
Erdogan [36]

m 0.15 0.30 0.45 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=r0

ffiffiffiffiffiffi
pa
p

1.0699 1.0720 1.0799 1.0710 1.0716 1.0810 1.0748 1.0776 1.0804
KIIðaÞ=r0

ffiffiffiffiffiffi
pa
p

0.1239 0.1252 0.1259 0.1227 0.1248 0.1256 0.1252 0.1252 0.1251

1.0 KIðaÞ=r0

ffiffiffiffiffiffi
pa
p

1.1889 1.1955 1.2009 1.1897 1.1993 1.2056 1.1892 1.1955 1.2017
KIIðaÞ=r0

ffiffiffiffiffiffi
pa
p

0.2499 0.2503 0.2536 0.2538 0.2543 0.2537 0.2511 0.2512 0.2512

48



5
Summary and conclusions
Two new interaction integrals have been developed for
calculating stress-intensity factors for a stationary crack in
two-dimensional orthotropic functionally graded materials
of arbitrary geometry. The method involves finite element

discretization, where the material properties are smooth
functions of spatial co-ordinates and two newly developed
interaction integrals for mixed-mode fracture analysis.
The proposed interaction integral can also be implemented
in conjunction with other numerical methods, such as
meshless method, boundary element method, and other.

Table 7. The effect of the Poisson’s ratio on the normalized stress intensity factors for an orthotropic plate under uniform crack face
shear loading (j = 5.0)

ba d4 = 0.25 Proposed
method-I ~MMð1;2Þ

� � Proposed
method-II ~MMð1;2Þ

� � Ozturk and
Erdogan [36]

m 0.15 0.30 0.45 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=s0

ffiffiffiffiffiffi
pa
p

)0.1926 )0.1909 )0.1900 )0.1956 )0.1945 )0.1923 )0.1980 )0.1971 )0.1963
KIIðaÞ=s0

ffiffiffiffiffiffi
pa
p

0.9899 0.9907 0.9960 0.9888 0.9999 0.9919 0.9898 0.9915 0.9931

1.0 KIðaÞ=s0

ffiffiffiffiffiffi
pa
p

)0.3199 )0.3099 )0.3067 )0.3199 )0.3056 )0.3048 )0.3203 )0.3186 )0.3169
KIIðaÞ=s0

ffiffiffiffiffiffi
pa
p

0.9899 0.9901 0.9968 0.9901 0.9953 0.9968 0.9888 0.9921 0.9953

Table 8. The effect of the Poisson’s ratio on the normalized stress intensity factors for an orthotropic plate under uniform crack face
shear loading (j = 5.0)

ba d4 = 10 Proposed
method-I ~MMð1;2Þ

� � Proposed
method-II ~MMð1;2Þ

� � Ozturk and
Erdogan [36]

m 0.15 0.30 0.45 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=s0

ffiffiffiffiffiffi
pa
p

)0.0359 )0.0379 )0.0380 )0.0360 )0.0383 )0.0383 )0.0366 )0.0365 )0.0365
KIIðaÞ=s0

ffiffiffiffiffiffi
pa
p

0.9909 0.9911 0.9925 0.9911 0.9917 0.9977 0.9956 0.9961 0.9965

1.0 KIðaÞ=s0

ffiffiffiffiffiffi
pa
p

)0.0659 )0.0649 )0.0627 )0.0655 )0.0648 )0.0631 )0.0660 )0.0657 )0.0654
KIIðaÞ=s0

ffiffiffiffiffiffi
pa
p

0.9899 0.9905 0.9917 0.9898 0.9913 0.9949 0.9913 0.9925 0.9938

Fig. 4. Slanted crack in a plate under
mixed-mode: a geometry and loads; b FEM
discretization (3606 Nodes, 898 8-noded
quadrilateral elements, 354 6-noded trian-
gular elements, and 16 focused quarter-
point 6-noded triangular elements); and c
enlarged view of discretization around the
crack tips

Table 9. Mixed-mode
stress-intensity factor in an
orthotropic functionally
graded plate with a slant crack

Material Method KþI ðaÞ KþII ðaÞ K�I ðaÞ K�II ðaÞ

FGM (proportional)
ða; b; cÞ ¼ ð0:2; 0:2; 0:2Þ

Kim and Paulino (MCC) [37] 1.762 1.439 1.403 1.288
Kim and Paulino (DCT) [37] 1.769 1.419 1.419 1.284
Proposed Method-I ~MMð1;2Þ

� �
1.728 1.429 1.411 1.299

Proposed Method-II ~MMð1;2Þ
� �

1.725 1.432 1.409 1.300

FGM (non-proportional)
ða; b; cÞ ¼ ð0:5; 0:4; 0:3Þ

Kim and Paulino (MCC) [37] 2.384 1.581 1.437 1.225
Kim and Paulino (DCT) [37] 2.387 1.553 1.456 1.229
Proposed Method-I ~MMð1;2Þ

� �
2.393 1.603 1.399 1.217

Proposed Method-II ~MMð1;2Þ
� �

2.399 1.611 1.407 1.204
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Three numerical examples, including both mode-I and
mixed-mode problems, are presented to evaluate the
accuracy of fracture parameters calculated by the pro-
posed interaction integrals. Comparisons have been made
between the stress-intensity factors predicted by the pro-
posed interaction integrals and available reference solu-
tions in the literature, generated either analytically or
numerically using various other fracture integrals or
analyses. An excellent agreement is obtained between the
results of proposed interaction integrals and the
previously obtained solutions.
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