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Abstract This paper presents the development of energy-
dissipative momentum-conserving algorithms for the nu-
merical integration of the dynamics of nonlinear Cosserat
rods. The proposed numerical schemes exhibit a non-
negative energy dissipation, controllable through the
appropriate algorithmic parameters including an energy-
conserving scheme as a particular case. These conserva-
tion/dissipation properties are proven rigorously in the
general nonlinear setting, accounting specifically for the
finite element implementation of the rotational degrees of
freedom associated to the motion of the rod’s cross-sec-
tions. In particular, we consider a direct parameterization
of the director fields defining these sections, hence leading
to frame-indifferent approximations of the strain mea-
sures defining the rod’s mechanical response. The ro-
bustness added by these considerations when comparing
the proposed numerical schemes with existing conserving
schemes is illustrated with several representative numeri-
cal simulations.

Keywords Cosserat rods, Nonlinear dynamics,
High-frequency dissipative time-stepping algorithms,
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1
Introduction
The numerical integration of the dynamics of nonlinear
rods has received a great deal of attention recently. Newly
formulated theories of Cosserat-type rods, originally pre-
sented in Cosserat and Cosserat (1909), appeared in the
works of Reissner (1972) and Simo et al. (1985), among
others. We refer to the monograph by Antman (1992) and
references therein for a relatively recent and complete
account. These theories model the motion of a rod in the
general three-dimensional space without any restriction on
the amount of the deformation, leading to finite defor-
mation theories usually referred to as geometrically exact.
The need to consider finite rotations, and hence to work in
the general finite group of rotations, adds a significant
complexity in these formulations, especially in the devel-
opment of numerical integration algorithms for the sim-
ulation of these structural systems. In this way, we can
refer to Cardona and Geradin (1989); Simo and Vu-Quoc
(1988) and Ibrahimbegovic (1995), among many others,
for references addressing several issues related to these
numerical implementations. The book by Crisfield (1997)
has also a complete account of many of these develop-
ments.

In the case involving the full dynamic response, the
strong nonlinearity of the system introduces a challenge
for classical time-stepping algorithms. We can quote the
Newmark family of time-stepping algorithms as the most
commonly known and used scheme among many classical
schemes in structural dynamics. We refer to Hughes
(1987) for a complete account on these and related
methods. After browsing through this and similar refer-
ences, we can quickly observe that these methods were
originally developed in the context of linear problems.
Even though their application is usually considered in the
nonlinear range, and even works like Kane et al. (2000)
have reconsidered their analysis recently, the number of
works in the recent literature identifying the limitation of
these methods when applied to nonlinear problems is al-
ready significant. We refer to Simo and Tarnow (1992) and
Armero and Romero (2001a), among others, for an illus-
tration. The basic limitation of classical schemes like
Newmark or even the so-called HHT scheme [Hiber et al.
(1977)], Wilson-# method [Wilson (1968)] and other so-
called (linearly) ‘‘dissipative’’ schemes, is the appearance
of numerical instabilities even though the method is un-
conditionally stable in the linear range. These instabilities
are usually associated with an uncontrollable growth of the
energy in the discrete system.
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Motivated by these limited stability properties, the
search for algorithms that conserve the total energy of the
system has received an important amount of attention; see
e.g Simo and Tarnow (1992); Crisfield and Shi (1994);
Simo et al. (1995); Armero and Petocz (1996) and Gonzalez
(2000) for just a few references considering different
applications in nonlinear solid mechanics, including
nonlinear elastic rods, the case of interest here. The fact
that the discrete dynamics generated by the numerical
algorithm should inherit the conservation laws of linear
and angular momenta was identified as a fundamental
property to impose on the integration schemes. Further-
more, the conservation of energy allowed also a more
stable simulation of these mechanical systems. But it soon
became clear that the high numerical stiffness of these
systems led to serious difficulties in completing the
simulation and put severe limitations even on these newly
developed methods. This numerical stiffness can be traced
back to the different mechanical stiffness of the different
modes of deformation of the solid: axial, transverse shear,
bending and torsion for the rods of interest here. The
requirement that the numerical scheme should resolve the
wide spectrum of responses generated by these different
components proves to be a task too demanding for the
time-stepping scheme, especially given the fact that the
spatial discretization already introduces a great amount of
error when approximating the high-frequency response of
the system.

This is exactly the same situation that motivated the
development of the aforementioned ‘‘linearly dissipative’’
schemes in the linear range. In this way, numerical
schemes that introduce a controllable numerical dissi-
pation in the high-frequency response of the system
have been clearly favored not only in the literature but
in common practice. We can also quote the related
concepts of L-stability [see e.g. Hairer and Wanner
(1991)] or of ‘‘stiffly accurate’’ methods [Prothero and
Robinson (1974)] in the context of Runge–Kutta meth-
ods. Unfortunately, these dissipation properties do not
extend again to the nonlinear range, a situation that has
motivated an extensive literature in the search of new
dissipative numerical schemes for nonlinear problems.
We refer to the works of Bauchau et al. (1995); Bauchau
and Theron (1996); Kuhl and Ramm (1996, 2001); Kuhl
and Crisfield (1997); Botasso and Borri (1997); Botasso
et al. (2001) and Armero and Romero (2001a, b), among
others.

But beyond these general considerations, one should
assure that the dissipative schemes exhibit several addi-
tional important properties besides the energy dissipation
itself. In this way, we consider fundamental to impose the
following requirements to the conserving/dissipative
schemes for the mechanical problems of interest:

1. A minimum of second-order accuracy in time.
2. The unconditional character of the non-negative energy

dissipation in the time step and material model.
3. The controllable character of this numerical energy

dissipation through the appropriate algorithmic pa-
rameters, obtaining an energy conserving scheme as a
particular case.

4. The numerical scheme must introduce dissipation in
the high-frequency range, this understood when applied
to a linear problem.

5. The scheme must inherit the conservation laws of the
exact (physical) linear and angular momenta in the full
nonlinear range, and preserve exactly the associated
relative equilibria. In fact, and related to this latter
property, the scheme must introduce the dissipation in
the internal modes of the motion of the system, while
leading to a conservative approximation of the group
motions associated to the symmetries and conservation
laws acting on the system.

6. The scheme must be competitive in terms of compu-
tational cost, favoring one-step self-starting schemes
with no multi-stages.

We refer to Armero and Romero (2001a, b) for a complete
discussion of all these aspects together with the develop-
ments of new numerical schemes exhibiting all these
properties in the context of nonlinear elastodynamics. We
call these methods EDMC schemes in short, an acronym
for energy–dissipative, momentum–conserving schemes.

An added difficulty was observed by Crisfield and
Jelenić (1998) and Jelenić and Crisfield (1999) for the case
of rod formulations: finite element implementations of the
type presented in Simo (1985) and Cardona and Geradin
(1989), among others, based on a direct interpolation of
the rotational parameters (usually the total, the incre-
mental or the iterative rotation vector) are not material
frame indifferent. This is a fundamental property of the
underlying physical theory by which the strain measures
and the associated stress resultants given by the constit-
utive relations are not affected by superimposed rigid
body motions. This shortfall of the aforementioned
numerical models was related to the nonlinear relation
between the rotation parameters and the finite rotation
tensor, and how this relation was affected by the spatial
discretization of the former. In some cases, it was also
observed that the solutions for hyperelastic problems were
even path-dependent. Co–rotational formulations were
proposed in Crisfield and Jelenić (1997, 1998); Jelenić and
Crisfield (1998, 1999, 2000) and Galvanetto and Crisfield
(1996) that avoided these difficulties. Nonetheless, no
extensions to the fully dynamic case could be developed
to our knowledge in this co–rotational framework that
resulted in the exact energy conservation.

We have recently presented in Armero and Romero
(2001c) an alternative parameterization of the rod model
that allows for this frame indifferent finite element
approximation and leads naturally to energy–momentum
conserving schemes for the integration of the rod’s dy-
namics. In fact, we have observed in Romero and Armero
(2002a) that similar techniques formulated at the level of
interpolated rotational parameters do not lead to these
conservation properties. The formulation is based on a
direct use of the director field defining the position of
the cross–sections with respect to the middle axis, as
described in the following section, and its finite element
interpolation. This alternative parameterization and
corresponding finite element interpolation leads naturally
to energy–momentum schemes, while assuring a frame
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indifferent approximation of the rod’s strain and stress
measures. We also refer to Gruttman et al. (1998) and
Betsch and Steinmann (2002) for similar formulations in
the static case, the later considering Lagrange multipliers
on the director fields to impose the rotational constraints.

However, and as discussed above, energy conserving
algorithms lack the required robustness to deal with the
high numerical stiffness of the problems of interest in this
type of applications. It is precisely the goal of this paper to
develop energy–dissipative momentum–conserving algo-
rithms for the nonlinear dynamics of Cosserat rods that
show this improved robustness. Our starting point is the
rod’s formulation first presented in Armero and Romero
(2001c) and fully developed in Romero and Armero
(2002a) and the development of this type of schemes
presented in Armero and Romero (2001a,b) for the sim-
pler setting of nonlinear continuum elastodynamics and in
Romero and Armero (2002b) for the case of nonlinear
shells involving a single director field. The presence in the
rod model of different directors (in fact, a director frame
consisting of three orthonormal vectors and hence re-
quiring the consideration of the full rotation group) makes
this extension non-trivial and deserving this separate
treatment. The considered methodology reduces the for-
mulation of the new schemes to the design of the proper
dissipation functions defined locally at the quadrature
points of a typical finite element implementation. Different
dissipation functions are identified for the aforementioned
different modes of the rod’s deformation as well as the
different generalized velocities associated to the transla-
tional inertia of the rod’s middle axis and to the rotational
inertia of the rod’s cross–section. In particular, specific
functions defined in terms of the full tensor of inertia
associated to this cross–section frame needs to be
determined in comparison, for example, with prior
developments for shells or three-dimensional continuum
solids. We present here these new developments, including
rigorous proofs of the conservation/dissipation properties
of the final schemes. Very importantly these proofs
consider the fully discrete system of equations, that is,
involving the spatial finite element interpolation and the
temporal discretizations. A complete evaluation of the
final numerical schemes is also presented through a
number of representative numerical simulations.

An outline of the rest of the paper is as follows. We
present in Sect. 2 a brief summary of the rod formulation
considered in this paper, including a short statement of the
conservation properties of interest. Section 3 develops the
new energy–dissipative momentum–conserving schemes
proposed in this work. We start with a brief but crucial
description of the finite element interpolations of the
configuration and velocity variables and their variations in
Sect. 3.1. It is in this context that we develop the time-
stepping algorithms in Sects. 3.2 and 3.3, including the
analysis of the conservation/dissipation properties of the
final schemes. The numerical implementation of these
equations is discussed in Sect. 4, with different represen-
tative numerical simulations presented in Sect. 5 to
illustrate the performance of the new schemes. Finally,
we conclude with a brief summary and some concluding
remarks in Sect. 6.

2
The rod model
We summarize in this section the governing equations for
a two-director Cosserat rod model. The model is based on
the Reissner–Simo formulation as described in Simo
(1985). The specific form of the equations considered here
follows the parametrization elaborated in Romero and
Armero (2002a), in which the directors appear explicitly as
part of the kinematic variables. This parameterization is
crucial for the algorithmic properties of the numerical
discretization presented in the following sections. We refer
to these references for further details about the rod model
summarized in this section.

2.1
The rod’s kinematics
Consider the reference placement of a rod defining the
curve Co 2 R3, referred to generically as the rod’s (refer-
ence) middle-axis. Let S and L denote the arclength and
the total length of the curve Co, respectively. Similarly, we
denote by C the curve representing the rod’s middle-axis in
a generic deformed configuration of the rod. We denote by
rðSÞ the position vectors of the points in the middle-axis C,
still parameterized by the arc-length S as they correspond
to the points in the reference middle-axis Co. This refer-
ence middle-axis is represented by the position vectors
roðSÞ.

The rod theory of interest here is fully determined by
the consideration of a plane cross-section A at each point
S of the middle-axis (i.e. AðSÞ), with these cross-sections
remaining plane and undirstorted during the deformation
of the rod. In this way, the position of every section is
determined by two orthonormal directors fd1ðSÞ; d2ðSÞg.
Figure 1 illustrates all these considerations. Following the
notation introduced above for the middle-axis, we denote

Fig. 1. Definition of a Cosserat rod. The rod motion is deter-
mined by following the position vector rðS; tÞ of the middle-axis C
and the director frame fd1; d2; d3gðS; tÞ defining the plane cross–
section AðSÞ, all parameterized in terms of the arc-length S of the
middle-axis of a reference configuration of the rod. The latter is
expressed by the rotation matrix K from a fixed Cartesian frame
fe1; e2; e3g
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by do
a a ¼ 1; 2 the directors in the reference placement of

the rod. Furthermore, it proves convenient to define the
middle-axis as the curve of centroids of the different cross-
sections.

The kinematics of the rod is then fully characterized by
the configuration space

Q ¼ fU ¼ ðr; d1; d2Þ 2 R3 
 S2 
 S2; d1 � d2 ¼ 0;

U ¼ �UU ¼ ð�rr; �dd1; �dd2Þ on Cug ; ð2:1Þ
where S2 is the unit sphere in R3. Here, we have denoted
the boundary of the middle-axis C by C and partitioned it
as C ¼ Ct [ Cu with Ct \ Cu ¼ ;, for Ct corresponding
to the part of the boundary where external forces are
imposed and Cu to the rest, where the displacements are
known to be the given values ð�rr; �dd1; �dd2Þ. The latter, the
so-called essential boundary conditions, appear explicitly
in the definition of the configuration manifold (2.1).

Let ‘‘
’’ denote the vector product in R3 and define
d3ðSÞ ¼ d1ðSÞ 
 d2ðSÞ, a third director associated with the
cross-section at every point S in C. Clearly, the director d3

is orthogonal to the cross–section. For later use, we in-
troduce the matrix with columns defined by these three
directors, that is, KðSÞ ¼ ½d1ðSÞ d2ðSÞ d3ðSÞ�. We have
then, by construction, that K 2 SOð3Þ the group of rota-
tions (i.e. KTK ¼ KKT ¼ 1 with det K ¼ þ1). The matrix
K and its counterpart Ko in the reference placement of the
rod provide a compact notation to refer to the individual
directors. In this way, to every configuration
U ¼ ðr; d1; d2Þ we associate the equivalent pair ~UU ¼ ðr;KÞ,
where K is the orthogonal matrix with columns
½d1 d2 d1 
 d2�, being then the configuration manifold Q
isomorphic to R3 
 SOð3Þ. The presence of the finite group
of rotations in the configuration manifold of the system of
interest requires a careful consideration of its variations
and rates, as considered in the following section.

2.2
The rod’s dynamics
A motion of the rod is a one parameter family of config-
urations Ut in Q, where the parameter t is the time. The
velocity fields associated to the generalized displacements
defining the configuration manifold (2.1) are defined by
the material time derivatives

vðS; tÞ ¼ _rrðS; tÞ and maðS; tÞ ¼ _ddaðS; tÞ; for a¼ 1;2 ;

ð2:2Þ
where the notation _ð�Þð�Þ ¼ o

ot ð�Þ
��
S fixed

has been employed.

Since the two section directors fd1; d2g must remain or-
thogonal at all times there exists a unique vector x 2 R3

such that

ma ¼ x
 da; for a ¼ 1; 2 : ð2:3Þ
This vector x is the angular velocity of the orthogonal
frame composed of the three directors fd1; d2; d3g. Equa-
tion (2.3) can also be expressed in terms of the rotation
matrix K introduced above as _KK ¼ x̂xK, where

x̂xa ¼ x
 a forall a 2 R3 ; ð2:4Þ
associating the axial vector x 2 R3 to the skew tensor
x̂x 2 soð3Þ (the linear space of skew tensors). This mapping

defines an isomorphism between these two linear spaces.
In this way, the set of generalized velocities W ¼ ðv; m1; m2Þ
is given by the linear space

W¼fW¼ðv;m1;m2ÞU;v2R3; ma¼x
da; x2R3g ;
ð2:5Þ

at each configuration U ¼ ðr; d1; d2Þ. We observe that the
relations (2.2) defining pointwise the generalized velocities
from the configuration variables also apply to the
boundary values imposed on Cu in the original configu-
ration space (2.1).

The dynamic response of the rod is then characterized
by an inertia to the motion of the middle-axis (or trans-
lational inertia) and to the motion of the cross-section (or
rotational inertia). This defines the total kinetic energy of
the rod of the form

KðtÞ :¼
ZL

0

1

2
Aqo

v � v þ 1

2
Iab

qo
ma � mb

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kqo ðv;m1;m2Þ

dS ; ð2:6Þ

for the kinetic energy density Kqo
, with the two terms in

(2.6) corresponding to aforementioned contributions. In
this equation, and in the rest of the paper, the summation
convention over repeated indices is adopted, where Greek
indices run from 1 to 2 and Latin indices run from 1 to 3.
The symbol ‘‘�’’ in (2.6) denotes the usual Euclidean inner
product in R3.

The translational inertia is given by the reference mass
per unit length Aqo

ðSÞ and the rotational inertia by the
(symmetric, positive definite) Euler dyadic of the cross-
section Iqo

ðSÞ. These quantities are given physically by the
relations

Aqo
ðSÞ¼

Z
AðSÞ

qo dA and I ab
qo
ðSÞ¼

Z
AðSÞ

qo nanb dA ;

ð2:7Þ
in terms of the reference density qo ¼ q̂qoðn1; n2; SÞ of the

material. Here, we have denoted by ðn1; n2Þ the Cartesian
coordinates of a point in a given cross–section AðSÞ with
respect to the planar frame fd1; d2g, so dA ¼ dn1dn2.

2.3
The rod’s mechanical response: the strain measures
and stress resultants
The mechanical response of the rod is defined through the
properly invariant strain and stress tensors measuring the
state of deformation of the rod and the internal forces
resulting from it. The following strain measures were
proposed in Simo (1985)

CðUÞ ¼ KTr;s � KoTro
;s 2 R3 and

XðUÞ ¼ axial KTK;s � KoTKo
;s

h i
2 R3 ; ð2:8Þ

where ‘‘axial½��’’ denotes the axial vector associated to a
skew tensor by (2.4) and ‘‘ð�Þ;s’’ denotes the partial
derivative with respect to the middle-axis coordinate
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S. Expanding these definitions in terms of the configura-
tion variables, we have the explicit expressions

C ¼
d1 � r;s � d0

1 � ro
;s

d2 � r;s � do
2 � ro

;s

d3 � r;s � do
3 � ro

;s

8><
>:

9>=
>;;

X ¼ 1

2

d3 � d2;s � d2 � d3;s � do
3 � do

2;s þ do
2 � do

3;s

d1 � d3;s � d3 � d1;s � do
1 � do

3;s þ do
3 � do

1;s

d2 � d1;s � d1 � d2;s � do
2 � do

1;s þ do
2 � do

1;s

8><
>:

9>=
>; ;

ð2:9Þ
where we have not made use of the orthogonality of the
directors in this last expression given the finite element
implementation considered later in this work.

We can observe that both strain measures vanish in the
reference configuration and that they are invariant under
superposed rigid body motions, namely

CðU�Þ ¼ CðUÞ and XðU�Þ ¼ XðUÞ ; ð2:10Þ
with U ¼ ðr; d1; d2Þ 2 Q and U� ¼ ðQrþ u;Qd1;Qd2Þ for
a vector u 2 R3 and an orthogonal tensor Q 2 SOð3Þ de-
fining an arbitrary superimposed rigid body motion. The
components of the vector C can be identified with the
transverse shear and axial strains, and those of the vector
X with the bending and torsional strains. These strain
measures can be obtained from the equations of three
dimensional nonlinear elasticity by a projection that
accounts for the particular form of the rod’s kinematics.
Once again, we refer to Simo (1985) for further details on
this interpretation.

Conjugate stress measures (or stress resultants) are
obtained for an hyperelastic rod, the case of interest here,
in terms of an elastic potential WðC;XÞ (the so-called
stored energy function) as

N ¼ oW

oC
and M ¼ oW

oX
; ð2:11Þ

corresponding then to convected measures of the axial and
transverse shear forces in N, and bending and torsional
moments in M. The objectivity of these stress resultants
follows easily from the frame indifference of the strain
measures themselves. The numerical simulations present-
ed in Sect. 5 consider the quadratic stored energy function

WðC;XÞ ¼ 1
2C � CCCþ 1

2X � CXX ; ð2:12Þ
leading to the strain–stress relations

N ¼ CCC and M ¼ CXX ; ð2:13Þ
linear in the strain measures. Typical elastic moduli for an
isotropic elastic material homogeneous over the cross-
section are given by the expressions

CC ¼
GA1 0 0

0 GA2 0

0 0 EA

2
4

3
5; and

CX ¼
E �II 11 E �II 12 0

E �II 21 E �II 22 0

0 0 GJ

2
64

3
75 ; ð2:14Þ

for the Young modulus E and the shear modulus G of the
material, and the cross-section area A, the shear reduced
areas Aa in the local directions do

a, the second moment of
area �IIab ¼

R
AðSÞ knk

2dab � nanb� �
dA and the torsional

constant J of the reference cross-section, all based on
standard arguments of strength of materials. We note,
however, that the time-stepping algorithms developed in
this work do not rely on this particular form of the elastic
potential.

2.4
The rod’s equations of motion
Given all the above considerations, the equations of
motion of the rod can be written in weak form asZL

0

Aqo
_vv � drþ I ab

qo
_mma � mb þ N � dCþM � dX

h i
dS

¼
ZL

0

~nn � drþ ~mma � dda½ � dSþ �nn � drþ �mma � dda½ �Ct

8ðdr; dd1; dd2Þ 2 TQ ; ð2:15ÞZL

0

½Aqo
ðv � _rrÞ � dv þ Iab

qo
ðma � _ddaÞ � dmb� dS ¼ 0

8ðdv; dm1; dm2Þ 2 TW ; ð2:16Þ
for the applied distributed loads ~nn and moments ~mm per
unit of length in the undeformed configuration, and the
applied loads �nn and moments �mma at the boundary Ct.
These equations are supplemented with the proper initial
conditions, i.e., UðS; 0Þ ¼ UoðSÞ and WðS; 0Þ ¼ WoðSÞ.
We note again that summation over repeated indices is
implied in (2.15) and (2.16).

Equation (2.15) corresponds to the weak statement of
the balance of linear momentum, whereas (2.16) is a weak
statement of the dynamic relations (2.2) defining the
generalized velocities v and ma (a ¼ 1; 2). We observe that,
in contrast with a more classical form of the equations in
terms of the reduced angular velocity (2.3) [see e.g. Simo
(1985)], the rotational terms have been expressed directly
in terms of the directors and their rates. As first observed
in Armero and Romero (2001c), this form of the equations
leads naturally to the frame indifference of the finite
element interpolations and to the proper conservation
properties of the time-stepping schemes used in their in-
tegration. These equations will be the starting point of the
dissipative numerical algorithms developed in the next
section.

The admissible variations considered in the weak
equations (2.15) and (2.16) belong to the tangent spaces
TQ and TW of the configuration and velocity spaces (2.1)
and (2.5), respectively. In particular, the linear space TQ
has the same form as the velocity space (2.5), except for
the imposed homogeneous boundary conditions on Cu

(that is, dU ¼ 0 on Cu). The admissible variations
dU ¼ ðdr; dd1; dd2ÞU 2 Wo can then be alternatively de-
scribed by d ~UU ¼ ðdr; dhÞ for the vector dh 2 R3 satisfying
the relation
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dda ¼ dh
 da; for a ¼ 1; 2 : ð2:17Þ

In this way, the strain variations in (2.15) are given by

dC ¼ KTðdr;s � dh
 r;sÞ and dX ¼ KTdh;s ;

ð2:18Þ

as straightforward algebraic manipulations show.
The equivalence between these two possible parame-

terizations of the space of admissible variations is crucial
for the developments presented later in this paper. To map
one expression to the other, consider a variation in TUQ of
the form dU ¼ ðdr; dd1; dd2; dd3Þ, where the third director
has been added to simplify the calculations, given by the
expression

dd3 ¼ dðd1 
 d2Þ ¼ dd1 
 d2 þ d1 
 dd2 ¼ dh
 d3 :

ð2:19Þ

Then, observing the definition of the director variations
(2.17), we can write the following relation between the two
representations of the tangent vectors at U

dU ¼

dr

dd1

dd2

dd3

8>>><
>>>:

9>>>=
>>>; ¼ NðUÞ dr

dh

� �
¼ NðUÞ d ~UU : ð2:20Þ

The matrix NðUÞ expressing the change of parameteriza-
tion of the tangent space is defined as

NðUÞ ¼

1 0 0 0

0 �d̂d1 0 0

0 0 �d̂d2 0

0 0 0 �d̂d3

2
6664

3
7775 ; ð2:21Þ

where we have denoted again by d̂da the skew tensor with
axial vector da (a ¼ 1; 2). The description of elements of
TQ with vectors of the form d ~UU is more convenient for the
numerical implementation, since there are no constraints
on their components, its total number having been
reduced from 12 to 6.

Similarly, the space of admissible velocity variations
TW, the tangent space of the velocity space W, is given by
the linear space

TW ¼ fðdv; dm1; dm2Þ ~WW¼ðv;xÞ with; dv 2 R3; and

dma ¼ dx
 da þ x
 dda; for dx 2 R3g ;

ð2:22Þ
depending on the current configuration U 2 Q indirectly
through its dependence on W 2 W.

Remark 2.1. The above Lagrangian description of the
governing equations in the velocity space is equivalent to
a classical formulation of the canonical Hamilton’s
equations in the cotangent bundle T�Q. This later form
considers the associated momenta in the phase space
T�Q. The two forms of the equations are available thanks
to the connection introduced by the inertias (2.7),
defining

p ¼ Aqo
v and la ¼ Iab

qo
mb ; ð2:23Þ

for the translational and director momentum densities,
respectively. We refer to Romero and Armero (2002a) for a
complete discussion of these aspects, since the expression
of the final equations directly on the director space is not
standard.

2.5
The conservation laws
The mechanical system defined in the previous sections is
a classical example of a Hamiltonian system and as such, it
possesses several characteristic conservation laws under
the proper assumptions on the boundary conditions and
the loading. In this way, we consider the linear momentum
LðtÞ and the angular momentum with respect to the origin
JðtÞ of the rod, defined respectively as

LðtÞ ¼
ZL

0

Aqo
v dS and

JðtÞ ¼
ZL

0

ðAqo
r
 v þ Iab

qo
da 
 mbÞ dS : ð2:24Þ

Assuming for simplicity, and without loss of generality,
that no external work is applied to the system, the total
energy HðtÞ is defined as the sum of the kinetic energy
KðtÞ in (2.6) and the potential energy VðtÞ as

HðtÞ ¼
Z L

0

1
2ðAqo

v � vþI ab
qo

ma � mbÞdS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
KðtÞ

þ
Z L

0

WðC;XÞdS|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
VðtÞ

;

ð2:25Þ

defining at the same time the Hamiltonian function of the
system.

Consider a system composed of a rod under external
forces, subjected to boundary conditions U ¼ �UU on Cu

and initial conditions of position and velocity. Then the
following conservation laws hold:

(i) If the sum of the external forces applied to the system
is zero, the total linear momentum (2.24Þ1 is constant,
i.e., _LL ¼ 0.

(ii) If the torque of the external forces with respect to the
origin is zero, then the angular momentum (2.24Þ2 is
constant, i.e., _JJ ¼ 0.

(iii) If the total work applied by the external forces is zero,
then the mechanical energy (2.25) is constant, i.e.,
_HH ¼ 0.

We refer again to Simo (1985) and Romero and Armero
(2002a) for the proof of these conservation laws, the latter
using again the direct parameterization of the governing
equations directly in terms of the director fields and their
variations, as it is employed in the numerical implemen-
tation considered next.
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3
The spatial and temporal discretizations
We discuss in this section the spatial and temporal
approximations of the variational equations of the rod
problem. The spatial discretization is performed first
through a standard finite element approximation. The
resulting finite dimensional ordinary differential equations
are approximated in time with a finite difference integrator
designed to preserve linear and angular momenta and to
allow a controllable, non-negative energy dissipation in
the discrete solution.

3.1
The spatial finite element discretization
To formulate the Galerkin approximation of the varia-
tional problem (2.15), (2.16), finite dimensional subspaces
of the functional spaces introduced in the previous section
must be defined. To this purpose, a finite element mesh is
constructed which partitions the rod axis in nel one-di-
mensional elements connected at nnode nodes. Then, the
configuration space, momentum space and their tangent
spaces are approximated as

Q � Qh ¼ fUhðS; tÞ ¼
Xnnode

A¼1

NAðSÞ UAðtÞ;

UAðtÞ ¼ ðrAðtÞ; dA
1 ðtÞ; dA

2 ðtÞÞ;

rAðtÞ 2 R3; dA
a ðtÞ 2 S2; dA

1 � dA
2 ¼ 0; ð3:1Þ

UAðtÞ ¼ �UUðSA; tÞ for A 2 Cug ;

TQ � TQh ¼ fdUhðSÞ ¼
Xnnode

A¼1

NAðSÞ dUA;

dUA ¼ ðdrA; ddA
1 ; ddA

2 Þ; drA 2 R3;

ddA
a ¼ dhA 
 dA

a for a ¼ 1; 2 ; ð3:2Þ

dUA ¼ 0 for A 2 Cug ;

W �Wh ¼ fWhðS; tÞ ¼
Xnnode

A¼1

NAðSÞ WAðtÞ ;

WAðtÞ ¼ ðvAðtÞ; mA
1 ðtÞ; mA

2 ðtÞÞ ;

vA 2 R3; mA
a ¼ xA 
 dA

a for a ¼ 1; 2 g ;
ð3:3Þ

TW � TWh ¼ fdWhðSÞ ¼
Xnnode

A¼1

NAðSÞ dWA;

dWA ¼ ðdvA; dmA
1 ; dm

A
2 Þ ;

dWA 2 R3 
 R3 
 R3g ;
ð3:4Þ

where NAðSÞ denotes a standard one–dimensional
isoparametric shape function and UA, dUA, WA, dWA are
the nodal values of the configuration and velocity
variables and their variations, respectively. As usual, the
nodal variations do not depend on the time t in contrast
with the nodal values of the configuration and velocity
variables. The standard completeness conditions are

assumed for the shape functions NAðSÞ (that is, the
constant and linear functions are represented exactly).
The Galerkin form of the problem is obtained by
substituting the previous interpolations in the weak form
(2.15), (2.16).

As indicated in the previous section, it is more con-
venient to parameterize the configuration variations in
terms of the rotation vector variations dh, through the
introduction of the nodal values dhA. Using the mapping
defined in Eq. (2.20), tangent vectors to the configuration
space can be written as

dUhðSÞ ¼
Xnnode

A¼1

NAðSÞ dUAðtÞ

¼
Xnnode

A¼1

NAðSÞ NðUAÞd ~UUAðtÞ : ð3:5Þ

We emphasize that the configuration variables U and
their variations dU are interpolated in space S and not
the reduced rotational parameters ~UU or their variations
d ~UU. This approximation imposes exactly the rotational
character of the director motion (i.e., the directors are
orthonormal) at the nodes only, but not necessarily
inside the elements. Strictly speaking then, the finite
dimensional spaces defined in (3.1)–(3.4) are not subsets
of their infinite dimensional counterparts as required by
the Galerkin’s method, except in special cases. However,
this ‘‘variational crime’’ is necessary for the frame in-
difference of the discrete model as first noted in Armero
and Romero (2001c). Previous numerical implementations
based on a finite element interpolation of the d ~UU or similar
rotational parameters (see e.g. Simo (1985) and Cardona
and Geradin (1989) among others), although imposing the
rotational character of the interpolations pointwise, were
noted to lack the required frame indifference in Crisfield
and Jelenić (1998) and Jelenić and Crisfield (1999). Fur-
thermore, the time-stepping algorithms based on these
interpolations of the rotational parameters have been
shown to lack the sought conserving properties. We refer
to Romero and Armero (2002a) for complete details on all
these issues, including an evaluation of the different
approximations.

Remark 3.1. We observe also that the interpolations in
TWh is not consistent with their continuum definition
(2.22) given the choice dma 2 R3, as it is always tacitly
assumed in the literature. This additional ‘‘variational
crime’’ allows the algorithmic preservation of the desired
conservation/dissipation properties.

3.2
The temporal discretization
The approximation of the variational problem (2.15),
(2.16) is completed by the proper temporal discretization
of the equations. As noted in Sect. 1, the goal here is that
the final fully discrete system of equations (discrete in
space and time) exhibits the conservation/dissipation
properties of interest. To this purpose, we consider a
partition of the interval of interest ½0;T� in N þ 1 points
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0 ¼ t0 < t1 < � � � < tN ¼ T. Each pair of consecutive
points defines a time step ½tn; tnþ1� of length
Dt ¼ tnþ1 � tn, not necessarily constant. We denote the
algorithmic approximation of any variable, say, y at time
tn and tnþ1 by yn and ynþ1, respectively. We also make use
of the convex combination ynþ# ¼ ð1� #Þyn þ #ynþ1 for
any # 2 ½0; 1�.

With this notation at hand, we consider the discretiza-
tion of the governing equations (2.15) and (2.16) given byZL

0

�
Aqo

vh
nþ1�vh

n

Dt
�drhþIab

qo

mh
a;nþ1�mh

a;n

Dt
�dmh

bþN� �dC�

þM� �dX�

 
dS¼

ZL

0

~nnnþ1
2
�drhþ ~mma

nþ1
2
�ddh

a

h i
dS

þ �nnnþ1
2
�drhþ �mma

nþ1
2
�ddh

a

h i
Ct

8ðdrh;ddh
1;ddh

2Þ 2TQh ;

ð3:6Þ

ZL

0

Aqo
v� �

rh
nþ1 � rh

n

Dt

� �
� dvh

�

þIab
qo

m�a �
dh

a;nþ1 � dh
a;n

Dt

 !
� dmh

b

#
dS

¼ 0 8ðdvh; dvh
1; dvh

2Þ 2 TWh ; ð3:7Þ
in combination with the spatial finite element discretiza-
tions considered in the previous section, as denoted by the
superscript ð�Þh. The Eqs. (3.6) and (3.7) consider a dif-
ference quotient for the time derivatives in the original
continuum equations (2.15) and (2.16) and, consistent
with the developments that follow, the evaluation of the
applied loading has been considered at the mid–point
tnþ1

2
¼ ðtn þ tnþ1Þ=2. It remains to define the approxima-

tion of the strain variations, the stress resultants and
velocities, all marked with an asterisk in the equations
(3.6) and (3.7). Their precise definitions are obtained by
imposing the desired conservation/dissipation properties
of the final scheme.

In this way, and as shown in Proposition 3.1 below, a
momentum conserving scheme is obtained by considering
the strain variations based on the mid-point configuration
Uh

nþ1=2 ¼ 1
2ðU

h
n þUh

nþ1Þ, that is, in terms of the nodal
variations

dUA ¼ ðdrA; ddA
1 ; ddA

2 Þ with ddA
a

¼ dhA 
 dA
a;nþ1=2 for a ¼ 1; 2 ; ð3:8Þ

where drA 2 R3, dhA 2 R3 and dA
a;nþ1=2 ¼ 1

2ðd
A
a;n þ dA

a;nþ1Þ.
Equivalently, we can write in the compact form introduced
in Eq. (2.20) the relation

dUA ¼ NA
nþ1=2d ~UU

A ; ð3:9Þ

with NA
nþ1=2 ¼ 1

2ðNðU
A
n Þ þ NðUA

nþ1ÞÞ and d ~UUA ¼ ðdrA; dhAÞ
2 R3 
 R3.

Given the finite element interpolations introduced in
the previous section, the strain variations (2.18) read

dC�

dX�

( )
¼
Xnnode

A¼1

BA
nþ1=2dUA

¼
Xnnode

A¼1

BA
nþ1=2N

A
nþ1=2d ~UU

A ; ð3:10Þ

in terms of the linearized strain operator BA
nþ1=2 ¼ 1

2ðB
A
nþ

BA
nþ1Þ. Each one of the matrices Bn, Bnþ1 is defined as

where the vector terms are evaluated at the corre-
sponding time instant tn or tnþ1, respectively. This
expression follows after expanding the strain variations
directly in terms of the variations of the directors rather
than the reduced variation vector in (2.18). The general
expanded expression of the strain measures (2.9) is
employed to this purpose. Details are omitted. As noted
in the previous section, the direct interpolation of the
directors instead of the reduced rotational parameters is
crucial for the frame indifference of the final discrete
formulation.

Of interest here is the evolution of the total momenta of
the discrete dynamical system, defined by the very same
continuum relations (2.24) but now involving the inter-
polated finite element variables (3.1) and (3.3). With the
approximations of the strain variations (3.10) at hand, the
following result holds:

Proposition 3.1 The fully discrete system of equations
(3.6) and (3.7) with the strain variations (3.10) preserves
the conservation laws of linear and angular momentum of
the continuum system stated in Sect. 2.5, the latter if the
vectors v�, m�1 and m�2 approximating the generalized
velocities satisfy the relations

v� 
 vh
nþ1

2
¼ 0 and Iab

qo
m�a 
 mh

b;nþ1
2
¼ 0 ; ð3:12Þ

(summation implied in this last relation, as usual) for the
mid-point values vh

nþ1
2
, mh

1;nþ1
2

and mh
2;nþ1

2
.

BA¼

NA
;s dhT

1 NArhT

;s 0T 0T

NA
;s dhT

2 0T NArhT

;s 0T

NA
;s dhT

3 0T 0T NArhT

;s

0T 0T 1
2ðNA

;s dh
3�NAdh

3;sÞ 1
2ðNA

;s dh
2�NAdh

2;sÞ
0T 1

2ðNA
;s dh

3�NAdh
3;sÞ 0T 1

2ðNA
;s dh

1�NAdh
1;sÞ

0T 1
2ðNA

;s dh
2�NAdh

2;sÞ 1
2ðNA

;s dh
1�NAdh

1;sÞ 0T

2
6666666664

3
7777777775
; ð3:11Þ
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Proof: To prove the conservation of linear momentum, we
consider the variations

ðdrh; ddh
1; ddh

2Þ ¼ ðc; 0; 0Þ 2 TQh ; ð3:13Þ
for a constant c 2 R3 in the discrete weak equilibrium
equation (3.6). We observe that the constant vectors (3.13)
define indeed admissible variations given the assumed
completeness of the shape functions defining the finite
element interpolations. By assumption, the terms involv-
ing the external forces are zero and it is easily verified that
the strain variations also vanish. The only remaining terms
in the weak equilibrium equation are the inertial terms,
leading to the relation

0 ¼
ZL

0

Aqo

vh
nþ1 � vh

n

Dt
� c dS ¼ c

Dt
�
ZL

0

Aqo
vh

nþ1 � vh
n

& '
dS

¼ c

Dt
� Lh

nþ1 � Lh
n

& '
; ð3:14Þ

for all c 2 R3. Hence, we conclude that Lh
nþ1 ¼ Lh

n proving
the result for the conservation law of the linear momen-
tum.

To prove the conservation of angular momentum, we
consider the variations

ðdrh; ddh
1; ddh

2Þ
¼ ðc
 rh

nþ1=2; c
 dh
1;nþ1=2; c
 dh

2;nþ1=2Þ 2 TQh ;

ð3:15Þ

and

ðdvh; dmh
1; dmh

2Þ
¼ ðc
 vh

nþ1=2; ; c
 mh
1;nþ1=2; c
 mh

2;nþ1=2Þ 2 TWh ;

ð3:16Þ

in the discrete governing equations (3.6) and (3.7), re-
spectively, for an arbitrary constant vector c 2 R3. Note
that the director variations belong to the correct director
tangent space, given in terms of the associated nodal val-
ues. As before, the terms involving external forces are zero
by assumption and the strain variations (3.10) vanish
again for this particular choice of configuration variations,
as a straightforward calculation shows. The rest of the
weak equation (3.6) reads

0 ¼
ZL

0

Aqo

vh
nþ1 � vh

n

Dt
� c
 rh

nþ1
2

( )�

þIab
qo

mh
a;nþ1 � mh

a;n

Dt
� c
 dh

b;nþ1=2

( )#
dS

¼ c

Dt
�
ZL

0

Aqo
rh

nþ1 
 vh
nþ1 þ Iab

qo
dh

a;nþ1 
 mh
b;nþ1

( )h

� Aqo
rh

n 
 vh
n þ Iab

qo
dh

a;n 
 mh
b;n

( )i
dS

�
ZL

0

Aqo

rh
nþ1 � rh

n

Dt
� c
 vh

nþ1
2

( )�

þI ab
qo

dh
a;nþ1 � dh

a;n

Dt
� c
 mh

b;nþ1
2

( )#
dS

¼ c

Dt
� ðJh

nþ1 � Jh
nÞ

� c �
ZL

0

Aqo
v� 
 vh

nþ1
2
þ Iab

qo
m�a 
 mh

b;nþ1
2

h i
dS by (3.7)ð Þ

¼ c

Dt
� ðJh

nþ1 � Jh
nÞ ; ð3:17Þ

the last equality following by the assumed conditions
(3.12) in the statement of the proposition. Since the vector
c is again arbitrary, the conservation of the angular
momentum in the time step (i.e., Jnþ1 ¼ Jn) follows,
proving the proposition.

3.3
Energy consistent approximations of the stress
resultants and velocities
It remains to define the temporal approximations of the
stress resultants N� and M�, and the velocities v� and m�a,
the latter satisfying the conditions (3.12) for the discrete
system to inherit the conservation law of angular mo-
menta. As discussed in Section 1, it is our goal to define
these approximations such that the final discrete dynam-
ical system exhibits a controllable, unconditionally non-
negative numerical energy dissipation, with full energy
conservation as a particular case.

To this purpose, we investigate first the evolution of the
energy along the solutions of the discrete system. This
evolution can be obtained by introducing the variations

ðdrh; ddh
1; ddh

2Þ ¼ ðrh
nþ1 � rh

n; dh
1;nþ1 � dh

1;n; dh
2;nþ1 � dh

2;nÞ

¼ Uh
nþ1 �Uh

n 2 TQh ;

ðdvh; dmh
1; dmh

2Þ ¼ ðvh
nþ1 � vh

n; m
h
1;nþ1 � mh

1;n; m
h
2;nþ1 � mh

2;nÞ

¼ Wh
nþ1 �Wh

n 2 TWh ; ð3:18Þ
in the discrete governing equations. We observe that these
variations are indeed admissible (i.e. they belong to the
spaces indicated in (3.18)) through the corresponding
nodal values, and that they correspond to the increments
of the configuration and velocity variables in the time step
of interest. The corresponding discrete strain variations,
given by (3.10), are

dC�
dX�

� �
¼
Xnnode

A¼1

BA
nþ1=2 UA

nþ1 �UA
n

& '

¼
Ch

nþ1 � Ch
n

Xh
nþ1 �Xh

n

( )
; ð3:19Þ

that is, the increment of the discrete strain measures, as an
algebraic calculation shows. We note that this result does
not depend on the pointwise orthogonality of directors,
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thanks to the general definition (2.9) of the discrete
strains.

Inserting these variations in the discrete governing
equations (3.6) and (3.7), we obtain after adding the
resulting expressions in the case of interest with no
external workZL

0

N� � Ch
nþ1 � Ch

n

& '
þM� � Xh

nþ1 �Xh
n

& '� �
dS

þ
ZL

0

v� � Aqo
vh

nþ1 � vh
n

& '�
þ m�a � Iab

qo
mh

b;nþ1 � mh
b;n

( )i
dS ¼ 0 ; ð3:20Þ

showing the energy evolution in the discrete system. The
first term in this equality can be identified as the work
done by the stress resultants N� and M� on the increments
of the associated strains, whereas the second term mea-
sures the change of kinetic energy associated with the
velocity approximations v� and m�a.

Since our goal is the formulation of dissipative ap-
proximations of the governing equations, with a control-
lable numerical dissipation including, in particular, the
energy conserving case, we consider the additive splits

N� ¼ Ncons þ Ndiss; M� ¼ Mcons þMdiss ; ð3:21Þ
and

v� ¼ vcons þ vdiss; m�a ¼ ma;cons þ ma;diss ða ¼ 1; 2Þ ;

ð3:22Þ
in conservative and dissipative parts of the approxima-
tions of the stress resultants and velocities, respectively.
The conserving parts of the stress resultants are defined by
the relation

Ncons � Ch
nþ1 � Ch

n

& '
þMcons � Xh

nþ1 �Xh
n

& '
¼ Wnþ1 �Wn ð3:23Þ

that is, resulting in the change of the strain energy
Wnþi ¼ WðCh

nþi;X
h
nþiÞ (i ¼ 0; 1), with the conserving part

of the velocity approximations defined by the relation

vcons � Aqo
vh

nþ1 � vh
n

& '
þ ma;cons � Iab

qo
mh

b;nþ1 � mh
b;n

( )
¼ Kqo nþ1

�Kqo n ; ð3:24Þ
for the kinetic energy density Kqo nþiðvh

nþi; m
h
1;nþi; m

h
2;nþiÞ

(i ¼ 0; 1) defined in (2.6). On the other hand, the dissi-
paive parts are defined such that the relations

Ndiss � Ch
nþ1 � Ch

n

& '
þMdiss � Xh

nþ1 �Xh
n

& '
¼ DW

ð3:25Þ
and

vcons � Aqo
vh

nþ1 � vh
n

& '
þ ma;cons � Iab

qo
mh

b;nþ1 � mh
b;n

( )
¼ DK ; ð3:26Þ

are satisfied for different local density functions DW and
DK to be defined.

Combining relations (3.23) to (3.26) with the energy
evolution relation (3.20), we obtain the final relation

Hh
nþ1 � Hh

n ¼ �
Z L

0

DW þDKð Þ dS|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

; ð3:27Þ

identifying the evolution of the total energy of the discrete
system

Hh
nþi :¼

ZL

0

h
1
2vh

nþi � Aqo
vh

nþi þ 1
2m

h
a;nþi � Iab

qo
mh

b;nþi

þWðCh
nþi;X

h
nþiÞ
i

dS ; ð3:28Þ

for i ¼ 0; 1. Clearly, the interest here is the definition of the
dissipative part of the stress and velocity approximations
such that the total numerical dissipation is non-negative,
that is, D � 0.

For the linear strain–stress relations (2.13), the con-
serving part of the stress resultants is easily obtained as

Ncons ¼ CC
1
2 Ch

n þ Ch
nþ1

& '
and

Mcons ¼ CX
1
2 Xh

n þXh
nþ1

& '
; ð3:29Þ

with (3.23) leading trivially to the difference of the
quadratic potential (2.12). Similarly, given the quadratic
character of the kinetic energy density Kqo

(2.6) in the
velocities, the conserving part of the velocities can be
easily expressed as

vcons ¼ vh
nþ1

2
and ma;cons ¼ mh

a;nþ1
2
ða ¼ 1; 2Þ ;

ð3:30Þ
for the corresponding mid-point values. We observe that
the conditions (3.12), identified in Proposition 3.1 as
necessary for the conservation of angular momentum, are
satisfied with the choice (3.30). In particular, the relation
(3.12)2 for the director velocity follows from the symmetry
of the dyadic I ab

qo
and the skew-symmetry of the combi-

nation mh
a;nþ1

2

 mh

b;nþ1
2

in the indices fa; bg. Extensions of

the conserving approximations (3.29) to non-quadratic
potentials Wð�Þ can be easily obtained using the formalism
proposed in González (2000); details are omitted here.

The modified mid-point evaluations (3.29) for the stress
resultants were first proposed in Simo et al. (1995) in the
current context of Cosserat rods but, as noted in Romero
and Armero (2002a), the conserving character of the final
fully discrete approximation depends crucially on the di-
rect interpolation of the director fields (3.1) leading to the
mid-point evaluation of the director velocity (3.30) instead
of the angular velocity (2.3) associated to the reduced
rotational parameters. In this way, the numerical schemes
proposed in Simo et al. (1995) not only lack frame-indif-
ference but also the energy conserving property in contrast
with the conserving scheme considered here, a scheme
first proposed in Armero and Romero (2001c). The chal-
lenge in this paper is the formulation of extensions that
accommodate a controllable energy dissipation through
the dissipative contributions in (3.21) and (3.22), as we
develop in the following section.
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3.4
Energy dissipative schemes
It remains to define the dissipative parts of the stress re-
sultants and velocities in (3.21) and (3.22) satisfying the
relations (3.25) and (3.26), respectively, determining in the
process the dissipation functions DW and DK . Motivated
by these relations we write these dissipative parts as

Ndiss ¼
DC

kCh
nþ1 � Ch

nkcC

CCðCh
nþ1 � Ch

nÞ
kCh

nþ1 � Ch
nkcC

; ð3:31Þ

and

Mdiss ¼
DX

kXh
nþ1 �Xh

nkcX

CXðXh
nþ1 �Xh

nÞ
kXh

nþ1 �Xh
nkcX

; ð3:32Þ

in terms of two dissipation functions DC and DX associ-
ated to the axial/shear forces and bending/torsional mo-
ments, respectively. The particular case given by the
relations (2.13) has been assumed when writing the ex-
pressions (3.31) and (3.32) although, as noted in Remark
3.2 below, these expressions apply also to the general case
for any other (non-quadratic) elastic potential. Here, the
symbols k � kc denote the weighted Euclidean norms

kCk2
cC

:¼ C � CCC ; and kXk2
cX

:¼ X � CXX ;

ð3:33Þ
using the assumed positive definiteness of the tangent
moduli (2.14); see again Remark 3.2 otherwise.

From (3.25), we conclude that

DW ¼ DC þDX : ð3:34Þ
Clearly, the motivation behind the definitions (3.31) and
(3.32) is, given (3.25), the introduction of the dissipations
DC and DX along the direction of the increments of the
corresponding strain measures. Obviously, a general
formula can be considered accommodating a contribu-
tion in the orthogonal direction in the metric defined by
the tangent moduli CC and CX. The challenge here is in
the definition of the dissipation functions DC and DX

that lead to consistent approximations of the stress
resultants and to a non-negative controllable energy
dissipation. In particular, they must satisfy the limit
relations

DC ! 0 as Ch
nþ1 ! Ch

n; and

DX ! 0 as Xh
nþ1 ! Xh

n ; ð3:35Þ
given the quotient in (3.31) and (3.32), for a well-defined
stress approximation. The flexibility of the approach
proposed here, allowing the introduction of this
dissipation through the different components of the stress
response (i.e., axial/shear forces or bending/torsional
moments) is to be noted.

The choice of the dissipative part of the velocity ap-
proximations v� and m�a follows similar arguments, but
now constrained by the relations (3.12) so the conserva-
tion law of angular momentum is preserved. This last re-
quirement is accomplished by setting these vectors parallel
to the mid–point values vh

nþ1
2

and mh
a;nþ1

2
, respectively, as

occurred with the conserving contributions discussed in

the previous section. In this way, we consider the
approximations

vdiss ¼
Dv

vnþ1 � vn

vh
n þ vh

nþ1

vnþ1 þ vn
; and

ma;diss ¼
Dm

mnþ1 � mn

mh
a;n þ mh

a;nþ1

mnþ1 þ mn
; ð3:36Þ

where we have introduced the notation

vnþi � kvh
nþik :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vh

nþi � vh
nþi

q
ð3:37Þ

and

mnþi � kðmh
1;nþi; m

h
2;nþiÞkIqo=Aqo

:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mh

a;nþi �
Iab

qo

Aqo

mh
b;nþi

s
;

ð3:38Þ
for i ¼ 0; 1, that is, the norms of the translational velocity
and the rotational velocities, respectively, the latter
weighted by the (positive definite) inertia introduced in
(2.7). We note that both vnþi and mnþi have units of velocity
(space/time).

As occurred with the dissipative part of the stress re-
sultants in (3.31) and (3.32), we consider the dissipative
part of the velocity approximations explicitly in terms of
two different numerical dissipation density functions Dv

and Dm associated to the translational and director veloc-
ities, respectively. In fact, introducing the formulas (3.36)
in the relation (3.26), we obtain

DK ¼ Dv þDm ; ð3:39Þ
for the function DK . The limit relations

Dv ! 0 as vnþ1 ! vn; and

Dm ! 0 as mnþ1 ! mn ; ð3:40Þ
need to be imposed for well-defined expressions (3.36) as
occurred in the approximations of the stress resultants.

Hence, with all these considerations, the total numerical
dissipation (3.27) introduced by the numerical scheme
reads as

Hh
nþ1 � Hh

n ¼ �
Z L

0

(
DC þDX|fflfflfflfflffl{zfflfflfflfflffl}

DW

þDv þDm|fflfflfflfflffl{zfflfflfflfflffl}
DK

)
dS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

:

ð3:41Þ
Remarkably, we have reduced the problem to the defini-
tion of four scalar values (DC, DX, Dv and Dm) locally, that
is, at each quadrature point in a typical finite element
implementation as elaborated further in the following
section. We note that these values appear under an integral
sign, whose evaluation is then needed at this level of
quadrature points. Clearly, we need to impose the re-
quirement D � 0 unconditionally, not necessarily each of
the four components of the numerical dissipation being
non-negative independently. The additional challenge is
that this total numerical dissipation is to be controllable by
the appropriate algorithmic parameters (so D ¼ 0 is an

13



option, recovering the original conserving scheme) and
leads to, at least, second order accurate approximations in
time. We note in this respect that the conserving ap-
proximation (3.29) and (3.30) are second order accurate.
To address this challenge, we follow similar arguments as
proposed in Armero and Romero (2001a, b) in the simpler
context of nonlinear continuum elastodynamics, arriving
to first and second order accurate energy-dissipative
momentum-conserving schemes or, in short, EDMC-1
and EDMC-2 schemes, respectively.

Remark 3.2. The above considerations use explicitly the
elastic tangent matrices (2.14). The general case can be
easily accommodated with a fixed tangent o2W or its
convexification to recover a positive definite tangent. Note
that all the developments apply to a given time step
½tn; tnþ1�. We refer to Armero and Romero (2001a, b) for a
detailed discussion of these issues in the context of non-
linear continuum elastodynamics.

3.4.1
A first order dissipative scheme
A first order scheme, called EDMC-1, is easily obtained
with the quadratic expressions

DC ¼ 1
2vCkCh

nþ1 � Ch
nk

2
cC

and

DX ¼ 1
2vXkXh

nþ1 �Xh
nk

2
cX

; ð3:42Þ
for the dissipation densities associated with the stress re-
sultants, and

Dv ¼ 1
2vvAqo

ðvnþ1 � vnÞ2 and

Dm ¼ 1
2vmAqo

ðmnþ1 � mnÞ2 : ð3:43Þ
The definitions (3.42) and (3.43) introduce general (user-
controlled) algorithmic parameters v � 0 that control the
amount of numerical dissipation. We refer in particular to
Armero and Romero (2001a) for a spectral analysis of the
scheme in the context of a linear problem, showing the
dependence of the numerical dissipation on the corre-
sponding algorithmic parameter. The conserving case is
easily recovered with the choice v0s ¼ 0.

We observe that, in this case, all four dissipation func-
tions are non-negative for all v0s � 0 and have the proper
limits (3.35) and (3.40). The first order accuracy of the final
scheme is clear. In particular, the dissipative parts of the
stress resultants approximations reduce in this case to

Ndiss ¼ 1
2vCCCðCnþ1 � CnÞ ; and

Mdiss ¼ 1
2vXCXðXnþ1 �XnÞ ; ð3:44Þ

after using the general formulae (3.31) and (3.32).

3.4.2
A second order dissipative scheme
A second order dissipative scheme, referred to as EDMC-2,
is obtained with the dissipation functions

DC ¼ 1
2
~bbCkCh

nþ1 � Ch
nk

2
cC

and

DX ¼ 1
2
~bbXkXh

nþ1 �Xh
nk

2
cX

; ð3:45Þ

in terms of the to-be-defined scalar parameters ~bbC and ~bbX,
leading by (3.31) and (3.32) to the dissipative stress con-
tributions

Ndiss ¼ 1
2
~bbCCCðCh

nþ1 � Ch
nÞ; and

Mdiss ¼ 1
2
~bbXCXðXh

nþ1 �Xh
nÞ ; ð3:46Þ

and the velocity dissipation functions

Dv ¼ 1
2Aqo

ð~vvn � mnÞðvnþ1 � vnÞ; and

Dm ¼ 1
2Aqo

ð~mmn � mnÞðmnþ1 � mnÞ ; ð3:47Þ
in terms of the scalar parameters ~vvn and ~mmn. Motivated by
the L-stable second-order Runge–Kutta family of one-step
schemes identified in Armero and Romero (2001b), these
parameters are defined implicitly by the linear set of al-
gebraic equations

~bbC ¼ aCv
Dt

h
ð~vvn � vnþ1Þ þ aCm

Dt

h
ð~mmn � mnþ1Þ;

~bbX ¼ aXv
Dt

h
ð~vvn � vnþ1Þ þ aXm

Dt

h
ð~mmn � mnþ1Þ;

~vvn ¼ vn �
Dt

Aqo
h

aCvð~bbC � 1ÞkCh
nþ1 � Ch

nk
2
cC

h
þaXvð~bbX � 1ÞkXh

nþ1 �Xh
nk

2
cX

i
;

~mmn ¼ mn �
Dt

Aqo
h

aCmð~bbC � 1ÞkCh
nþ1 � Ch

nk
2
cC

h
þaXmð~bbX � 1ÞkXh

nþ1 �Xh
nk

2
cX

i
;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð3:48Þ

where h is a characteristic length, chosen to be the length
associated with the quadrature point at which the equa-
tions above are enforced (e.g. h ¼ wljl for the quadrature
weight wl and the Jacobian jl of the isoparametric map for
the finite element in the interpolation of the undeformed
middle-axis of the rod). As noted above, all the formulae
(3.48) are to be evaluated at the quadrature points for the
dissipative parts of the stress resultants and velocities. The
presence of a length parameter is required for the proper
dimensional consistency of the final equations. Further-
more, a calculation shows that the equations are well-
defined in the limit h ! 0, after noting that the stress
resultants are eventually multiplied by the length
parameter again h in the numerical implementation. In
fact, a vanishing dissipation is obtained in this limit, as it
should be expected. The scalars a0s are general user-
controlled algorithmic parameters that control the amount
of numerical dissipation introduced by the numerical
scheme.

An algebraic calculation using the definitions (3.48)
shows that the final expression of the numerical dissipa-
tion (3.41) reads in this case
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D¼
ZL

0

½DvþDmþDCþDX�dS

¼
ZL

0

�
1

2
Aqo
ð~vvn� vnÞ2þ

1

2
Aqo
ð~mmn� mnÞ2þ

1

2
~bb2
CkCnþ1

�Cnk2
CC
þ1

2
~bb2
XkXnþ1�Xnk2

CX

 
dS� 0 ; ð3:49Þ

after a cancellation of the terms involving the same algo-
rithmic parameter a in the cross definitions (3.48) of the
parameters associated to the stress resultants and the ve-
locity approximations. We observe that, in this case, the
individual dissipation functions (3.46) and (3.47) are not
necessarily positive, but their sum in (3.49) is indeed non-
negative thanks to the definition of these cross terms. We
can observe also that the choice a0s ¼ 0 for all the algo-
rithmic parameters recovers again the energy conserving
scheme (i.e. Ndiss ¼ 0, Mdiss ¼ 0, vdiss ¼ 0 and
m1;diss ¼ m2;diss ¼ 0). We refer again to Armero and Romero
(2001b) for a complete spectral analysis of the scheme in
the context of a linear problem showing the dependence
of the numerical dissipation on the algorithmic
parameters. In particular, this analysis confirms the
introduction of this numerical dissipation in the high-
frequency range, with the final scheme being second-order
accurate in time.

Remarks 3.3. 1. We note that the numerical simulations
presented in Sect. 5 consider a reduced quadrature in the
evaluation of the stress terms of the governing equations
(3.6) to avoid the well-known shear locking in beam for-
mulations. On the other hand, the inertial terms are in-
tegrated with a full quadrature rule. The nonnegative
character of the numerical dissipation depends on the
cancellation of terms pointed out above to arrive at the final
expression (3.48) under the integral sign. Observe that the
parameters ~bb0s and ~vv0s affect the dissipative approximations
of the stress resultants and the velocities. In the numerical
setting, this cancellation must occur at the quadrature
points, with the different terms requiring their evaluation
at the same points. This is accomplished by the evaluation
of all the integrals involving the dissipative part of the
approximation of the generalized velocities with the same
reduced quadrature rule as the stress resultant terms. For
example, the translational part of Eq. (3.7) has to be
understood asZ L

0

rh
nþ1 � rh

n

Dt
� dvh dS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

full quadrature

�
"Z L

0

vcons � dvh dS|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
full quadrature

þ
Z L

0

vdiss � dvh dS|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
reduced quadrature

#
¼ 0 ;

ð3:50Þ

for all dvh 2 TWh. A similar evaluation must be employed
for the director velocity equations. The numerical simu-
lations presented in Sect. 5 consider a linear finite ele-
ments with the two-point Gauss quadrature rule for the
transient terms and the reduced one-point quadrature rule
for the stress resultant terms.

2. It is important to observe that the formulae (3.48)
defining the dissipative approximations involve only the
values of the configuration variables and their velocities at
tn and tnþ1, that is, ðUn;WnÞ and ðUnþ1;Wnþ1Þ in the
compact notation introduced in previous sections. That is,
the final scheme is a one-step method with no intermediate
stages, as favored in the discussion of Sect. 1. The local
equations (3.48) define simply a linear set of algebraic
equations to be solved at each quadrature point for the
scalar values ~bbC, ~bbX, ~vvn and ~mmn. These equations, however,
fully couple the equations (3.6) and (3.7) in the config-
uration and the velocity variables. Their efficient solution
can still be obtained through the numerical implementa-
tion described in the following section.

3. The final numerical schemes can be shown to satisfy
the second part of Item 5. in the list of requirements
identified in the introductory discussion of Sect. 1, that is,
the relative equilibria of the physical system are preserved
exactly with the group motions associated to these solu-
tions being approximated in a conservative matter. The
numerical dissipation is then introduced in the internal
modes of the motion. We refer Armero and Romero
(2001a) for a complete discussion of these aspects in the
context of nonlinear elastodynamics. Similar arguments
and proofs apply to the case of interest herein. We only
observe that the dissipative parts of the stress resultants
and the velocities vanish for the case when the strain
measures remain constant in a time step and the velocity
norms remain constant in a time step, that is, for solutions
corresponding to a relative equilibria consisting of a rigid
body motions superposed to a fixed deformed configura-
tion. Further details are omitted here.

4
The numerical implementation
We discuss in this section the numerical implementation
of the method presented in the previous section. A
standard finite element implementation could be followed
in which the nonlinear algebraic equations resulting from
the variational equations (3.6) and (3.7) are solved
iteratively. This approach is computationally costly be-
cause, as noted in Remark 3.3.2, the equilibrium equation
(3.6) and the velocity equation (3.7) are coupled for the
EDMC-2 scheme through the cross terms of the dis-
sipative stresses and velocities in (3.48). Consequently,
twelve degrees of freedom (three displacements, three
rotation increments and their corresponding velocities)
must be used during this solution procedure for every
node in the model. This situation is to be contrasted with
the implementation of classical time-stepping algorithms,
which reduce to the solution of a system of equations in
the configuration variables (i.e., three displacements and
three rotation increments in the case of interest), fol-
lowed by nodal updates to recover the corresponding
velocities.
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To avoid this added computational cost and the com-
plexity of the described implementation, we consider an
iterative scheme that avoids these shortcomings. This
solution strategy is based on the repeated solution of a
system of equations in which the dissipative terms are held
constant and thus, do not modify the standard lineariza-
tion process. We refer to Armero and Romero (2001b) for
a similar iterative scheme in the context of nonlinear
continuum elastodynamics.

In what follows, we consider the particular case where
the dissipative terms are introduced only on the transla-
tional degrees of freedom (i.e., terms involving the stress
resultant N and the velocity v), as considered in the
numerical simulations presented in Sect. 5. This choice
amounts to the selection vX ¼ vm ¼ 0 in the EDMC-1
scheme and aCm ¼ aXv ¼ aXm ¼ 0 in the EDMC-2 scheme.
The flexibility of the general formulation presented in the
previous section is then used to our advantage since this
choice simplifies significantly the final numerical im-
plementation while introducing the desired numerical
dissipation in a very efficient manner. As noted in Sect. 5,
the difficulties observed by the conserving (non-dis-
sipative) schemes can be directly linked to the high-
frequency response associated to the axial and transverse
shear deformation modes of the rod. These choices of al-
gorithmic parameters introduce precisely the numerical
dissipation through these components of the rod’s re-
sponse. The implementation of the general case follows
similar, but more complex, arguments; we refer to Remark
4.1.3 below for further details.

4.1
The finite element equations
The dynamic equilibrium equation (3.6) reads in residual
form

rA :¼ FA
ext � FA

int � FA
iner ¼ 0 ; ð4:1Þ

for A ¼ 1; 2; . . . ; nnode. The three vectors FA
ext; FA

int and FA
iner

correspond to the external, internal and inertial contri-
butions, respectively. They are defined as

FA
ext ¼ NA;T

nþ1=2

ZL

0

NA

�nn

�mm1

�mm2

0

8>>><
>>>:

9>>>=
>>>; dS ; ð4:2Þ

FA
int ¼ NA;T

nþ1=2

ZL

0

B
A;T
nþ1=2

N�

M�

� �
dS ; ð4:3Þ

FA
iner ¼ NA;T

nþ1=2

ZL

0

NA

Dt

Aqo
ðvh

nþ1 � vh
nÞ

I 1b
qo
ðmh

b;nþ1 � mh
b;nÞ

I 2b
qo
ðmh

b;nþ1 � mh
b;nÞ

0

8>>>><
>>>>:

9>>>>=
>>>>;

dS ; ð4:4Þ

for A ¼ 1; 2; . . . ; nnode, where the external and internal
terms are evaluated using a reduced quadrature, with a full
quadrature for the inertial terms.

The translational part of the velocity update equation
(3.7) results in the equation

ZL

0

NAAqo

rh
nþ1 � rh

n

Dt
dS

¼
ZL

0

NAAqo
vh

nþ1=2 dSþ
ZL

0

NAAqo
vdiss dS ; ð4:5Þ

where, according to Remark 3.3.1, the last integral is
evaluated with a reduced quadrature rule. The first term
in (4.5) defines the consistent mass matrix with
components

MAB ¼
ZL

0

NANBAqo
dS : ð4:6Þ

Equation (4.5) reads then in matrix form

Xnnode

B¼1

MAB rB
nþ1 � rB

n

Dt
¼
Xnnode

B¼1

MABvB
nþ1=2 þ

Xnnode

B¼1

MABg B ;

ð4:7Þ

where the vector gB is obtained as the solution of the
system

Mg A ¼
ZL

0

NAAqo
vdiss dS ; ð4:8Þ

for A ¼ 1; . . . ; nnode. Equation (4.7) reduces then to the
nodal update equation

1

Dt
ðr A

nþ1 � r A
n Þ ¼ v A

nþ1=2 þ g A ; ð4:9Þ

for A ¼ 1; . . . ; nnode. When compared with the imple-
mentation of a standard mid-point or energy–conserving
solution of the problem, we observe that the difference in
these equations stems only from the last term gA in (4.9).
We observe that the computation of the vector gA requires
the solution of the system (4.8), but involving the fixed
(symmetric positive definite) mass matrix (4.6). Hence, a
single Cholesky decomposition is required in a simulation,
with the computation of the vector g A involving only a
forward and a backward substitution.

As noted above, we consider the case with a conserving
approximation for the rotational degrees of freedom. Let

dA
i;nþ1 ¼ exp½ĥhA�d A

i;n ; i ¼ 1; 2; 3 ; ð4:10Þ
for A ¼ 1; . . . ; nnode (no summation implied in the re-
peated nodal indices A in this and later expressions, unless
an explicit summation symbol is present). The vector hA is
the incremental rotation vector of the nodal frame
fd1; d2; d3g and exp½ĥh� is the exponential map of the
associated skew symmetric tensor. This update enforces
nodally the orthogonality of the directors. Next define the
pseudo rotation vector by the relation

cay½�hhA� ¼ exp½ĥhA� ; ð4:11Þ
where cay½�� : R3 ! SOð3Þ is the Cayley transform defined
as
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cay½a� ¼ 1þ 1
2âa

& '
1� 1

2âa
& '�1

: ð4:12Þ
This last definition can be used to rewrite the update (4.10)
in the more convenient form

dA
i;nþ1 ¼ cay½�hhA�dA

i;n

) dA
i;nþ1 � dA

i;n ¼ �hhA 
 dA
i;nþ1=2 ; ð4:13Þ

at each node A ¼ 1; nnode.
However, two adjacent elements which connect at a

node but are not aligned may have different section
directors at the connecting node. Therefore, the update
(4.13) must be modified accordingly. To this purpose, let
e ¼ 1; . . . ; nelem be the element number and denote by
d
ðeÞl
i ; mðeÞli the director and director velocity at the local

node l of element e. The global-to-local nodal numbering
map is given in terms of a Boolean matrix, often denoted
by ID. Using this common naming convention, the global
number of a node with local number l in an element e is
A ¼ IDðe; lÞ. The following modification of (4.13) is con-
sidered, which accounts for different section directors in
connecting elements

d
ðeÞ;l
i;nþ1 ¼ cay½�hhA�dðeÞ;li;n ; i ¼ f1; 2; 3g with

A ¼ IDðe; lÞ : ð4:14Þ
Finally, the director velocities are approximated by the
following mid-point rule at the element level

mðeÞli;nþ1 ¼ �mðeÞli;n þ 2~xxA 
 d
ðeÞl
i;nþ1=2 ; with

A ¼ IDðe; lÞ : ð4:15Þ
for i ¼ f1; 2; 3g and the nodal angular velocity
~xxA ¼ �hhA=Dt.

4.2
Summary of the numerical implementation
In summary, the numerical solution of the fully discrete
equations of motion involves the solution of the residual
equation (4.1) together with the nodal updates (4.9)
and (4.15). The difference with a conserving scheme is the
last term in (4.9). An iterative strategy is proposed next
that takes advantage of the similarities of the conserving
and dissipative formulations.

In this way, a number of iterations NITER is chosen and
the following steps are executed:

0. Calculate the mass matrix (4.6) and its Cholesky
decomposition.

1. Given the nodal variables ðUA
n ;WA

n Þ, with
A ¼ 1; . . . ; nnode, at time tn,

2. obtain a predictor for the solution at tnþ1

ðUA;ðoÞ
nþ1 ;W

A;ðoÞ
nþ1 Þ ¼ ðUA

n ;WA
n Þ ; ð4:16Þ

and set the counter ITER=0.
3. Evaluate the dissipative terms Ndiss and vdiss corre-

sponding to the EDMC formulae as functions of the
solution at time tn and the current iterate ðUA

nþ1;WA
nþ1Þ.

Calculate the vector g solving (4.8) through the already
available (fixed) Cholesky decomposition of the mass
matrix. Increment the counter ITER by 1.

4. Solve the nonlinear finite element equations (4.1)
holding constant the dissipative terms Ndiss and vdiss.
An iterative Newton–Raphson procedure can be used to
this purpose; see Remark 4.1.1 below. Denoting by k the
iteration count this solution procedure accounts for:

4.1. Solve the linearized residual equations for the
increments DUA ¼ ðDrA;D�hhAÞ making use of the
linear velocity updates (4.9) and (4.15).

4.2. Update the configuration variables

r
A;ðkþ1Þ
nþ1 ¼ r

A;ðkÞ
nþ1 þ DrA ; ð4:17Þ

KA;ðkþ1Þ
nþ1 ¼ cay½D�hhA�KA;ðkÞ

nþ1 ; ð4:18Þ

4.3. Update the nodal velocity variables. For every node
A ¼ 1; . . . ; nnode

v
A;ðkþ1Þ
nþ1 ¼ v

A;ðkÞ
nþ1 þ

2

Dt
DrA ; ð4:19Þ

�hhA ¼ cay�1½KA;ðkþ1Þ;T
nþ1 KA

n � ; ð4:20Þ

~xxA;ðkþ1Þ ¼ 2

Dt
�hhA ; ð4:21Þ

4.4. Update the director and the director velocities at the
element ðeÞ for every node in the element

KðeÞ;l;ðkþ1Þ
nþ1 ¼ KA;ðkþ1Þ

nþ1 KðeÞ;lo ; ð4:22Þ

mðeÞ;l;ðkþ1Þ
i;nþ1 ¼�mðeÞli;n þ2~xxA;ðkþ1Þ 
d

ðeÞ;l;ðkþ1Þ
i;nþ1=2 ; ð4:23Þ

4.5. Check for convergence in the solution of the system
of nonlinear equations and go back to 4.1 if not
converged.

5. If the value of the counter ITER is less than NITER, go
back to step 3.

6. Advance the time step counter n and GOTO 1.

Remarks 4.1. 1. Since the dissipative terms are held con-
stant in the Newton–Raphson procedure of the solution
step 4.1, the consistent tangent matrix employed in this
solution process is identical to the one associated to the
fully conserving scheme, except for the definition of the
stresses in the geometric tangent now accounting also for
the constant dissipative part. A key factor for this aspect is
the linearity of the velocity update equations which only
holds true because the dissipative terms are kept constant
in the Newton-Raphson loop. We refer to Romero and
Armero (2002a) for complete details of the consistent
linearization of the energy conserving scheme.

2. Different combinations of the constant NITER and the
tolerance for the Newton–Raphson scheme can lead to
different computational costs for the same solution. We
refer to Armero and Romero (2001b) for a complete
evaluation of this cost in the context of nonlinear
continuum elastodynamics.

3. The general case involving dissipative terms in the
rotational degrees of freedom follows similar arguments.
The mass matrix associated to these degrees of freedom is
not constant now, in contrast to (4.6) for the translational
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degrees of freedom. This requires the solution of a system
similar to (4.8) with a changing system matrix. This added
cost motivates also the assumed choice of algorithmic
parameters. Additional details are omitted.

5
Representative numerical simulations
We present in this section several numerical examples to
illustrate the fundamental properties of the time-stepping
algorithms formulated in this article. The first example
illustrates the conservation laws of linear and angular
mometa of the final discrete schemes while introducing a
strictly non-negative numerical energy dissipation. The
rest of examples illustrate how the added numerical
dissipation enhances the stability of the time integration
scheme, resulting in improved algorithms as compared
with standard conserving methods.

5.1
Example 1: free flight of a three-dimensional frame
This first example consists of the free flight of a three-
dimensional frame. This example was first considered in
Romero and Armero (2002a) in the context of energy–
momentum conserving schemes. The purpose here is to
illustrate clearly the addition of non-negative energy dis-
sipation, while preserving exactly the conservation of lin-
ear and angular momenta. The controllable character of
this numerical dissipation is also illustrated with the re-
covery of the energy conserving scheme as a particular
case.

The frame consists of three equal rods linked rigidly in
two right angles as depicted in Fig. 2. The assumed ma-
terial properties are: density qo ¼ 500, Young’s modulus
E ¼ 5 � 105 and Poisson ratio m ¼ 0:3. The constant cross-
section of the rod has area A ¼ 0:005, a diagonal second
moment of area with values ~II11 ¼ ~II22 ¼ 2 � 10�5 (that is, a
circular cross–section with full symmetry) and torsional
inertia J ¼ ~II11 þ ~II22 ¼ 4 � 10�5. Each rod is modeled with
five linear finite elements of equal length. As discussed in
Remark 3.3.1, a reduced one-point quadrature rule is

considered for the stress resultant terms to avoid shear
locking.

The frame is set in motion by giving initial velocities to
the connections A, B and C of Fig. 2 of values vA ¼ �e3,
vB ¼ 2e3 and vC ¼ �e2, respectively, in the frame also
depicted in this figure. The frame is then in free flight
afterwards. We consider the second-order energy-dissi-
pating momentum-conserving scheme EDMC-2 developed
in Sect. 3.4.2 with the choice of algorithmic parameters of
Sect. 4 in terms of a single algorithmic parameter a � aCv.
The values of a ¼ 0 and a ¼ 0:5 are considered for the
algorithmic parameter in two different simulations. As
noted in Sect. 3.4.2 the case a ¼ 0 recovers the energy–
momentum scheme of Romero and Armero (2002a). Each
simulation is performed with 50 time steps of equal size
Dt ¼ 0:2 for a total time of 10.

Figure 3 depicts the solution obtained with the EDMC-2
a ¼ 0:5. The deformed configuration of the frame is de-
picted every ten time steps. We observe that the motion
involves large deformations, with a large straining of the
rods. The accurate treatment of the rigid connections by
the implementation described in Sect. 4, with two different
directors for each rod connecting at the corner, is to be
noted.

Figure 4 depicts the evolution of the three components
of the linear momentum and the three components of the
angular momentum as well as the total energy in the
system, showing also the kinetic and potential energies
separately. The full conservation of the momenta in this
system in free flight can be observed for both cases (that is,
for a ¼ 0 and a ¼ 0:5), confirming Proposition 3.1. Simi-
larly, the numerical energy dissipation introduced in the
simulation with a ¼ 0:5 can also be observed. The
monotonic character of the energy dissipation is to be
emphasized again, confirming the results of Sect. 3.4.

It is important to observe that this dissipation of the
energy is not to a zero value, but to the energy associated
to the relative equilibria associated to the constant linear
and angular momentum of the system, as the long-term
solution (not shown) confirms. We also observe that this
dissipation can be turn off at any time by the choice a ¼ 0,

Fig. 2. Example 1: free flight of a three-dimensional frame.
Geometry of the model: three rods modeled by five linear finite
elements each are connected rigidly at the two junctions

Fig. 3. Example 1: free flight of a three-dimensional frame. From
left to right, top to bottom, deformed configurations every 10
time steps of size Dt ¼ 0:2 in the EDMC-2 solution with a ¼ 0:5
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Fig. 4. Example 1: free flight of a three-dimensional frame.
Linear and angular momentum and energy evolutions for the
solutions obtained with the EDMC-2 scheme for a ¼ 0 (energy–
momentum conserving) and a ¼ 0:5 (energy dissipative)
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given the one-step nature of the scheme. The importance
of considering this numerical dissipation to obtain the
solution of the problem is illustrated in the next two
examples.

5.2
Example 2: dynamic snap-through of a flexible arch
This second example considers the dynamic snap-through
of a shallow arch. The geometry of the problem under
consideration is depicted in Fig. 5. The arch is composed
of two equal rods of cross-section areas A ¼ 0:1, diagonal
second moment of area ~II11 ¼ ~II22 ¼ 5 � 10�3, torsional
constant J ¼ ~II11 þ ~II22 ¼ 10 � 10�3, density qo ¼ 5 � 105,
Young’s modulus E ¼ 2 � 109 and shear modulus G ¼ E=2.
The arch is modeled with a total of 30 identical linear rod
elements.

A vertical force F is applied as depicted in Fig. 5 with
modulus

FðtÞ ¼ 2:5t; 0  t  1000;
0; 1000 < t .

�
ð5:1Þ

The motion occurs in the plane of the figure. After a cer-
tain level of the load, the arch snaps dynamically. This type
of problems often exhibit a large amount of energy content
in the high frequency range. Algorithms exhibiting a high-
frequency dissipation are then crucial to obtain a stable
numerical solution. We refer to Kuhl and Ramm (1996) for
a similar problem and discussion in the context of
nonlinear shells.

We consider again simulations with the energy–mo-
mentum conserving scheme (EDMC-2 scheme with a ¼ 0)
and the EDMC-2 scheme with a � aCv ¼ 1. A constant
time step of Dt ¼ 1 is considered for both cases. Figure 6
shows the evolution of the energy in each simulation, in-
cluding again the evolutions of the potential and kinetic
energies separately.

We observe that the energy conserving solution (a ¼ 0)
fails to converge after the time t ¼ 1163, long after the
snap-through, which takes place at the time t � 950.
Therefore, the reason for this lack of convergence cannot
be that the size of the time step is too large to correctly
capture the dynamics of the snap–through. A better
explanation comes from the fact that the snap-through
excites the high frequency modes of vibration of the
structure. The evolutions of the kinetic and potential
energies show the nature of the solution, involving fast
oscillations. This result confirms the limitations of fully
energy-conserving algorithms in these situations where the

high numerical stiffness of the system may even preclude
the convergence of the solution process of the nonlinear
problem.

In contrast, the dissipative scheme shows no difficulties
to converge with the considered time step. Figure 6 shows
this solution up to the time t ¼ 2000. The added dissipa-
tion in the axial modes of deformation through the non-
zero algorithmic parameter aCv allows the method to better
control the overall solution. Note also in Fig. 6 that this is
done while controlling the energy growth after the release
of the external force. We investigate further these perfor-
mances of the conserving and dissipative schemes with the
size of the time step in the following example.

5.3
Example 3: dynamic simulation of a plane mechanism
with rigid links
The use of time integration algorithms with high-fre-
quency dissipation is specially useful in the simulation of
multibody systems, involving mechanisms with links of
different stiffnesses, all the way to the limit of rigid links.
This type of problems are commonly associated to stiff
differential equations. The stiffness of the equations results
from the constraints in the limit case of rigid links and, in
general, from the wide range of flexibilities in the bodies of
these systems. Furthermore, sudden changes in the stiff-
ness of the mechanisms in their deformed configurations,
as for example occurs when the different links align, are
responsible for the transfer of energy to the high frequency
modes of the motion. This, in turn, causes problems to
conserving schemes as identified in Bauchau et al. (1995).

Following these ideas, we proposed in Armero and
Romero (2001a) a two dimensional mechanism composed
of two rigid links and a flexible link, the latter modeled by
springs and point masses. This simple setting allowed to
study the effects described above. We consider again this
mechanism but now with the flexible link modeled more
realistically by an elastic Cosserat rod, as developed in this
paper. The rigid links are modeled simply by a stiff axial
element in conjunction with an augmented Lagrangian
scheme to enforce the inextensibility constraint.

Figure 7 depicts the initial geometry of the mechanism.
It is composed of two lateral rigid links of unit length
connected by a flexible rod, also of unit length, all in a
single plane. Each of the rigid links has one fixed end and
one point mass of value m ¼ 2 at the other end connecting
with the flexible rod. The flexible link is modeled with 4
linear rod elements, of cross section A ¼ 0:08, diagonal
second moment of area ~II11 ¼ ~II22 ¼ 10�4, torsional con-
stant J ¼ ~II11 þ ~II22, density q ¼ 10, Young’s modulus
E ¼ 25 � 103 and Poisson ratio m ¼ 0:3. A point load F of
value

FðtÞ ¼ ð�25e2 þ 2e3Þ �
8t; 0  t  0:25;
4� 8t; 0:25  t  0:5;
0; 0:5 < t .

(

is applied on the mechanism at the point shown in Fig. 7.
Due to the load F, the mechanism swings in its plane,
resulting in the repeated alignment of the rigid and flexible
links. As discussed above, this situation generates a large

Fig. 5. Example 2: dynamic snap-through of flexible arch.
Geometry of the problem
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amount of energy content in the high-frequency part of the
response. Figure 8 depicts the solution obtained with the
EDMC-2 scheme with a ¼ 0:5, illustrating this motion.

We consider again simulations with the EDMC-2 dis-
sipative scheme (with different algorithmic parameters
a > 0) and the energy–momentum conserving scheme
(EDMC-2 with a ¼ 0), with now different values of the
constant time-step sizes Dt. The solution obtained with the
energy–momentum method fails to converge when the
time step size is Dt ¼ 0:05 and also when it is reduced to

Fig. 6. Example 2: dynamic snap-through
of plane arch. Energy evolution in the
solutions obtained with the energy–momen-
tum scheme (EDMC-2 with a ¼ 0) and the
EDMC-2 with parameter a � aCv ¼ 1. The
time step size is Dt ¼ 1 in both simulations

Fig. 7. Example 3: mechanism with constraints. Configuration at
time t ¼ 0

b
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Dt ¼ 0:01 and 0.005. As pointed out in Bauchau et al.
(1995), reducing the time step size in situations like the
one under consideration does not help the numerical
convergence, since new higher modes may enter in the
solution as the time step size gets smaller making the
convergence even harder. Figure 9 shows the deformed
configuration of the mechanism in the last converged
solution (t � 3:3) obtained with the energy–momentum
method and Dt ¼ 0:05. The alignment to follow of the
rigid and flexible links of the mechanism can be observed
in the figure. The limitations of the energy conserving
scheme in handling these highly stiff systems in then
confirmed.

The solution computed with the EDMC-2 method
converges for all these three time step sizes. When
Dt ¼ 0:05 the dissipation parameter is chosen to be
a ¼ 0:5. For the other two cases, a value of a ¼ 5:0 is
considered. Figure 8 shows the deformed configurations of
the mechanisms computed with the time step size of
Dt ¼ 0:05 every ten time steps. Figure 10 shows the
evolution of the energy in the three simulations, for the
energy–momentum scheme and the EDMC-2 scheme. We
depict again the total energy as well as its two components,
the kinetic and potential energies. The high-frequency
content of the solution becomes apparent before the en-
ergy–momentum fails to converge; see especially the plot
for the time step Dt ¼ 0:005. A good agreement can be
observed before the failure of the energy–momentum
scheme of this scheme with the dissipative EDMC-2 a > 0
schemes. These plots illustrate clearly the effect of the
numerical dissipation introduced by the latter. In partic-
ular, we observe that the energy is never allowed to grow

Fig. 8. Example 3: three link mechanism.
From left to right, top to bottom, configura-
tions of the mechanism at every 10 time steps
of size Dt ¼ 0:05 in the solution obtained with
the EDMC-2 and a ¼ 0:5

Fig. 9. Example 3: three link mechanism. Configuration of the
mechanism in the last converged solution obtained with the en-
ergy–momentum scheme (EDMC-2 a ¼ 0) and Dt ¼ 0:05

Fig. 10. Example 3: three link mechanism. Evolution of the en-
ergies (total, kinetic and potential) in the solutions obtained with
the energy–momentum (left column) and EDMC-2 a > 0 (right
column) for different time-step sizes. Observe the high–frequency
energy of the solution right before the energy-conserving schemes
fails to converge in contrast with the EDMC-2 scheme with a > 0

c
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Fig. 11. Example 3: three link mechanism. Evolution of the
acceleration norms in the solutions obtained with the energy–
momentum (left column) and EDMC-2 a > 0 (right column) for

different time-step sizes. Observe the lack of control in the en-
ergy-conserving solution in contrast with the solutions obtained
with the EDMC-2 scheme with a > 0
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after the initial loading phase in the EDMC-2 a > 0. A
smaller decrease of the energy can be observed the smaller
the time step. We can also observe the localized effects of
this numerical dissipation when the potential energy
shows a spike and an increased oscillation in the high-
frequency afterwards.

The evolution of the L2 norm of the acceleration also
provides important information about how the method
controls the evolution of the high frequency content of
the solution [see e.g. the discussion in Hughes (1987)].
Figure 11 shows the evolution of this norm for the trans-
lational and rotational accelerations in the solutions ob-
tained with the energy–momentum and EDMC-2 methods.
In the former case, the solutions exhibit an uncontrolled
growth of the acceleration norms that can be associated to
an instability in the numerical solution. We can observe
how this growth leads eventually to a failure of the con-
vergence in the solution of the nonlinear algebraic equa-
tions. In contrast, we can observe in the same Fig. 11 how
the EDMC-2 algorithm controls the growth of these
acceleration norms, avoiding altogether this instability,
thanks to the added numerical dissipation. The robustness
gained by the presence of the algorithmic parameters
adding non-negative numerical dissipation to the solution
process is then apparent.

6
Concluding remarks
We have discussed in this paper the formulation of
energy–dissipative momentum conserving time stepping
algorithms for the integration of the nonlinear dynamics of
Cosserat rods. The newly proposed schemes exhibit these
conservation/dissipation properties rigorously proven in
the general nonlinear range, with the numerical dissipa-
tion introduced by the numerical scheme being control-
lable through the appropriate algorithmic parameters. An
energy-conserving scheme is recovered as a particular
case. We have discussed the details of the numerical im-
plementation of the final schemes in the context of finite
element interpolations of the governing equations that
preserved the frame indifference of the strain and stress
measured of the underlying physical system.

The final numerical schemes have shown to exhibit the
necessary robustness to deal with the highly numerical stiff
problems considered here. In particular, the added control
on the evolution of the energy has shown to lead to im-
proved, more stable, numerical simulations over the en-
ergy conserving schemes. We believe that this improved
performance at a competitive computational cost makes
these schemes an attractive alternative for this type of
systems.
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Crisfield MA, Jelenić G (1998) Objectivity of strain measures in
geometrically exact 3D beam theory and its finite element
implementation. Proc. Roy. Soc. London 455: 1125–1147

Crisfield M, Shi J (1994) A Co-rotational element/time-integra-
tion strategy for non-linear dynamics. Int. J. Numer. Meth.
Eng. 37, 1897–1913

Galvanetto U, Crisfield MA (1996) An energy-conserving
co-rotational procedure for the dynamics of planar beam
structures. Int. J. Numer. Meth. Eng. 39: 2265–2282
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Jelenić G, Crisfield MA (2000) Dynamic analysis of 3D beams
with joints in presence of large rotations. Comput. Meth.
Appl. Mech. Eng. (in press)

Kane C, Marsden JE, Ortiz M, West M (2000) Variational inte-
grators and the Newmark algorithm for conservative and
dissipative mechanical systems. Int. J. Numer. Meth. Eng. 49,
1295–1325

Kuhl D, Crisfield MA (1997) Energy conserving and decaying
algorithms in non-linear structural dynamics. Int. J. Numer.
Meth. Eng. 45: 569–599

Kuhl D, Ramm E (1996) Constraint energy momentum algorithm
and its application to non-linear dynamics of shells. Comput.
Meth. App. Mech. Eng. 136: 293–315

Kuhl D, Ramm E (1999) Generalized energy–momentum method
for nonlinear adaptive shell analysis. Comput. Meth. App.
Mech. Eng. 178: 343–366

Prothero A, Robinson A (1974) On the stability and accuracy of
one-step methods for solving stiff systems of ordinary
differential equations. Math. Comput. 28: 145–162

Reissner E (1972) A one-dimensional finite strain beam theory:
the plane problem. J. Appl. Math. Phys. (ZAMP) 23: 795–
804

Romero I, Armero F (2002a) An objective finite element
approximation of the kinematics of geometrically exact rods
and its use in the formulation of an energy-momentum
conserving scheme. Int. J. Numer. Meth. Eng. 54: 1683–1716

Romero I, Armero F (2002b) Numerical integration of the stiff
dynamics of geometrically exact shells. Int. J. Numer. Meth.
Eng. 54: 1043–1086

Simo JC (1985) A three-dimensional finite-strain rod model. Part
I. The three-dimensional dynamic problem. Comput. Meth.
Appl. Mech. Eng. 72(3): 267–304

Simo JC, Tarnow N (1992) The discrete energy–momentum
method. conserving algorithms for nonlinear elastodynamics.
ZAMP 43: 757–793
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