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Abstract This work presents a fully nonlinear six-
parameter (3 displacements and 3 rotations) shell model
for finite deformations together with a triangular shell
finite element for the solution of the resulting static
boundary value problem. Our approach defines energeti-
cally conjugated generalized cross-sectional stresses and
strains, incorporating first-order shear deformations for
an inextensible shell director (no thickness change). Finite
rotations are treated by the Euler–Rodrigues formula in a
very convenient way, and alternative parameterizations are
also discussed herein. Condensation of the three-dimen-
sional finite strain constitutive equations is performed by
applying a mathematically consistent plane stress condi-
tion, which does not destroy the symmetry of the linear-
ized weak form. The results are general and can be easily
extended to inelastic shells once a stress integration
scheme within a time step is at hand. A special displace-
ment-based triangular shell element with 6 nodes is fur-
thermore introduced. The element has a nonconforming
linear rotation field and a compatible quadratic interpo-
lation scheme for the displacements. Locking is not ob-
served as the performance of the element is assessed by
several numerical examples, which also illustrate the
robustness of our formulation. We believe that the com-
bination of reliable triangular shell elements with powerful
mesh generators is an excellent tool for nonlinear finite
element analysis.

Keywords Nonlinear shell formulation, Large strains,
Finite rotations, Triangular shell element

1
Introduction
Most of the research carried out over the past two decades
regarding nonlinear finite shell elements deals essentially
with quadrilateral elements. As a result of locking phe-
nomena triangular domains were very often avoided,
despite their greater flexibility for mesh generators. With
respect to shell kinematics, a large number of these works
commonly employ only two components to entirely de-
scribe the shell rotation field. The so-called drilling degree-
of-freedom is frequently ignored as it has no inherent
stiffness during the shell motion. Six-parameters – 3 dis-
placements and 3 rotations – shell models can however be
very convenient for engineering applications since no
special connection scheme is necessary at the shell edges
and intersections, and no particular care needs to be taken
when coupling shell and rod elements.

In this work we review and extend the geometrically-
exact six-parameter shell formulation of Pimenta [17]
(which is one of the existing shell models undergoing large
strains and finite rotations, see [2, 9–11, 15, 24, 32] to
name just a few others), and introduce a special triangular
shell finite element for the solution of the resultant static
boundary value problem.

Although it may be not necessary, our approach defines
energetically conjugated cross sectional stresses and strains,
based on the concept of shell director with a standard
Reissner–Mindlin kinematical assumption. Appealing is the
fact that both the first Piola–Kirchhoff stress tensor and the
deformation gradient appear as primary variables. Due to
the use of cross sectional quantities, the derivation of
equilibrium equations in strong and weak forms is consid-
erably simpler, and the linearization of the latter leads
naturally to a symmetric bilinear form for hyper-elastic
materials and conservative loadings (even far from equi-
librium states). The resulting expressions are much similar
to those obtained for geometrically-exact spatial rods in [18,
19], rendering a very convenient pattern for the
simultaneous coding of rod and shell finite elements.

Particular attention is drawn in deriving elastic
constitutive equations from fully three-dimensional finite
strain constitutive models, in a totally consistent way. A
genuine plane-stress condition is enforced by vanishing
the true (first Piola–Kirchhoff) mid-surface normal stress,
not destroying the symmetry of the linearized weak form.
This idea is general and can be easily extended to inelastic
shells, once a 3-D stress integration scheme within a time
step is at hand. Although the shell director is assumed to
be inextensible during the motion, thickness deformation
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can be straightforwardly accounted for in a multi-param-
eter theory (see [22]).

We assume a plane reference configuration for the shell
mid-surface. Initially curved shells can then be regarded as
a stress-free deformed state from this plane position,
similarly as in [20] for rods. This approach prevents the
use of convective non-Cartesian coordinate systems and
simplifies the comprehension of tensor quantities, since
only components on orthogonal frames are employed. In
addition, it allows for initial strains and curvatures that are
completely independent of the isoparametric concept.

Finite rotations are treated here by the Euler–Rodrigues
formula in a pure Lagrangian way. Two different parame-
terizations are considered: (i) the usual Euler rotation vector
and (ii) a family of modified Rodrigues parameters. The first
is singularity-free for any rotation increment while the latter
delivers computationally more efficient expressions.

A special displacement-based triangular shell element is
furthermore introduced. The element has 6 nodes and is flat
in the reference configuration, with a nonconforming linear
rotation field and a compatible quadratic interpolation
scheme for the displacements. No numerical tricks such as
ANS, EAS or reduced integration with hourglass control are
needed to improve its performance. Therefore, the sim-
plicity of pure displacement-based elements is fully pre-
served and enjoyed here, and this constitutes one of the
primary features of this work. Locking is not observed as the
accuracy of the element is assessed by several numerical
examples, which also illustrate the robustness of our for-
mulation. We believe that the combination of reliable tri-
angular shell elements with powerful mesh generators is an
excellent tool for nonlinear finite element analysis.

Throughout the text, italic Latin or Greek lowercase
letters ða; b; . . . ; a; b; . . .Þ denote scalar quantities, bold
italic Latin or Greek lowercase letters ða; b; . . . ; a; b; . . .Þ
denote vectors, bold italic Latin or Greek capital letters
ðA;B; . . .Þ denote second-order tensors, bold calligraphic
Latin capital letters ðA;B; . . .Þ denote third-order tensors
and bold blackboard italic Latin capital letters ðA;B; . . .Þ
denote fourth-order tensors in a three-dimensional
Euclidean space. Vectors and matrices built of tensor
components on orthogonal frames (e.g. for computational
purposes) are expressed by boldface upright Latin letters
ðA;B; . . . a;b; . . .Þ. Summation convention over repeated
indices is adopted, with Greek indices ranging from 1 to 2
and Latin indices from 1 to 3.

2
Shell model

Kinematics
It is assumed that the middle surface of the shell is plane at
the initial reference configuration1. Let er

1; er
2; er

3

� �
be an

orthogonal system, with the vectors er
a placed on the shell

reference mid-plane and er
3 normal to this plane, as shown

in Fig. 1.

The position of any shell material point in the reference
configuration can be described by

n ¼ fþ ar ; ð1Þ

where the vector

f ¼ naer
a ð2Þ

defines a point on the reference mid-surface and ar is the
shell director at this point, given by

ar ¼ fer
3 : ð3Þ

Here f 2 H ¼ ½�hb; ht� is the thickness coordinate, with
h ¼ hb þ ht being the shell thickness in the reference
configuration (observe that fna; fg sets a three-dimen-
sional Cartesian frame).

In the current configuration the position x of any
material point can be expressed by the vector field

x ¼ z þ a ; ð4Þ
where z ¼ ẑzðnaÞ describes the current position of a point
in the middle surface and a is the current director at this
point, obtained as

a ¼ Qar ; ð5Þ
with Q as the rotation tensor. Notice that no thickness
change is assumed during the motion (this issue will be
better discussed in Sect. 3), and that first order shear
deformations are accounted for since a is not necessarily
normal to the current mid-surface. We use in the text the
notation v ¼ Qvr , vr ¼ QTv, for any vectors v; vr 2 R3.
The vector vr is said to be the back-rotated counterpart of
v and is not affected by superimposed rigid body motions.
Let now e1; e2; e3f g be a local orthogonal system on the
current configuration, with ei ¼ Qer

i , as depicted in Fig. 1.
It is easy to show that any v has the same components on
the current system e1; e2; e3f g as its counterpart vr has on
the reference system er

1; er
2; er

3

� �
.

The rotation tensor Q may be expressed in terms of the
Euler rotation vector h, by means of the well-known Euler–
Rodrigues formula

Q ¼ I þ h1ðhÞHþ h2 hð ÞH2 ; ð6Þ

Fig. 1. Shell description and basic kinematical quantities

1 Initially curved shells can be mapped by standard isoparametric
means, or can be regarded as a stress-free deformed state from
the plane initial position, as will be shown in a next work (see the
ideas of [20] for rods).
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in which h is the true rotation angle given by h ¼ hk k. In
(6) the following trigonometric functions have been
introduced:

h1 hð Þ ¼ sin h
h

and h2 hð Þ ¼ 1

2

sin h=2

h=2

� �2

: ð7Þ

Still in (6) H is the skew-symmetric tensor whose axial
vector is h, indicated herein by H ¼ skew hð Þ. Another sort
of parameterization for the rotation field, which was al-
ready employed in [21], is discussed in detail in appendix
A.

Having defined z and f, the displacements of any point
of the reference middle plane can be computed by

u ¼ z � f : ð8Þ
The components of u and h on a global Cartesian system
constitute the 6 degrees-of-freedom of this shell model.

Two skew-symmetric tensors that describe the specific
rotations of the director can be defined as Ka ¼ Q;aQT ,
where we have introduced the notation ð�Þ;a ¼ oð�Þ=ona
for derivatives. One can show that the corresponding axial
vectors are

ja ¼ axialðKaÞ ¼ Ch;a ; ð9Þ
with the tensor C given by

C ¼ I þ h2 hð ÞHþ h3 hð ÞH2 : ð10Þ
In this expression, h2 hð Þ was already stated in (7) while
h3 hð Þ is

h3 hð Þ ¼ 1� h1 hð Þ
h2 : ð11Þ

We remark that the useful properties CT ¼ QTC ¼ CQT

and C ¼ QTCQ ¼ QCQT hold for C.
From differentiation of (4) with respect to n one can

evaluate the deformation gradient F. After some algebra
one has

F ¼ Q I þ gr
a þ jr

a � ar
� �

� er
a

� �
; ð12Þ

in which

gr
a ¼ QTz;a � er

a and jr
a ¼ CTh;a : ð13Þ

These two vectors may be regarded as cross-sectional
generalized strains, with z;a ¼ er

a þ u;a obtained from (8)
and (2). One may understand that the components gr

a � er
b

of gr
a operate as membrane strains, while gr

a � er
3 as trans-

versal shear strains. Expressions (13) are the back-rotated
counterparts of ga ¼ z;a � ea and (9), respectively.

Introducing the strain vectors

cr
a ¼ gr

a þ jr
a � ar ð14Þ

in (12), the deformation gradient may be rewritten as

F ¼ QFr ; ð15Þ
where Fr is called the back-rotated deformation gradient
and is given by

Fr ¼ I þ cr
a � er

a : ð16Þ

Differentiation of (15) with respect to time (denoted by a
superposed dot) renders the velocity gradient as follows

_FF ¼ XF þ Q _ccr
a � er

a

� �
; ð17Þ

where the skew-symmetric tensor X ¼ _QQQT represents the
director spin. Its axial vector is denoted by x ¼ axialðXÞ
and similarly to (9) is obtained as

x ¼ C _hh : ð18Þ
In order to fully evaluate expression (17), the time deriv-
atives _ccr

a are needed. With the aid of the identity

ð _QQÞ;a ¼ ð _QQ;aÞ it is possible to arrive at
X;a ¼ _KKa �XKa þ KaX, or equivalently

x;a ¼ _jja � x� ja ; ð19Þ
from which after some algebra one has

_jjr
a ¼ QTx;a : ð20Þ

Then, having the expressions for _jjr
a, from (14) one can

write

_ccr
a ¼ _ggr

a þ _jjr
a � ar ; ð21Þ

where

_ggr
a ¼ QT _uu;a þ Z;aC _hh

� �
and _jjr

a ¼ QT C;a
_hhþ C _hh;a

� �
:

ð22Þ
Here the skew-symmetric tensors Z;a ¼ skew z;a

� �
and the

derivatives

C;a ¼ h2ðhÞH;a þ h3ðhÞ HH;a þH;aH
� �

þ h4ðhÞ h � h;a
� �

Hþ h5ðhÞ h � h;a
� �

H2 ð23Þ

have been introduced. Property (20) was employed in
deriving (22)2. In turn, in (23) H;a ¼ skew h;a

� �
are two

skew-symmetric tensors, and

h4ðhÞ ¼
h1ðhÞ � 2h2ðhÞ

h2 and h5ðhÞ ¼
h2ðhÞ � 3h3ðhÞ

h2

ð24Þ

are two additional trigonometric functions.

Statics
Let the first Piola-Kirchhoff stress tensor be written as

P ¼ QPr ; ð25Þ
where Pr is called the back-rotated first Piola–Kirchhoff
stress tensor, herein expressed by

Pr ¼ sr
i � er

i : ð26Þ
The quantities sr

i are back-rotated stress vectors, and act
on cross-sectional planes whose normals on the reference
configuration are er

i . Integration of these stress vectors
along the shell thickness allows the definition of general-
ized cross-sectional stresses, i.e.

nr
a ¼

Z

H

sr
a df and mr

a ¼
Z

H

ar � sr
a df : ð27Þ

In this case nr
a are said to be the back-rotated cross

sectional forces and mr
a the back-rotated cross sectional

moments, both per unit length.
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Knowing the expressions of P and _FF, it is not difficult to
show that the shell internal power per unit reference vol-
ume may be written as

P : _FF ¼ sr
a � _ccr

a ; ð28Þ
where the property PFT : X ¼ 0, arising from the local
moment balance, needs to be used. If one introduces (21)
in (28) and performs some manipulation with the cross
product it renders

sr
a � _ccr

a ¼ sr
a � _ggr

a þ ar � sr
a

� �
� _jjr

a : ð29Þ
Notice that the stress vector sr

3 remains powerless, as
should be expected for a rigid shell director (recall that no
thickness stretching is assumed). Integration of (29) over
the thickness along with definitions (27) provides
Z

H

sr
a � _ccr

a df ¼ nr
a � _ggr

a þmr
a � _jjr

a : ð30Þ

We remark that the vectors sr
a; c

r
a, nr

a, mr
a, gr

a and jr
a are not

affected by superimposed rigid body motions. Collecting
the shell cross-sectional quantities in the 3 vectors dis-
played below

ra ¼
nr

a
mr

a

	 

; ea ¼

gr
a

jr
a

	 

and d ¼ u

h

	 

; ð31Þ

then (30) may be restated as follows
Z

H

sr
a � _ccr

a df ¼ ra � _eea : ð32Þ

In this expression, the time derivative _eea (consisting of the
components _ggr

a and _jjr
a) may be written in a very compact

manner as

_eea ¼ Wa
_dd ; ð33Þ

in which the operator Wa emanates from (22) and is

Wa ¼ QT O
O QT

	 

I O Z;aC

O C C;a

	 

Da ðno sumÞ ;

ð34Þ
with

Da ¼
I o

ona
O

O I o
ona

O I

2

4

3

5 : ð35Þ

Using (32), the shell internal power on a domain X � R2 is
then given by

Pint ¼
Z

X

ra � _eea dX : ð36Þ

On the other hand, if one defines a vector t as the surface
traction per unit reference area, and another vector b as
the body force per unit reference volume, the shell external
power on the same domain X � R2 can be expressed by

Pext ¼
Z

X

tt � _xxt þ tb � _xxb þ
Z

H

b � _xx df

2

4

3

5dX ; ð37Þ

where _xx is obtained by time differentiation of (4), i.e.

_xx ¼ _uuþ x� a : ð38Þ
Introducing (18) in (38) and this in (37) one obtains

Pext ¼
Z

X

�qq � _dd dX ; ð39Þ

in which

�qq ¼ �nn
CT �mm

	 

ð40Þ

is defined as the vector of generalized external forces. In
this case the vectors

�nn ¼ tt þ tb þ
Z

H

b df and

�mm ¼ at � tt þ ab � tb þ
Z

H

a� b df

ð41Þ

of (40) are the applied external forces and moments
respectively, both per unit area of the middle surface in the
reference configuration.

Remark 1
The vector

�ll ¼ CT �mm ð42Þ
emerging from (40) is the distributed external moment
truly power-conjugated with h, and not purely �mm as one
would expect. The same holds for external concentrated
moments. This fact has far-reaching consequences in the
nonlinear analysis of structures with rotational degrees of
freedom, since a non-trivial geometric contribution of the
applied moments is introduced in the tangent bilinear
form (see appendix C for detailed expressions).

Weak forms
In the same way as to obtain (36), one can have the
expression for the shell internal virtual work on a domain
X � R2 as follows

dW int ¼
Z

X

ra � dea dX ; ð43Þ

with

dea ¼ Wadd : ð44Þ
The external virtual work on the same domain X � R2

may be evaluated similarly to (39), i.e.

dWext ¼
Z

X

�qq � dd dX ; ð45Þ

so that the shell local equilibrium can be stated by means
of the virtual work theorem in a standard way:

dW ¼ dWint � dWext ¼ 0 in X; 8 dd : ð46Þ
Substituting (43) and (45) in this expression and per-
forming partial integration on the terms with du;a and
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ðCdhÞ;a; the following local equilibrium equations in X are
obtained by the fundamental lemma of variational calculus

na;a þ �nn ¼ o and

ma;a þ z;a � na þ �mm ¼ o :
ð47Þ

Here the cross-sectional resultants

na ¼ Qnr
a and ma ¼ Qmr

a ð48Þ
have been introduced with respect to the current
configuration. Equilibrium equations (47) can be directly
attained by Statics as well.

The Gateaux derivative of (46) with respect to d leads to
the tangent bilinear form

d�ðdWÞ¼
Z

X

Waddð Þ � DabWbd
�d

� �
dX

þ
Z

X

Daddð Þ � GaDad
�dð ÞdX�

Z

X

dd �Ld�dð ÞdX ;

ð49Þ
in which the matrices Dab, Ga and L are given by

Dab ¼
ora

oeb
¼

onr
a

ogr
b

onr
a

ojr
b

omr
a

ogr
b

omr
a

ojr
b

2

64

3

75;

Ga ¼

O O Gu0h
a

O O Gh0h
a

Ghu0

a Ghh0
a Ghh

a

2

6664

3

7775
and

L ¼ o�qq

od
¼

o�nn
ou

o�nn
oh

o�ll
ou

o�ll
oh

2

4

3

5 :

ð50Þ

The sub-matrices of Ga are stated in appendix B and were
firstly presented in [17]. They are functions of ra and d
and remain always symmetric, even far from equilibrium
states. The sub-matrices of L, however, depend on the
character of the external load as one can see in (50)3 (some
expressions can be found in appendix C). Therefore the
bilinear form (49) is symmetric whenever

Dab ¼ DT
ba and L ¼ LT ; ð51Þ

i.e., whenever the material is hyper-elastic and the external
loading is locally conservative, respectively.

Let us introduce now the following shell tangent tensors

osr
a

ocr
b

¼ �CCab ð52Þ

and the following derivatives

ocr
c

ogr
b

¼ dcbI and
ocr

c

ojr
b

¼ �dcbAr ; ð53Þ

where dab is the Kronecker symbol and Ar ¼ skew arð Þ.
The sub-matrices of Dab in (50)1 can then be computed by
the chain rule as

onr
a

ogr
b

¼
Z

h

�CCab df;
onr

a

ojr
b

¼ �
Z

h

�CCabAr df;

omr
a

ogr
b

¼
Z

h

Ar �CCab df and
omr

a

ojr
b

¼ �
Z

h

Ar �CCabAr df :

ð54Þ
Notice here that (51)1 is true if there exists a specific strain
energy function w ¼ wðcr

aÞ or if �CCab ¼ �CCT
ba.

3
Elastic constitutive equations

The plane-stress condition
Constitutive relations within this shell model can be stated
to a wider range of problems if the expression (16) for Fr is
replaced by

Fr ¼ I þ cr
a � er

a þ c33er
3 � er

3 : ð55Þ
The element c33 was introduced above in order to allow for
transversal through-the-thickness strains. It can be regarded
as an additional degree-of-freedom, which can be elimi-
nated at the constitutive level by enforcing a plane-stress
condition (a complete multi-parameter shell formulation in
which c33 is retained will be found in [22]). Here, a math-
ematically consistent plane-stress situation may be attained
in which the true (first Piola–Kirchhoff) mid-surface normal
stress vanishes, i.e. Per

3

� �
� e3 ¼ 0, rendering

sr
33 ¼ sr

3 � er
3 ¼ er

3 � Prer
3 ¼ 0 : ð56Þ

In other words, the projection of the real stress Per
3 on the

current director a ¼ fe3 is assumed to be zero, what means
that sr

33 is powerless as in (28).
Once the expression for Fr was modified, we introduce

the following new tangent quantities

osr
a

ocr
b

¼ Cab;
osr

a

oc33

¼ osr
33

ocr
a
¼ ca and

osr
33

oc33

¼ c : ð57Þ

Condition (56) generates a nonlinear equation in c33 that
can be iteratively solved by the Newton Method as follows

ckþ1
33 ¼ ck

33 �
1

c ck
33

� � sr
33 ck

33

� �
; k ¼ 0; 1; 2; . . . ; c0

33 ¼ 0 ;

ð58Þ
in which cðc33Þ is given by (57)3. This way, c33 is consis-
tently eliminated from the shell kinematics, and the tan-
gent tensors �CCab of (52) can be computed by means of

�CCab ¼ Cab �
1

c
ca � cb : ð59Þ

General elastic materials
We write the symmetric Green–Lagrange strain tensor as

E ¼ 1

2
FTF � I
� �

¼ 1

2
FrTFr � I
� �

; ð60Þ

with its energetically conjugated second Piola-Kirchhoff
stress tensor S such that
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P ¼ FS : ð61Þ
One can show that

Pr ¼ FrS ð62Þ
also holds. A general hyper-elastic material can be fully
described by a specific strain energy function w ¼ wðEÞ,
such that the second Piola–Kirchhoff stress tensor is given
by

S ¼ ow
oE

: ð63Þ

As a consequence, a fourth-order tensor of elastic tangent
moduli for the pair S;Ef g can be defined as

D ¼ oS

oE
¼ o2w

oE2 : ð64Þ

With the aid of the following third- and second-order
tensors

Ba ¼
oE

ocr
a

and B ¼ oE

oc33

; ð65Þ

the relations

sr
a ¼ BT

a S and sr
33 ¼ B : S ð66Þ

can be readily derived. From (57), (64), (65) and (66) we
arrive at

Cab ¼ BT
aDBb þ er

a � Ser
b

� �
I;

ca ¼ BT
aDBþ er

a � Ser
3

� �
er

3 and

c ¼ B : DBþ er
3 � Ser

3 :

ð67Þ

The Introduction of these quantities into (59) yields
tangent tensors �CCab of (52).

Remark 2
The just developed approach to ensure a mathematically
consistent plane-stress condition is general, and can be
straightforwardly extended to inelastic shells once a stress
integration scheme within a time step is available.

Isotropic materials
When the material is in addition isotropic, the strain energy
function w can be written as a function of the invariants of
the right Cauchy–Green strain tensor C ¼ FTF ¼ FrTFr: We
adopt here the following set of invariants

I1 ¼ I : C; I2 ¼
1

2
I : C2 and J ¼ det F ; ð68Þ

with which we write w ¼ wðI1; I2; JÞ. Doing so, the back-
rotated first Piola–Kirchhoff stress tensor can be expressed
by

Pr ¼ ow
oJ

JFr�T þ 2Fr ow
oI1

I þ ow
oI2

C

� �
; ð69Þ

where the Jacobian J is (using the components cai ¼ cr
a � er

i
of cr

a)

J ¼ 1þ c33ð Þ�JJ; with

�JJ ¼ 1þ c11ð Þ 1þ c22ð Þ � c12c21 ;
ð70Þ

and where Fr and Fr�T can be stated explicitly by (55) and

Fr�T ¼ 1
�JJ

1þ c22 �c12
c12c23�c13 1þc22ð Þ

1þc33

�c21 1þ c11
c21c13�c23 1þc11ð Þ

1þc33

0 0
�JJ

1þc33

2

6664

3

7775
: ð71Þ

From the plane stress condition (56) and from (69) one
thus has

ow
oJ

�JJ þ 2
ow
oI1
þ ow

oI2
ca3ca3

� �
1þ c33ð Þ

þ 2
ow
oI2

1þ c33ð Þ3¼ 0 : ð72Þ

Depending on the character of w it is possible to find an
analytical solution for this equation, circumventing the
Newton iterations of (58). This is the case of the simple
poly-convex neo-Hookean material defined by

w I1; Jð Þ ¼ 1

2
k

1

2
J2 � 1
� �

� ln J

� �
þ 1

2
l I1 � 3� 2 ln Jð Þ ;

ð73Þ
proposed by Simo in [25], where the Lame constants k and
l are material parameters. Substituting (73) into (72) one
arrives after some algebra at

1þ c33ð Þ2¼ kþ 2l

k�JJ2 þ 2l
; ð74Þ

which means that the transversal (through-the-thickness)
strain for this particular material is given by

c33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

k�JJ2 þ 2l

s

� 1 : ð75Þ

Furthermore, introducing (73) into (69) leads to the
expression for the back-rotated first Piola-Kirchhoff stress
tensor

Pr ¼ sr
i � er

i ¼
1

2
k J2 � 1
� �

� l

� �
Fr�T þ lFr ; ð76Þ

from which, together with (74), we get

sr
1 ¼ l#

1þ c22

�c21

0

2

64

3

75þ l

c11 � c22

c12 þ c21

c13

2

64

3

75 and

sr
2 ¼ l#

�c12

1þ c11

0

2

64

3

75þ l

c12 þ c21

c22 � c11

c23

2

64

3

75 ;

ð77Þ

where

# ¼ # �JJð Þ ¼ k �JJ3 � 1ð Þ þ 2l �JJ � 1ð Þ
k�JJ3 þ 2l�JJ

: ð78Þ

Notice that sr
a � er

3 ¼ lca3, and that ca3 do not appear in the
expressions of the components sr

ab. Knowing sr
a from (77),

it is then possible to compute the tangent tensors of (52),
leading to
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�CC11¼l

1þc22ð Þ2#0 þ1 � 1þc22ð Þc21#
0 0

� 1þc22ð Þc21#
0 c2

21#
0 þ1 0

0 0 1

2

64

3

75;

�CC12¼l

� 1þc22ð Þc12#
0 #�1þ 1þc11ð Þ 1þc22ð Þ#0 0

1�#�c12c21#
0 � 1þc11ð Þc21#

0 0

0 0 0

2

64

3

75;

�CC21¼ �CCT
12 and

�CC22¼l

c2
12#
0 þ1 � 1þc11ð Þc12#

0 0

� 1þc11ð Þc12#
0 1þc11ð Þ2#0 þ1 0

0 0 1

2

64

3

75 ;

ð79Þ
in which

#0 ¼
kþ 2lð Þ 3k�JJ

2 þ 2l
� �

�JJ
2 k�JJ

2 þ 2l
� �2 : ð80Þ

Remark 3
Up to first order in cr

a, we have from (77)

sr
a ¼ �CCabc

r
b ; ð81Þ

with

�CC11 ¼
�EE 0 0

0 l 0

0 0 l

2

64

3

75; �CC12 ¼
0 �EEm 0

l 0 0

0 0 0

2

64

3

75;

�CC22 ¼
l 0 0

0 �EE 0

0 0 l

2

64

3

75 ð82Þ

and with �CC21 ¼ �CCT
12. Here the following material coeffi-

cients

m ¼ 1

2

k
kþ l

and �EE ¼ 2l
1� m

ð83Þ

have been introduced. Although the linear material de-
scribed by relation (81) is not affected by superimposed
rigid body motions (and in this sense fulfills objectivity), it
satisfies the local moment balance equation merely to first
order in cr

a. It could be regarded as a small-strain large-
displacement shell formulation, but the resulting model
would depend on the mesh pattern up to first order in cr

a.

Remark 4
The often-used St.-Venant–Kirchhoff material has the
following specific strain energy function (see e.g. [7])

w Eð Þ ¼ 1

2
k I : Eð Þ2þl E : Eð Þ : ð84Þ

From this expression, the second Piola–Kirchhoff stress
tensor results in

S ¼ k I : Eð ÞI þ 2lE ; ð85Þ

while the tensor of the elastic tangent moduli is

D ¼ kI � I þ 2lI : ð86Þ
Relation (85) may be conveniently rewritten as S ¼ DE, as
one can show. Writing down the components of the
Green–Lagrange strain tensor of (60) as

Eab ¼
1

2
cab þ cba þ caccbc þ ca3cb3

� �
;

Ea3 ¼
1

2
1þ c33ð Þca3 and

E33 ¼
1

2
1þ c33ð Þ2�1

� �
;

ð87Þ

then the plane stress condition of (56), along with (61),
(83), (85) and (87), yields the following result for this
material:

c33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
1� m

caa þ
1

2
cabcab

� �
� ca3ca3

s

� 1 :

ð88Þ
In addition, from (66)1, (83) and (88) we may write

sr
1 ¼

�EE 1þ c11ð Þ E11þ m E22� 1
2ca3ca3

� �� �
þ 2lc21E12

2l 1þ c22ð ÞE12þ �EEc12 E11þ m E22� 1
2ca3ca3

� �� �

lc13þ 2lc13 E11� 1
2ca3ca3

� �
þ 2lc23E12

2

64

3

75

and

sr
2 ¼

2l 1þ c11ð ÞE12þ �EEc21 E22þ m E11� 1
2ca3ca3

� �� �

�EE 1þ c22ð Þ E22þ m E11� 1
2ca3ca3

� �� �
þ 2lc12E12

lc23þ 2lc23 E22� 1
2ca3ca3

� �
þ 2lc13E12

2

64

3

75 :

ð89Þ
Notice the presence of ca3 in the expressions of sr

ab. Fur-
thermore the expressions of sr

a3 ¼ sr
a � er

3 in (89) are much
more complicated than those of (77). It is interesting to
remark that the presenting plane-stress condition (i.e. on
the first Piola–Kirchhoff stress) delivers S33 ¼ �lca3ca3,
and not S33 ¼ 0 as commonly used in the literature.
Moreover, despite its popularity, one should be aware that
relation (84) is not poly-convex, and for that reason the
solution of a boundary value problem with this specific
strain energy function may actually not exist (see reference
[7] for a detailed mathematical proof).

Incompressible isotropic materials
For incompressible isotropic elastic materials we state the
strain energy function in the form w ¼ wðI1; I2Þ, with
J ¼ 1. The back-rotated first Piola–Kirchhoff stress tensor
is then given by

Pr ¼ �pFr�T þ 2Fr ow
oI1

I þ ow
oI2

C

	 

; ð90Þ

where p is a hydrostatic pressure. Here, from J ¼ 1 in (70)1

we have

c33 ¼
1
�JJ
� 1 : ð91Þ
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Although it represents an additional degree-of-freedom, p
can be eliminated with the aid of the plane stress condition
(56):

p ¼ 2�JJ�2 ow
oI1
þ ow

oI2
ca3ca3

	 

þ 2

ow
oI2

�JJ�4 : ð92Þ

As an example, the Neo–Hookean model of Treloar in [30,
31], given by

w I1ð Þ ¼
1

2
l I1 � 3ð Þ ; ð93Þ

leads to

sr
1 ¼

l c11 � c22ð Þ þ l 1� �JJ�2ð Þ 1þ c22ð Þ
l c12 þ c21ð Þ � l 1� �JJ�2ð Þc21

lc13

2

64

3

75 and

sr
2 ¼

l c12 þ c21ð Þ � l 1� �JJ�2ð Þc12

l c22 � c11ð Þ þ l 1� �JJ�2ð Þ 1þ c11ð Þ
lc23

2

64

3

75 :

ð94Þ
in which (92) and (90) were applied.

4
The triangular shell finite element
We introduce an unconventional triangular shell element,
from now on named T6-3i. The element is a 6-node dis-
placement-based one, with a plane reference configuration
as displayed in Fig. 2. A standard compatible quadratic
displacement field u is placed on all nodes, while a linear
interpolation scheme for the rotation vector h is set only
on the mid-sides.

The absence of rotational degrees-of-freedom in the
corner nodes makes the T6-3i a nonconforming element
with respect to the rotation field, similarly to the ideas of
[14] for linear plate triangles of the Reissner–Mindlin type.
In reference [14], however, the concept of assumed strains
is employed within a mixed formulation, and simple linear
shape functions are used for the transversal displacements
w and for the rotations hx and hy. Here, in contrast, we
simply adopt higher order (quadratic) polynomials to

interpolate the displacements u, staying away of any
expensive techniques such as mixed models with ANS or
EAS. The T6-3i can this way enjoy all the simplicity and
reliability of a pure displacement-based element, yet
without any locking misbehavior.

As we work with the 3 components of the rotation
vector, there is no need for special connection schemes
on the shell edges and intersections. A fictitious stiffness of
Eh3 (E = elasticity modulus; h = shell thickness) is
added to the drilling rotation locally at the element level,
as this seems to be an optimal value (see [6]). This
constitutes the only artificial numerical factor of our
formulation.

We write the finite element interpolation in a particular
element e, e ¼ 1; . . . Ne, as follows

d ¼ Npe ; ð95Þ
where N is the matrix of element shape functions and pe
the vector of element nodal displacements and rotations.
The vector of the residual nodal forces for a particular
element is then given by

Pe ¼
Z

Xe

NT�qq� WaNð ÞTra

h i
dX ; ð96Þ

in which Xe is the element domain. The element tangent
stiffness matrix is straightforwardly obtained with the help
of (49), leading to

ke ¼
Z

Xe

WaNð ÞTDab WbN
� �

þ DaNð ÞTGa DaNð Þ�NTLN
h i

dX :

ð97Þ

Here it is important to remark that the linearization stated
in (49) can be performed either before or after discreti-
zation. Assemblage of the global residual forces and of the
global tangent stiffness may be done as usual by

R ¼
XNe

e¼1

AT
e Pe and K ¼

XNe

e¼1

AT
e keAe ; ð98Þ

respectively, where Ae is the connectivity matrix relating
the element nodal DOFs pe with the whole domain nodal
DOFs r, i.e.

pe ¼ Aer : ð99Þ
Equilibrium is then reached by vanishing the global
residual forces,

R rð Þ ¼ o ; ð100Þ
what can be iteratively solved by the Newton method for
the free nodes.

Remark 5
It is valuable to point out that a lower-order version of the
T6-3i, named T3-3i, was also implemented. The element is a
triangle with linear interpolations for both displacements
and rotations, yet compatible in the first and nonconforming
in the latter. However, as expected for constant strain

Fig. 2. The T6-3i element in reference and deformed configura-
tions
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triangles, it performs quite well in plate-bending situations
but displays a slightly poor in-plane response. Due to this
the present work is restricted to the T6-3i only.

5
Numerical examples
In this section we assess the extent of our shell model
together with the accuracy and reliability of the T6-3i
element, by means of several numerical examples. For
computation of the element matrices and vectors, 3 inte-
gration points – each one located on the element mid-sides
– were adopted throughout. The material is assumed to be
the neo-Hookean elastic isotropic of (73).

Example 1: Brief study of locking behaviour
This is a classical and illustrative test for locking investi-
gation. A simply supported square plate is loaded by a
uniform vertical pressure q, as shown in Fig. 3. Horizontal
displacements in the 4 edges are assumed to be free, in
order to avoid membrane stresses. The thickness of the
plate is h and its length is L ¼ 2:0 m, while the elasticity
constants are adopted as E ¼ 106 kN/m2 and m ¼ 0:3:

The intensity of the load is properly chosen for different
values of the thickness, in a range from thick to very thin
situations according with q 	 h3 (see [5]). Figure 4 shows
the central deflection w of the plate (normalized by Kir-
chhoff’s analytical solution) versus the number of side
divisions in one quarter of the structure, for T6-3i meshes
with different ratios h=L: The non-locking behaviour is
noticeable up to h=L ¼ 10�5. Similar results have been also

obtained for different plate geometries (rectangular,
circular and skew)2.

Example 2: Study of in-plane and out-of-plane behaviour
A cantilever beam of squared cross-section is subjected to
a large point load at the center of its free end. With this
simple example we want to show that the developed ap-
proach is capable to undergo large in-plane and out-of-
plane rotations, as proposed in [24, 32]. The material is
assumed to be of E ¼ 107 and m ¼ 0:3; while the beam
dimensions are L ¼ 1:0 and b ¼ h ¼ 0:1: Two different
situations are enforced here: (i) in-plane bending with the
load applied in the same plane of the beam and (ii) out-of-
plane bending with the load applied in the out-of-plane
direction. A plot of the load-deflection curve for the tip
displacements is shown in Fig. 5, where almost identical
results for both cases are found. Solution reported in [32]
for Q9 quadrilateral Lagrangean elements with reduced
integration is graphically indistinguishable. The deformed
shapes are depicted in true scale.

Example 3: Lateral buckling of an L-shaped plate strip
The flat L-shaped plate strip of Fig. 6 is fully clamped in one
edge and subjected to an in-plane point load at the free end.
With E ¼ 71240 N/mm2 and m ¼ 0:31, the lateral stability of
the plate is here investigated as done in [1] for rod elements
and in [24, 32] for shells. A very small perturbation load is
imposed on the free edge in the out-of-plane direction, in
order to initialize the post-critical lateral deflections. Fig. 7
shows the analysis results for a 2 � 68 T6-3i element mesh,
where the deformed configuration at the last load step can
also be seen in true scale. Our solution of Pcr ¼ 1:130 is in
good agreement with the values Pcr ¼ 1:128 and Pcr ¼ 1:123
reported in [24, 32] respectively.

Example 4: Ring plate loaded at free edge
This example was proposed in reference [2] and has been
also analyzed by [4] and [32]. A circular ring plate with a

Fig. 3. Problem definition for Example 1

Fig. 4. Analysis results for Example 1

Fig. 5. Analysis results for Example 2

2 The deflections displayed here are the linear solution of the
problem, obtained after the first Newton iteration. Nonlinear
results would be affected by membrane stresses, and therefore
cannot be compared to the Kirchhoff’s classical value of
w ¼ 0:0443 qL4=Eh3. See [29]. We remark that the nonlinear
results do not display locking effects either.
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radial rip is loaded along its free edge by p ¼ 0:1f kN/m,
the other edge being fully clamped. The outer and inner
radius of the plate are R ¼ 10:0 m and r ¼ 6:0 m,
respectively, while the thickness is h ¼ 0:03 m. The
material properties are assumed to be E ¼ 2:1� 108 kN/m2

and m ¼ 0. Analyses were carried out with three T6-3i
element meshes of the same pattern, differing from each
other only on the degree of refinement (each finer mesh is
embedded in the coarser). Vertical displacements u ob-
tained for points A, B and C are plotted versus the load
factor f on the next figures. As it can be seen, the results
presented herein converge properly to the ones reported in
the literature as the mesh is refined (for the sake of
clearness only the curves from [4] are shown on the
graphs; the remainders are nearly identical).

Example 5: Pinched hemispherical shell
This benchmark problem (see [13] and [24] among others)
is concerned with the analysis of a hemispherical shell,
with an 18
 hole at one side, subjected to two inward and
two outward symmetric forces 90
 apart from each other
as in Fig. 9. Symmetry conditions are used so that only one
quadrant of the structure needs to be modeled. The
material properties are taken as E ¼ 6:825� 107 and
m ¼ 0:3, while the radius of the hemisphere is R ¼ 10:0 and
its thickness t ¼ 0:04. In order to verify the large defor-
mation capabilities of the formulation, the loads are in-
creased by a factor of 100.

In Fig. 10 one can see the final deformed configuration
for a typical T6-3i element mesh, without any magnifica-
tion. Plots of the pinching load values versus the deflec-

Fig. 6. Problem definition for Example 3

Fig. 7. Analysis results for Example 3

Fig. 8. Problem definition and analyses results for Example 4
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tions of points A and B are shown in the sequence for
different meshes.

Once more the results presented here converge appro-
priately to the ones reported in the literature, as the mesh
is refined.

Example 6: Pull-out of an open cylinder
The open cylindrical shell of Fig. 12 is pulled by two dia-
metrically opposite point forces P, the same as in [12], [16]
and [28]. The material is assumed to have E ¼ 10:5� 106

and m ¼ 0:3125: One-eighth of the cylinder is modeled here
by 2 � 8 � 16 T6-3i elements, with the same mesh pattern
as in references [16, 28]. Figure 13 shows the converged
upward deflections of point A versus the pulling force P,
and the final deformed configuration is depicted aside in
true scale.

One should notice the slight snap-through behaviour of
the solution when P � 2:0� 104, what also happens in the
references mentioned.

Example 7: Pinched cylinder
A cylindrical shell with rigid end-diaphragms is pinched
by two opposite point loads as in Fig. 14, similarly to a
finger-pinched beer can. The material properties of the
cylinder are taken as E ¼ 3:0� 104 and m ¼ 0; and the
pinching forces are increased up to P ¼ 12000: For
symmetry reasons only one octant of the can is modeled,
with a 2 � 32 � 32 T6-3i uniform mesh. Progression of
the displacements at points A (in vertical direction) and B
(in horizontal direction) are shown in Fig. 15, together with
the solution from [23] in which enhanced strain elements
were employed. The deformed configuration in true scale
at the maximum load is portrayed next.

Concluding remarks
The shell model portrayed herein is reasonably simple
and of great geometric appeal. Large rotations are
exactly treated in the context of finite elasticity, and the
plane stress condition as proposed here may render a
very consistent approach for the implementation of
elastoplastic constitutive models. Naturally, however,
very large strain problems can be more realistically
represented when thickness change is assumed within
the shell kinematics, what is considered in detail in a
next work [22]. At the moment, the T6-3i element
presently introduced exhibits very promise results, with
all the simplicity of a pure displacement-based finite
element. A wide range of fully nonlinear problems from
moderately thick to very thin shells can be regarded, yet
without any expensive techniques such as ANS, EAS or
hourglass control. General and reliable triangular shell
elements combined with powerful mesh generators may
constitute an excellent tool for nonlinear finite element
analysis.

Fig. 9. Problem definition for Example 5

Fig. 10. Final deformed configuration for Example 5 (true scale)

Fig. 11. Analysis results for
Example 5

Fig. 12. Problem definition for Example 6 515



Appendix A: Alternative finite rotation parameters
A good number of different parameterizations is possible
for the shell rotation field. For an instance, the quaternion
rotation parameters (which are due to Hamilton) are de-
fined by cos h and sin he, in which e ¼ ð1=hÞh is the unit
vector on the rotation axis (the proof of its existence is a
celebrated theorem by Euler). In turn, the Rodrigues
rotation parameters may be defined by

a ¼ ae; where a ¼ 2 tan
h
2
: ð101Þ

Sometimes these parameters are defined without the factor
2 in (101)2. However, definition as in (101) has the

advantage of a ¼ h up to second order. From (6), we arrive
at the following alternative expression for the Euler–
Rodrigues formula

Q ¼ I þ 4

4þ a2
Aþ 1

2
A2

� �
; ð102Þ

where A ¼ skewðaÞ (see [21]). Another expression for Q in
terms of A is given by the so-called Cailey transform, viz.

Q ¼ I � 1

2
A

� ��1

I þ 1

2
A

� �
: ð103Þ

The two factors in (103) commute since they are coaxial.
If a is regarded as a function of scalar variables, then the

counterpart of (9) is

ja ¼ Na;a ; ð104Þ

where

N ¼ 4

4þ a2
I þ 1

2
A

� �
: ð105Þ

This tensor has the property NT ¼ QTN ¼ NQT , and thus
N ¼ QTNQ ¼ QNQT also holds. Additional identities
NA ¼ AN ¼ Q� I and Na ¼ 4= 4þ a2ð Þð Þa can moreover
be constructed. On the other hand, differentiation of N
with respect to the scalar variables N renders

Fig. 13. Analysis results and final de-
formed configuration for Example 6

Fig. 14. Problem definition for Example 7

Fig. 15. Analysis results for Example 7

Fig. 16. Final deformed configuration for Example 7 (true scale)
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N;a ¼
1

2

4

4þ a2
A;a � a � a;a

� �
N

� �
: ð106Þ

The Rodrigues rotation parameters lead habitually to
simpler and more efficient expressions, totally free of
trigonometric functions. However, according to (101), if a
is used instead of h the rotation angle must be restricted to
�p < h < p (some updating scheme can be envisaged to
make this restriction applicable only to a single incre-
ment).

Any tensor of the form

Q ¼ I þ b

a2 þ b2
skewðeÞ þ 1� a

a2 þ b2

� �
skew2ðeÞ ;

ð107Þ
where e is the unit vector along the rotation axis
and a2 þ b2 ¼ 1, is actually a rotation tensor. Thus,
many other parameterizations are possible. The Euler
rotation vector corresponds to the obvious choice
a ¼ cos h and b ¼ sin h. The Rodrigues parameters (101)
correspond to

a ¼ 1� 2a2

4þ a2
and b ¼ 4a

4þ a2
: ð108Þ

For example, a family of modified Rodrigues parameters
can be generated by

an ¼ ane; where an ¼ 2n tan
h

2n
; n ¼ 1; 2; 3 . . . :

ð109Þ
For n ¼ 1 we recover (101). Notice that when an is used the
rotation angle must be restricted to �np < h < np. The
counterparts of (102) and (103) for this family are

Q1=n ¼ I þ 4

4n2 þ a2
n

nAn þ
1

2
A2

n

� �
and

Q1=n ¼ I � 1

2n
An

	 
�1

I þ 1

2n
An

	 

; ð110Þ

respectively, where An ¼ skew anð Þ. The two factors in
(110)2 commute since they are coaxial.

Appendix B: Geometric terms
The following result is obtained by differentiation

o CTt
� �

oh
¼ CT ot

oh
þ V h; tð Þ ; ð111Þ

where t is a generic vector,

V h; tð Þ ¼ h2ðhÞT þ h3 hð Þ TH� 2HTð Þþ

� h4 hð Þ Ht � hð Þ þ h5 hð Þ H2t � h
� �

;
ð112Þ

and T ¼ skew tð Þ. The tensor V h; tð Þ has the property

V h; tð Þ ¼ VT h; tð Þ þ CTTC : ð113Þ

With the aid of (111) and (112), we can then obtain the
derivatives

Gu0h
a ¼ Ghu0T

a ¼ �NaC;

Ghh0

a ¼ Gh0hT
a ¼ V h;mað Þ and

Ghh
a ¼ GhhT

a ¼ CTZ;aNaC� V h; z;a � na
� �

þ V ;a h; h;a;ma
� �

� CT
;aMaC ;

ð114Þ

where Na ¼ skew ðnaÞ, Ma ¼ skew ðmaÞ and

V ;a h; h;a;ma
� �

¼ h3 hð Þ MaH;a � 2H;aMa
� �

� h4 hð Þ H;ama � hþHma � h;a
� �

þ h5 hð Þ H;aHþHH;a
� �

ma � hþH2ma � h;a
� �

þ h � h;a
� �

h4 hð ÞMa þ h5 hð Þ MaH� 2HMað Þ½ �
þ h � h;a
� �

�h6 hð Þ Hma � hð Þ þ h7 hð Þ H2ma � h
� �� �

:

Here the following trigonometric functions have been
introduced

h6 hð Þ ¼ h3 hð Þ � h2 hð Þ � 4h4 hð Þ
h2 and

h7 hð Þ ¼ h4 hð Þ � 5h5 hð Þ
h2 :

ð115Þ

The corresponding results for the Rodrigues parameters
(101) are

o NTt
� �

oa
¼ NT ot

oa
þW a; tð Þ ; ð116Þ

where

W a; tð Þ ¼ � 1

2

4

4þ a2
NTt � a� T
� �

: ð117Þ

Notice the connection to (113):

W a; tð Þ ¼ WT a; tð Þ þ NTTN : ð118Þ
The submatrices of Ga are now expressed by

Gu0a
a ¼ Gau0T

a ¼ �NaN

Gaa0
a ¼ Ga0aT

a ¼ W a;mað Þ

Gaa
a ¼ GaaT

a ¼ NTZ;aNaN�W a; z;a � na
� �

þW ;a a; a;a;ma
� �

� NT
;aMaN ;

ð119Þ

where

W ;a a;a;a;ma
� �

¼�1

2

4

4þa2
NT
;ama�aþNTma�a;a

� �

þ1

4

4

4þa2

� �2

a �a;a
� �

NTma�a�Ma
� �

:

ð120Þ

Appendix C: Derivatives of the external loading
Semi-tangential external moments are conservative
moments characterized by the following time derivative

_�mm�mm ¼ 1

2
x� �mm : ð121Þ
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For this type of loading the matrix L of (50) has the aspect

L ¼ O O
O sym V h; �mmð Þð Þ

	 

: ð122Þ

In contrast, for a constant eccentric force �nn whose moment
is �mm ¼ s� �nn (with s as the eccentricity vector), L is given
by

L ¼ O O
O CTsym S �NNð ÞCþ sym V h; �mmð Þð Þ

	 

; ð123Þ

where S ¼ skewðsÞ and �NN ¼ skewð�nnÞ. The corresponding
results for the Rodrigues parameters defined in (101) are

L ¼
O O

O sym W a; �mmð Þð Þ

	 

and

L ¼
O O

O NTsym S �NNð ÞNþ sym W a; �mmð Þð Þ

	 

:

ð124Þ
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