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On the numerical integration of a class of pressure-dependent
plasticity models including kinematic hardening

U. Miihlich, W. Brocks

Abstract The algorithm proposed by Aravas to integrate a
special type of elastic-plastic constitutive equations has
been extended to incorporate kinematic hardening. Like in
the case of isotropic hardening, the number of primary
unknowns for the Newton iteration can be reduced to two
scalar strain variables. Furthermore, the consistent tangent
can be obtained explicitly. The modified algorithm has
been applied to a Gurson-type model which takes into
account kinematic hardening and the predictions of the
Gurson-like model are compared with results obtained by
unit cell calculations.

1

Introduction

To solve problems of elastoplasticity using finite element
method, the constitutive equations have to be integrated
for every time increment at each Gauss-point. If an implicit
integration scheme is used, a system of n nonlinear equa-
tions has to be solved and a so-called consistent tangent has
to be calculated to ensure quadratic convergence of the
global equilibrium iteration. The number of equations ()
depends on the considered constitutive model. Here, the
attention is focused on constitutive models with pressure
dependent yield condition and flow rule including kine-
matic hardening. Rate independent elastoplasticity is
considered.

Because n effects directly the analysis time, it is always
usefull to reduce n as much as possible. A first reduction
can be reached if the radial return algorithm proposed in
[1] is applied. According to the structure of the constitutive
model, further reduction of # may be possible by algebraic
operations as it was done for example in [2] for elasto-
plasticity and viscoplasticity with kinematic hardening.
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A reduction of n cannot be reached in the way described
in [2] if constitutive models with pressure dependent yield
condition and flow rule are considered. On the other hand,
a integration algorithm for such models was developed by
Aravas [3], whereby isotropic hardening was considered.
The algorithm makes use of the radial return algorithm and
applies the Newton-Raphson method to solve the system of
nonlinear equations. No further effort was made in [3] to
reduce n by algebraic operations but when the Newton-
Raphson method was applied, the number of primary
unknowns involved in iteration has been reduced to two.

The algorithm proposed in [3] can be extended to
kinematic hardening. The number of primary unknowns
for the Newton-Raphson method can be reduced to two
like in the case of isotropic hardening and the consistent
tangent can be given explicitly.

The integration procedure proposed here was developed
with the aim to apply it for the implementation of conti-
numm damage models as user-supplied subroutine into the
finite element program Abaqus [4]. The corresponding
continuum mechanics framework is discussed briefly in
Sect. 2. The general structure of the constitutive equations
which are considered here is presented in Sect. 3. The
extension of the integration algorithm proposed in [3] to
kinematic hardening is described in Sect. 4. In Sect. 5 the
extended algorithm is applied to a Gurson-type model
which takes into account kinematic hardening. The pre-
dictions of the Gurson-type model will be compared with
the results obtained by unit cell calculations in Sect. 6.

2

Preliminaries

In the following, boldface symbols denote tensors, the
order of which is indicated by the context. Underlined
letters are used for vectors. The summation convention is
used for Latin and Greek indices unless otherwise indi-
cated. With respect to Latin indices the summation is
carried out from one to three. In the case of Greek indices
the summation is carried out from one up to the number
of internal variables H,. The differentiation of a variable a;
with respect to the spatial coordinate x; is denoted by

oa 1)

dij =~
axj

The concept of kinematics considered here is based on the

commonly used polar decomposition of the deformation

gradient F into elastic and plastic part

F = FIp? | (2)
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From the velocity gradient

L— (2) (3)

the strain rates

E=1L+L") (4)
and the spin rates
w=1(L-1T) (5)

are derived, where v is the actual velocity of a point, x its
actual spatial position and the superscript T indicates the
transposed quantity. If the total principal elastic strains are
small compared to unity, the additive strain rate decom-
position

B— B 4B (6)

is an admissible approximation. The total strains are
obtained by time integration using the Hughes-Winget
approach given in [5]. Therefore, the integrated equation

E = E¥ + EP! (7)

also consists of objective measures, whereby the algorithm
proposed in [5] only ensures weak objectivity. Further-
more, application of the Hughes-Winget approach
requieres application of the Jaumann rate

v
0 =0+0W-w() (8)
with respect to the stress quantities included in the
constitutive equations (see for example [6]). Here, the
strain rates (4), the Cauchy stress tensor and its Jaumann
derivate are used to formulate the constitutive equations.
The foregoing discussed framework limits the application
of the integration procedure for kinematic hardening
which is proposed here to small total strains and large
rotations. For large plastic strains and kinematic hard-
ening, more sophisticated concepts have to be applied
(see for example [7] for more detailed information). In
order to present the equations transparently for com-
puter codification, the index notation is prefered in the
following.

3
Constitutive equations
With respect to the material behaviour, two different re-

gimes are distinguished by the scalar valued yield function
o.

® = (S, H,) (%)

where S denotes the difference between the Cauchy stress
tensor, 2, and the backstress tensor A

S=X-A.

The backstresses A;; are used to take into account
kinematic hardening. Isotropic hardening, damage etc. is
described by the variables H,. If the condition

v 00
O(S,H)=0 A X

(10)

Ml >0

H,,Ax=const

(11)

is fulfilled, elastic-plastic material behaviour is assumed,
else linear elasticity is applied which means that

_ el el
Zj = CijklEkl )

(12)
where the Cjji; are the components of the elasticity tensor
Cijt = Gliji + (K —2G)d;ion (13)

written by means of the bulk modulus K and the shear
modulus G. The fourth order unit tensor Iy is given by

Lijw = % (00t + dudjx) - (14)

Here, yield conditions having the following general
structure

¢ = (I)(Q,P,Hx) =0
are considered with

Q p—
13 = _%Smm

(15)

3¢
ESijSij

(16)
(17)

where the Sﬁ-j are the components of the deviatoric part
of S. In the following the elastic-plastic regime is consid-
ered. It is assumed that the plastic strain rates are given by
a flow rule like

OF(Q, P, H,)
o, (18)

where A denotes the so-called plastic multiplier and F
denotes the plastic potential. F is a scalar valued function
with a structure similar to that of ®. If an associated flow
rule is assumed, ® and F are identical. The flow rule (18)
can be written as

) . (OF _ OF
pl _ A . Yl
A - L)

.l .
Eg:A

(19)

with

o34

Nj = ET . (20)

Following Aravas [3], the two scalar strain variables

Epr=-A— 21
. . OF

Eo=A— 22
e=Az5 (22)

are defined. Introducing (21) and (22) into (19) gives

. l . . —
Ej = }Epdj + EqNjj . (23)
Elimination of the plastic multiplier A from (21) and (22)
leads to

E a—F+E a—F—o
PaQ T %P T T

It is assumed that the evolution of the internal variables H,
is given by

(24)

H, = H,(EP', S, Hp) .

(25)



The plasticity model is completely defined by introducing
evolution equations for the backstresses

\V4
A; = a;(EP, S, Hp) . (26)

Here, rate independent constitutive models are consid-
ered. Therefore, (25) and (26) cannot be chosen arbitrarily
but have to be homogeneous in time. Finally, it follows
from (12) and (7) that

1
% = Cyju(Ex — Epp)
Within the elastic-plastic regime the following set of
20 + o nonlinear algebraic and differential equatlons can

be used to determine the 20 4 o unknowns Xj, EP! Ep, Eqg,
H,, A;

®(Q, B, H,) = 0

i = Ciju(Eu — EY)

EY = LEpd; + EoNj

BE+%E
oQ oP

H, = H,(E", S, Hp)

(27)

ij?

=0 (28)

4 pl
Aij = aij(E ,S,Hﬁ)

if all quantities are given at time ¢ and the total strain rates
are known.

4
Numerical integration of the constitutive equations

4.1

Description of the method

A predictor corrector method (radial return) together with
Euler’s implicit integration procedure is used for the
numerical integration. The value of a quantity f at time ¢ is
denoted by f and at time ¢ + At by “4!f, respectively.
The discrete time increment At as well as ‘f are known.
Furthermore it is assumed that the total strain increments
AE;; are given. Using Euler’s implicit integration method,
HHAIf is determined approximately by

t+Atf — tf + t+Atf'At (29)
which is equivalent to
Af =B (30)

if the notation Af = *2f —'f is used. In order to sim-

plify the notation, the supscript t + At will be dropped,
with the understanding that all quantities are evaluated at
t + At, unless otherwise indicated.

Application of the implicit time integration to (6) and
(23) leads to

AEj = NES + AEZI , (31)

Using (12), (31) and (32), the stress state at the end of the
time increment can be written as

% = P — KAEpd; — 2GAEQN; (33)

where

d
0! = Cy('Efy + AEw) (34)
is the so-called elastic predictor state. The deviatoric stress
state is then given by

=S~ 2GAEGN;; . (35)

From (35) and (20) it follows that
Z "pred . A/
2 red red
% P AL (S - 4)

so that the Nj; are fully determined by the elastic predictor
state and the values of the A’; at time t + At and therefore
also the stress state at t + At is fully defined in the same way
(see (33)), which means that the stresses Z;; are no longer
primary unknowns but functions of AEp, AEq, Ajj and H,,.
Therefore Pand Q can be expressed completely by AEp, AE,
Ajj and H,. Using (33), (17) and (16) can be written as

Nj =

(36)

_ 1 preda 1
P—— gzgked + 3 Ake + KAEp (37)
~ 3 re T
= 357 ) (o)

—3GAE, . (38)

Application of the implicit integration scheme (29) to (25)
and (26) gives

AH, = hy(AEp, AEq, Hy, Ap) (39)
and
AAj = a;j(AEp, AEq, Hg, Axi) (40)

respectively. The notations h, and a; are used for the
incremental forms of &, and a;;. The problem of inte-
grating the elastoplastic equations reduces to the solution
of the following set of 8 4 o non-linear equations

0 = AEp SZ+AEQ ng) (41)

— ®(AEp, AEq, Hy, Ay) (42)
AH, = h,(AEp, AEq, Hy, Ay) (43)
AAj; = a;j(AEp, AEq, Hp, Ay) (44)

for the 8 + o unknowns AEp, AEq, H,, Aj. If the Ajj vanish
the set of nonlinear equations originally derived by Aravas
[3] results. A strategy, similar to that originally proposed by
Aravas [3] is used here to solve the set of nonlinear equa-
tions. The variables AEp and AE, are chosen as primary
unknowns and (41), (42) are treated as the basic equations
which are solved using Newton-Raphson method. In the
following the strategy is explained more detailed using the
notations

OF OF

—AEpaQ-l-AEQaP 0, (45)
', : = ®(AEp, AEq, Hg, Ay) =0, (46)
G, : = AH, — h,(AEp, AEq, Hg, Ay) = 0 , (47)
Qi : = AA; — a;j(AEp, AEq, Hg, Aj) = 0 . (48)
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Application of the Newton-Raphson method to (45) and
(46) leads to

or or, or
T; AE L dAE
N B+ N oA - ddw
L on
+ g dHa =0 (49)

The dH, and dAy; in (49) are derived by total differenti-
ation of (47) and (48)

oG, G, oG
anE, OB VN aA y
e
aHﬁ (50)
0Q; a Q;
OAEp aAE *oa ,dA"’
6 Q;
aH dHg =0 . (51)
From (51) follows
Oymn 0 mn 0amn
i=y | dAEp + —" dAE H
A5 = Vi [aAEpd » ¥ 3aEg AEe T B,
(52)
with
0Q;] ! da; ]!
Vijkt 1= [m] = {Iijkl —m} (53)

where the superscript (—1) indicates the inverse of the
considered quantity. Introducing of (52) into (50) gives

B aﬁﬁ aﬁﬂ Oay
ng( = Cup |:<6AEP + @yykl aA—Ep> dAEp
aﬁﬁ 612,; oay
with
Oh, 0h, O]
2= |0up — 2 — m5 Vkimn Agy :
Cap [ ¥~ 3H;  0Au Tk GHJ (55)

Introducing (54) and (52) into (49) finally leads to the
reduced Newton-Raphson scheme

Siicp + S12¢q = By (56)
Sa1¢p + S2¢q = By (57)
where the notations

cp = dAEp (58)
cq = dAEq (59)

are used. The constants S;; and B; are given in Appendix I.
These equations are solved for ¢p and ¢(, and the values of
AEp, AE, then have to be updated:

AEP — AEP+CP s
AEQ — AEQ—FCQ .

(60)
(61)

The state variables H, and A;; are updated by solving (43)
for the AH, and (44) for the AA;; respectively. It depends
on the structure of (43) and (44) whether the H, and A;; can
be updated by solving simple linear equations or if a system
of nonlinear equations has to be solved. The values for P
and Q then can be updated using the Egs. (37) and (38).
This iterative loop has to be continued until convergence
for AEp and AE, is achieved.

4.2

Calculation of the consistent tangent matrix

If an implicit integration method is used, a so-called
consistent material tangent has to be calculated to ensure
quadratic convergence of the global equilibrium iteration.
From (27) and (32) follows

AZ; = Cijii(AEx — s AEpdyy — NuAEq) . (62)
Total differentiation of (62) gives
dAZ; = Cijki(dAEq — 1 6dAEp — NydAEq

~AEoJkimn [dAmn + dZPi]) (63)
with
Jitmn =5 G Iximn — 3 0k10mn — NitNon ) (64)
where 0 = Q + 3GAEq and
Jiimn = aagfjd = - gli : (65)

The dAEp, dAE( and dA; in (63) now have to be expressed
in terms of dZPred Total differentiation of (43) and (44)
gives after some algebralc calculations

dH, = aaf; ~dAEp + aaAH dAE,

ey «)
dAy — aa;‘;E"’dAEP aaf"’ dAE,

g @

where the 0H,/OAEp, 0H,/0AE, aAkl/aAEp, 0Ax/0AE,
are given in Appendix I and the 0H, /OAZP™Y, 94, /oxPred
are given in Appendix II. Total differentiatlon of (41) and
(42) leads to

OF OF 1 O°F O*F
—dE dEg+AEp| | —=——=0un yn | dZPred
0" P tapte T PK 30000 o >
1 O°F O*F O*F
- ——Ny |dA dH,
+<36Q@P os "’) Tt SQoH, }
162F 62 _

+AEQ[(

N az pred
3 p2 aPaQ

(68)



and

100 oD _ oD
oY el pred
( 3 0P Omn + aQN’"”> X+ 0H, dH,
10D oD
) — Ny |dAy; = 0, 69
<3 P39 kl) K= (69)

respectively. Introducing (66) and (67) into (68) and (69)
leads to the following system of linear equations

$11dAEp + $,dAE, = B!!) dxpred
Sy dAEp + S5,dAEq = B2 dzpred

(70)
(71)

where the constants §;; are exactly the same as in (56) and
(57). BS,,L, (2 ,)1 can be found in Appendix II. The linear
system (70), (71) can be solved to get the following re-
presentation of dAEp and dAE,

dAEp = BY) dzpred (72)
dAE, = BQdzpred (73)

which can be done for example by applying Cramer’s rule.
Using (72), (73), (67), Eq. (62) can be written as

dz,’j = Cijkl (dEkl - Mk,mndZF,;f;d) (74)
with
Mklmn - +%5mnB£ilq)1?l + Nlefqu
Ay 24,
o BP) 1 % p(Q)
~ Jidap <aAE mn T SAEG ™
0A,
+ AEQ (]klmn ]klop GZPred> (75)

where Jij; has been already defined by Eq. (64). Finally,
from (34) follows

de}red = CijkldAEkl (76)
which together with (74) leads to
dAZij = (Cijkl - CijopMopmncmnkl) dAEkl (77)

and means that the consistent tangent D;j; is explicitly
given by

Dijkl = Cijkl - CijopMopmnCmnkl (78)

5

Gurson-type constitutive equations including

kinematic hardening

Considering a material whose microstructure is charac-
terized by the existence of voids and/or particles which
may cause void nucleation, a ductile damage model was
proposed by Gurson [8]. The model incorporates void
growth, void nucleation and coalescence of voids and has
been modified by various authors. The modifications
which are significant for the work presented here will be
discussed next. Here, the Gurson-type yield function

_ Q 2 * 3 p %\ 2
q)_<21) +2q:f cosh( 2q222> 1—qs(f")

(79)

is used. The fit parameters ¢, g, g3 in (79) have been
introduced by Tvergaard [9] into the model, originally
proposed by Gurson [8] to get a better agreement between
the predictions of the Gurson model with the results ob-
tained by cell model calculations. To take into account the
loss of stress carrying capacity associated with void coa-
lescence, Tvergaard and Needleman [10] proposed the
modified damage parameter f* as a piecewise linear
function of the void volume fraction f

Py <, it
ot f=f) f>F. fe—

The parameter f7; is related to g; by f; = 1/q; if g5 = q7 is
used. The void volume fraction where void coalescence
starts is indicated by f. and the void volume fraction at
final fracture is denoted by f.

Usually, Z; and X, in (79) are identified with a single
parameter, the yield stress oy, in the case of an ideal
plastic matrix material, or with an averaged yield stress oy
related to some averaged equivalent strain & through the
hardening law of the matrix material. For this case
Leblond et al. [11] discovered incompatibilities of the
predictions made by the Gurson-model with the analytical
solution for a hollow sphere in a rigid hardening matrix
material in hydrostatic tension. Furthermore, if a single
parameter is used for X; and X,, the progressive increase
of f which can be observed under cyclic loading using cell
model calculations (see [12]) cannot be reproduced by the
Gurson-model. To avoid the discrepancies mentioned
above, Leblond et al. [11] performed a homogenization of
the boundary value problem of a sperical void in a hard-
ening matrix and derived the expressions

with k =

(80)

b3

1 _
A / or((@),.)dr (81)

1 ; dr

a
2 — T < e 3) 45 . 2
2 11’1(1’)3/{13) / GY(<8>T ) 3 (8 )
with
/T 7 u2:2EH/(Eeqv/J3)
(8),,= 2 {sinhl - IJF”} (83)
3 u 1y =2Ey [ (Eegqu?®)
and
a’ = exp(3Ey) — 1+ f (84)
b®> = exp(3Ey) (85)
pP=r-pr+i1 (86)
t o,

E

Ba= [ Bl (87)
0

t

Eugy = / Bgldr (88)

0

where fy denotes the initial void volume fraction.lAs one
can see from (83), ¢ is fully determined by the Eg- so that
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within the model used here € is no internal variable like for
example within the Gurson-type model used in [13]. Here,
the only internal variable of the type of H, is the void
volume fraction f. The change in void volume fraction
arises partly from growth of existing voids and partly from
nucleation of new voids:

f = fgrowth +fnuc1eation : (89)
From incompressible matrix behaviour follows
f;growth = (1 _f)EP : (90)

Void nucleation based on plastic straining is included so
that

— AE . (91)

The quantity A derives from a normal distribution as
suggested in [13]

f nucleation

fN 1 |:E — GN:| 2
A= ! 9
Vo hed e (92)
with
v b
Fo_1 / (&) dr® = —1 / (&) ,dr’ (93)
= b3 — a3 3 - 1 —fb 73

The equation for A is based on the assumption that the
nucleation strain follows a normal distribution arround ey
with the standard deviation sy. The volume fraction of
nucleating particles fy has to be determined so that fy is
consistent with the void volume fraction of particles.

If a material point loses its stress carrying capacity, the
stresses X;; have to vanish. This is only possible if the
backstresses A;; vanish, too. Therefore, following [14], the
backstresses A;; are written as

Aj = 8(f")4; (94)
where

g =1-1"/fy - (95)
The following evolution equations

v 1 =

Ay = (Cz_ls"f — yAij>E (96)

have been chosen for the A:; The Egs. (96) are similar to
the evolution equations proposed by Lemaitre and Chab-
oche [15] for the case of classical isothermal plasticity
including linear and nonlinear kinematic hardening and
available in the finite element program Abaqus.

C and 7 in (96) are material parameters related to linear
and nonlinear hardening, respectively. The use of (96)
allows a quite easy verification of the integration algorithm
on the basis of special cases.

Derivation of (94) according to (8) leads to
Vo_8 Vi

Aj = §A,~j +A; . (97)
In the following, the backward Euler method (29) is
applied to the Gurson-type model considered here.

Equations (41) and (42) given in Sect. 4 can be used
without further specifications. Application of the Euler
scheme to (89) leads to

Af = (1 —f)AEp + AAE (98)
and with respect to (97)
C re _
AA; = dy {2—1 (257 — KAE»d; — 2GAEQN; )
t C = t
— A,‘j (2— + V>} — dz A,‘j (99)
1
was obtained, where
AE
b= (100)
i (£47)aE
A *
d, f (101)

fo='f C .5 '
To obtain (99), the Egs. (33), (94), (95) were used and
the relation A; = ‘A; + AA; was applied. Finally, the
necessary equations are (41), (42), (98) and (99). P and
Q in (41) and (42) are already given by (37) and (38),
respectively. The identities AA;; = a;; and Af = h hold
with respect to the integration scheme developed in
general in Sect. 4 . The X, ,, E, A(E) finally depend
only on the strain variables Ey and E.q, which can be
written as

|AEp|
* 3
= tEeqv + |AEQ| .

Ey ='Ey (102)

Eeqy (103)

It is worth noting that due to the symmetry of X the
following symmetries

aj = dji (104)
Aj = A (105)
6&,-]- . 6dﬁ . 6&1-]- (106)

0A 0Am QAy '

are valid. Furthermore, the inversion included in (53) to
obtain the fourth order tensor y;;, can be performed
analytically for the Gurson-type model which gives

Vet = 20 L 5o+ NN
YKl = 5(Q + 3GAEq) + 3@ \2 “9OK T NiTK
2(Q + 3GAE,) + 30

_ I 107
2(Q+3GAEq) M (107)
where O is given by
CAEq
®=-2GAEq——— . 108
9%, + CAEq (108)

The Gurson-type model has been implemented in the way
described above into the finite element program Abaqus

[4].



6
Numerical examples

6.1

General remarks and definitions

The predictions of the Gurson-like model described in
the previous section have been compared with the results
of cell model calculations. Cylindrical unit cells with a
spherical void in the centre surrounded by an elastic-
plastic matrix material are considered. To avoid a pos-
sible confusion with the overall quantities X;; and A; of
the Gurson-type model, the stresses and the backstresses
inside the matrix are denoted by o and o, respectively.
Mixed nonlinear hardening of the matrix material has
been considered and constitutive equations of classical
elasto-plasticity including isotropic and kinematic hard-
ening were used. The elasto-plastic regime is character-
ized by the yield condition

(p:\/ (a]—oc]) (a]—oc]) ay(¢)

where isotropic hardening is controlled by gy (&) and
kinematic hardening by the backstresses a;;. The accu-
mulated equivalent plastic strain & is given as

-]

The si} in (110) denote the components of the plastic strain
rate tensor and t denotes a loading parameter or time,
respectively. The evolution of the backstresses is described
by the Chaboche-model [15]

Vv CM M >
o%j = {m (05 — o) =7 O‘;} e

(109)

-pl Pl

_Sklgkl (110)

(111)

which consists of the Ziegler-law to describe linear
kinematic hardening controlled by the parameter C* and
the so-called recall term to introduce nonlinear kinematic
hardening. In order to point out clearly that these
properties are properties of the matrix material, the
superscript M is used here. Isotropic hardening of the
matrix material is given by

oy(€) = oy, + Qu [1 — exp(—b"e)] (112)

with oy, =200 MPa, Q,, = 294.1 MPa and b™ = 34.
Furthermore, an initial void volume fraction f; = 0.01
was chosen. The geometry of the cylindrical cell and the
finite element mesh which is a quarter section due to the
symmetry conditions are shown in Fig. 1. The notations
used in the following to explain the geometrical dimen-
sions, the boundary conditions and the applied loading
can also be found in Fig. 1. The initial diameter and
height of the cell, R and H, are R(t = 0) =H(t = 0) = R,.
The symmetry conditions are imposed as boundary
conditions

uz(xz = O,Xg,) =0
ng(X3 = O,XZ) =0 .

(113)
(114)

X3
ST -
H
[
/‘ ]
\:i\ 7 X2 ¥
—/
3 a -
X1 H
— - T -~
-~ +

Fig. 1. Initial geometry and finite element mesh

To ensure periodicity of the cell arrangement, the further
boundary conditions

:R,X3 S (O,H)) =1u
=H)=1us

(115)
(116)

U (XZ
us(x; € (0,R), x3

are introduced.

The overall Cauchy stress tensor X and the tensor of the
overall total logarithmic strains E1°8) which correspond to
the applied loading are qualitatively given by

211 0 0
= 0 Xi 0 e e, (117)
0 0 i
1
E® o 0
Elog) — 0 Egllog) 0 e @ e (118)

0 0 EXd

where the components of the overall Cauchy stress tensor
were calculated by the sum of the corresponding reaction
forces on the outer boundary of the unit cell divided by the
actual area. The overall logarithmic strains are given as

El® — E%¥ —In ( +2> (119)
Ry
E(log) —1 us
b =In{14+—) . (120)
Ry

The overall von Mises equivalent stress and the overall
equivalent total strain are

Zeqv = |233 - 211’ (121)
Eeqv = %|E33 - E11| (122)
The overall stress triaxiality T is defined by
Zhyd
T=2" 123
. (123)

where Xy,,q stands for the overall hydrostatic stress

Ty =302Z +Zs) . (124)
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Fig. 2. Displacement #3 applied in the case of cyclic loading

Here, instead of (121) and (122), the signed quantities
¥ = (25— X)) (125)
E* :2/3(E33 _Ell) (126)

are used to discuss the results. The calculations have been
carried out at constant overall stress triaxialities. The dis-
placement #; has been prescribed as function of time or
loading parameter, respectively, which is shown in Fig. 2,
and a linear elastic truss parallel to the x, axis has been
used which is drawn schematically as a dashed line in Fig. 1.
Constant overall stress triaxiality has been ensured by
adapting the stiffness of the truss during the calculations. A
maximum value of 0.05R, has been chosen for #;. The same
kinematic hardening parameters were taken for the matrix
material and the Gurson-type material, i.e. CM = C and

M =7.

6.2

Results and discussion

The results obtained by cell model calculations for the
overall stress triaxialities T =1, T =2 and T = 3 are

(Z33-Z11) [MPq]

presented together with the corresponding predictions of
the Gurson-type model in Fig. 3. From these results it is
deduced that the Gurson-type model overestimates in
general the evolution of the void volume fraction f. The
results obtained by the cell model calculations show a
ratcheting effect with respect to f. This effect increases
with increasing overall stress triaxiality. The Gurson-type
model predicts the ratcheting qualitatively in the same way
but it predicts the effect quantitatively much weaker.
However, the X*(E*)-curves of the Gurson-type model are
very close to the corresponding curves obtained by cell
model calculations and the lower the overall stress triaxi-
ality the better the agreement between the Gurson-type
model and cell model calculations.

7

Concluding remarks

To integrate implicitely a class of constitutive equations of
elastoplasticity including pressure dependent yield condi-
tion and flow rule, isotropic hardening and damage, an
algorithm has been proposed by Aravas [3]. This algo-
rithm has been extended with respect to kinematic hard-
ening. Like in the case of isotropic hardening the number
of primary unknown involved in the Newton-Raphson
iteration to solve the system of nonlinear equations can be
reduced to two strain variables. Whether this algorithm is
more efficient than other implicit integration schemes also
based on a predictor-corrector method depends on the
structure of the incremental form of the evolution equa-
tions for the internal variables. Once the two primary
strain variables are known the internal variables can be
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T=1 f T=1
750 T T v T T T T T
250
-250
-750 . 4
0.00 0.02 0.04
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0.010

0.030
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Fig. 3. Comparision of the results obtained by unit
cell calculations (full lines) and by the use of the
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-200 -
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Gurson-like model (dashed lines) for cyclic loading
for the material NLH,;;x at the stress triaxialities
T=1,T=2and T=3



updated. If the incremental evolution equations are highly
nonlinear a second system of nonlinear equations has to
be solved numerically. In this case the main advantage of
the algorithm gets lost.

The modified Aravas-algorithm was applied to a Gur-
son-type model which includes kinematic hardening. The
predictions of the Gurson-type model have been com-
pared with the results obtained by cell model calculations
at constant overall stress triaxialities under cyclic loading.
Mixed nonlinear hardening was considered. It has been
shown that the main features of ductile damage with
kinematic hardening matrix material can be described.
However, the model overestimates the evolution of the
void volume fraction f under cyclic loading which may
be caused by the fact that only the part of the modifi-
cation proposed by Perrin et al. [11] related to isotropic
hardening is used here.
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N=J

Appendix |
The constants involved in the solution of the elastoplastic
equations are given by

su="E 1 A KaZF + OCF_oH,
1 2Q P\™ 0QoP " 0QoH, 0AE,

O’F 0Q N O°F 0P 0A;
aQ26A,~J- 6@6P6AZJ OAEp
L AE KaZ_F+ O°F 0H,
A\ op* ' 0POH, OAEp
2 A 2 D aAl
OF 0Q  OFOP) oA (127)
0QOPOA; ' 0P 0A;j| OAE,
OF o*F  OF OH,
Siz =55+ AEp <_3Gan+GQ6Ha 5AE,
Froq | oF op] oy
0Q’0A; ' 0QOPOA;| DAE,
O*F  0°F OH,
AEq (_3 G oqop " 3Pom, 0AE,
’F 0Q 0%F 0P| 0A;
OF 0Q  OFO ’ (128)
6Q6P6A,~j aPZ aA,‘j 6AEQ
5 _ 0P, 00 oH,
2~ " 3P ' 0H,0AE,
0D 0P 0D 0Q| 04y
[ﬁ aA; T oQ aAij] 3AEs (129)
ob o® OH,
$2= =365+ o 5AL,
oD 0P 0D 0Q] 0A;
== — 1
[ap aA; T 2Q aA,-j] 0AEq (130)
and
oF oF
! PaQ  T%p (131)
B, =-® (132)
where
OH, al’_l/g aﬁ/g oax
=, — Ly 13
oAE, [GAEP 24, aAEJ (133)
OH, aflﬂ aﬁ,; Ody;
= ¢ i e 134
0AEq [aAEQ+aA,~]—VZJkl aAEQ] (134)
o4y Oy Ol OHg
OAE,  im [aAEP 0H, 6AEJ (135)
04; Oy . Oy OHy
— 136
OAEq  im [aAEQ OHj aAEQ] (136)

487




with
1 B® — 16_(13 Omn — O OAop
oa; |~ mm = 39p \ " TP gyered
Vi = |l = 5 (137) -

r A e O (e — Wy Ao (140)
Cop = |:5O<ﬂ - 2% - % Ykimn %] . (138) 6(_2 " * azrr)nrzd
Kl B
¢ ! where
Appendix II 0H, Ohg  Ohg dp
The 35,12,, and BS,Z,,)n which are involved into the calculation oy pred = Cop (azpred + 0Ax Vklop o3 pred (141)
488 of the consistent tangent matrix are given by m mn m
, — . + 142
Bl = 3AB0 (% ~ by —az‘if’id) oxpd 1 (62;;‘1 oH; ozp? e
P on

The ¢,p and ;3 can be found in Appendix I.
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