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Abstract This paper presents a procedure for modelling
singular crack tip regions of creeping, cracked structural
components using singular boundary elements. These
special boundary elements correctly simulate the time-
dependent singular behaviour of stress and strain fields at
the crack tip of creeping materials. The investigated
structural components are considered to undergo time-
dependent, two-dimensional creep deformation and to be
subjected to remote loading conditions. The deformation
of the components is assumed to be described by the
elastic power law creep model. Examples of various crack
problems are investigated to illustrate the efficiency of the
proposed singular boundary elements for analysing creep
stress and strain distribution problems and for deter-
mining some important creep fracture parameters. The
effectiveness of the proposed approach is demonstrated
and its accuracy is compared with the results obtained by
finite element solutions for different creep conditions.

Keywords Singular boundary elements, Crack,
Viscoplasticity, Creep fracture, Elastic power law
creep model, Time-dependent inelasticity

1
Introduction
In fracture mechanics, a main task is the analysis of the
crack tip singular stress and strain fields and evaluation of
some important fracture parameters which affect crack
propagation. The problem is much more complicated if
time-dependent inelastic deformations in creeping cracked
structural components is considered. A complete analyti-
cal solution for this kind of problems does not exist. In
early works of Rice and Riedel (1978, 1979, 1980), an as-
ymptotic analysis was performed to give closed-form ex-
pressions for creep stresses and strains near the crack tip
of cracked specimens. In their analysis, the elastic strain
rates were neglected compared with the creep rates, since
at the crack tip and for values of creep exponent greater

than one, the latter rates are much larger than the former
rates. While this assumption is asymptotically correct at
the crack tip, this needs careful investigation since the
situation may be different even a small distance away from
the crack tip. For this reason, and in order to look at
realistic and practical problems, the use of numerical so-
lutions such as the finite element method (FEM) and the
boundary element method (BEM) becomes imperative. For
a review on the subject one can consult Beskos (1987).

In connection with a boundary element determination
of near crack tip stress and strain fields in cracked struc-
tural components undergoing two-dimensional inelastic
deformation one should mention here the works of
Mukherjee and his co-workers for Mode I and II (1981a,
1981b) and Mode III (1981c) cracks. In these papers, a
stationary crack is modelled as a very thin ellipse and by
using a Green’s function approach, the stress redistribu-
tion in time near the crack tip is obtained. Later, Cruse and
Polsch (1986) and Rußwurm (1992) modeled the fields at
crack tips by also using appropriate Green’s functions,
while Tan and Lee (1983) used Kelvin’s fundamental so-
lutions and appropriate boundary conditions to simulate
the crack. Leitao et al. (1995) proposed a dual-boundary
element methodology to numerically simulate elastoplastic
crack growth. A more comprehensive review in BEM so-
lutions of inelastic fracture mechanics problems could be
found in the review article of Aliabadi (1997).

In the search for an accurate, yet generalized, compu-
tational method for evaluating singular crack tip stress and
strain fields, the singular element approach in conjunction
with BEM has been properly used in various fracture
mechanics applications. Several researchers have contrib-
uted to this field: Blandford et al. (1981) was the first who
introduced the traction singular quarter-point boundary
element approach in combination with a multi-domain
formulation to the solution of both symmetrical and non-
symmetrical crack problems. Thereafter, this approach has
been extensively used in the application of the boundary
element method to two- and three-dimensional crack
problems. An extension of the quarter-point element
technique was used by Hantschel et al. (1990) who made
an attempt to model crack tip fields arising in two-di-
mensional elastoplastic cracked panels by introducing
some special singular boundary elements which took into
account the HRR singularity field (Hutchnison, 1968; Rice
and Rosengren, 1968) near the crack tip.

Fracture analyses which take into account time-depen-
dent inelastic deformation problems arising in creeping
cracked structural components are, in the BEM literature,
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almost non-existent. To the authors knowledge only the
work of Mukherjee’s research team, as it is described
above, addresses the problem with the use of the Green’s
function approach. This Green’s function approach, al-
though accurate, is however limited to problems with a
single crack modelled as a very thin ellipse. The main
difficulty for the solution of this kind of fracture problems
for both FEM and FEM methodologies is that, while at zero
time the form of the stress singularity near crack tip is the
well known elastic singularity r�1=2 (where r is the distance
from the crack tip – see Fig. 1) for any other time step the
order of singularity changes to r�1=ðmþ1Þ in relation to the
creep exponent m. Thus, it is clear that for this kind of
problem the singularity order is variable and for a proper
numerical solution of the problem one should be able to
change the singularity order in a consistent time-depen-
dent manner.

A fracture parameter which has played a very important
role in both elastic and inelastic fracture mechanics is the
contour integrals developed in paths around crack tips.
For creeping materials an energy rate contour integral CðtÞ
has been defined in Bassani and McClintock (1981) for
obtaining plane strain finite element solutions of the
power-law creep elevation of crack tip stresses subsequent
to an initial elastic response. This specific contour integral
appears to be a viable parameter for characterizing creep
crack growth under steady-state conditions and can be
considered as a time and path-dependent amplitude factor
of the asymptotic stress field near a crack tip.

In the present paper, a creep strain traction singular
element (CR-STSE) is implemented in the direct boundary
element formulation to evaluate the time-dependent in-
elastic stress and strain singularity field distribution in-
volved in creeping cracked two-dimensional plates. This
CR-STSE is produced by using the technique presented in
Maiti (1992) to simulate power type singularities around
crack tips arising in various fracture problems of linear
elasticity. The stress and strain results obtained by the
implementation of the CR-STSE in the boundary element
formulation are used, subsequently, to determine the time
dependence of the energy rate contour integral CðtÞ and
the growth of the creep zone. Numerical examples are
presented for different test specimens: shallow edge
cracked plate and two typical fracture test specimens.
These specimens are single edge notched tension (SENT)
and compact tension (CT) specimens. The results obtained

by the present BEM methodology are further compared
with available finite element solutions in the literature. The
creep constitutive model used in the numerical calcula-
tions is the power law creep model (Nortan, 1929) but any
other creep constitutive model having similar mathemat-
ical structure can be easily implemented in the proposed
algorithm.

2
Derivation of boundary integral equations
The Navier equation for the displacement rates, in plane
strain deformation and under the presence of non-elastic
strains can be written as

_uui; jj þ
1 þ m
1 � m

_uuk;ki ¼ �
_FFi

G
þ 2 _een

ij; j þ
2ð1 þ mÞ
1 � 2m

ða _TTÞ;i
ði; j; k ¼ 1; 2Þ ð1Þ

where Fi is the prescribed body force per unit volume, G, m
and a are the shear modulus, Poisson’s ratio and coeffi-
cient of linear thermal expansion, respectively, ui is the
displacement vector. Suitable traction and displacement
rate boundary conditions must be prescribed. The integral
representation of the solution of a point P on the boundary
of the body (with _FFi ¼ 0) has the following initial strain
form

dij �Cij

� �
_uuiðPÞ¼

Z
C

UijðP;QÞ _ssjðQÞ�TijðP;QÞ _uujðQÞ
� �

dCq

þ
Z
X

½RjkiðP;qÞ _een
jkðqÞ

þ ~RRjkiðP;qÞdjka _TTðqÞ�dXq ð2Þ
where dij is Kronecker delta, P;Q are boundary points, q is
an interior point, C and X are the boundary and the
surface of the body, respectively. The kernels Uij;Tij;Rjki

and ~RRjki are known singular solutions due to a point load
in an infinite elastic solid in plane strain (Mukherjee,
1977). The traction and displacement rates are denoted by
_ss and _uu, respectively. The coefficients Cij are known
functions of the included angle at the boundary corner at
P, the angle between the bisector of the corner angle and
the x-axis. Equation (2) is a system of integral equations
for the unknown traction and displacements rates in terms
of their prescribed values on the boundary, and the non-
elastic strain rates. The unknown quantities only appear
on the boundary of the body and the surface integrals are
known at any time through the constitutive equations.

The stress rates can be obtained by direct differentiation
of Eq. (2) resulting in

_rrij pð Þ ¼
Z
C

�UUijk p;Qð Þ _ssk Qð Þ�
�

�TTijk p;Qð Þ _uuk Qð Þ
�
dCq

� 2G _een
ijð pÞ � 3Ka _TTð pÞdij

þ
Z
X

½�RRijkl p; qð Þ _een
kl qð Þ þ �~RR~RRijklð p; qÞdkla _TTðqÞ�dXq

ði; j; k; l ¼ 1; 2Þ ð3ÞFig. 1. Geometry of the crack tip

299



where G, K are the shear and bulk modulus, respectively;
�RRijkl and �~RR~RRijkl are inelastic and temperature effect kernel
functions, respectively, which are also defined in the work
of Mukherjee (1977).

3
Standard and singular element implementation

Standard boundary and interior surface element
implementation
The integral equations (2) and (3) can be expressed in
numerical form by discretizing the boundary and the in-
terior into a number of standard three-noded quadratic
boundary elements (QBE) (Fig. 2a) and nine-noded
quadratic quadrilateral interior surface elements (QQIE)
(Fig. 2b), respectively, provided that they are not adjacent
to the crack tip. Thus, the discretization of the boundary
integrals in Eqs. (2) and (3) is performed by using the
coordinates, the displacement and traction rate fields of an
arbitrary point within the element Cl which can be cal-
culated by the following equations

~XXj ¼ NaðfÞ ~XXa
j

_uuj ¼ NaðfÞ _UUa
j

_ssj ¼ NaðfÞ _PPa
j

ð4Þ

where NaðfÞ is a set of quadratic shape functions of QBE
defined on any regular boundary element Cl not adjacent
to the crack tip and given as

N1 ¼ fðf � 1Þ=2

N2 ¼ ð1 � f2Þ
N3 ¼ fðf þ 1Þ=2

ð5Þ

f is the intrinsic coordinate on Cl which varies between �1
and þ1 and the subscript a is summed from 1 to 3. ~XXa

j ; _UUa
j

and _PPa
j are vectors containing the nodal values of coordi-

nates, displacement rates and the boundary traction rates,
respectively.

The coordinates, the nonelastic strain and the
temperature rate fields of an arbitrary interior point n
within any interior element Xi can be calculated by the
equations

~xxj ¼ N 0
bðf1; f2Þ~xxb

j

_een
jk ¼ N 0

bðf1; f2Þ _EEnb

jk

_TT ¼ N 0
bðf1; f2Þ _TTb

ð6Þ

where ~xxj is the vector that contains the Cartesian coordi-
nates of an arbitrary interior point n within the element Xi

and ~xxb
j is the vector of the Cartesian coordinates related to

the nodal point of the element Xi; _EEnb

jk and _TTb represent the
vectors of the increments of the nonelastic strain and
temperature rates terms at an arbitrary point n inside the
interior element Xi; f1 and f2 are intrinsic coordinates on
any interior element Xi and the subscript b is summed
from 1 to 9; N 0

bðf1; f2Þ is a set of polynomial shape func-
tions which, for the purposes of the present paper, is de-
fined for any element Xi, by using the standard 9-noded
quadratic quadrilateral interpolation shape functions of
QQIE defined as

N 0
1 ¼ f1f2

ð�a2 þ f1Þð�a3 þ f2Þ
a4a5a1a6

N 0
2 ¼ f1f2

ð�a4 þ f1Þð�a3 þ f2Þ
a2a5a1a6

N 0
3 ¼ f1f2

ð�a4 þ f1Þða1 þ f2Þ
a2a5a3a6

N 0
4 ¼ f1f2

ð�a2 þ f1Þða1 þ f2Þ
a4a5a3a6

N 0
5 ¼ f2ðða2 � f1Þða4 þ f1ÞÞ

ð�a3 þ f2Þ
a2a4a1a6

N 0
6 ¼ f1ðða3 � f2Þða1 þ f2ÞÞ

ða4 þ f1Þ
a1a3a2a5

ð7Þ

N 0
7 ¼ f2ðða2 � f1Þða4 þ f1ÞÞ

ða1 þ f2Þ
a2a4a3a6

N 0
8 ¼ f1ðða3 � f2Þða1 þ f2ÞÞ

ð�a2 þ f1Þ
a1a3a4a5

N 0
9 ¼ ðða2 � f1Þða4 þ f1ÞÞ

ða3 � f2Þða1 þ f2Þ
a2a4a1a3

with

ai ¼ 1 � bi i ¼ 1; 4

a5 ¼ a2 þ a4

a6 ¼ a1 þ a3

where for regular surface elements QQIE, not adjacent to
the crack tip and the crack line, the parameters bi are equal
to zero (continuous 9-noded quadratic quadrilateral ele-
ment). These specific parameters bi are shown in Fig. 2b.

Asymptotic crack-tip fields in a creeping material
The material behavior in this paper is described by the
elastic-nonlinear viscous constitutive relation according to
the power law relation (Nortran, 1929)

_ee ¼ _rr
E
þ _ee0

r
r0

� �m

ð8ÞFig. 2. a Quadratic boundary element (QBE), b 9-node quadratic
quadrilateral interior element (QQIE)

300



where E is the elasticity modulus, r0 is a reference stress,
_ee0 is a reference creep strain rate and m is the creep ex-
ponent. Under the assumption of multiaxial stress states,
the extension of Eq. (8) can be read as

_eeij ¼ _eee
ij þ en

ij

_eee
ij ¼

1 þ m
E

_SSij þ
1 � 2m

3E
_rrkkdij

_een
ij ¼

3

2
_ee0

re

r0

� �m�1Sij

r0

ð9Þ

where Sij are the components of the deviatoric stress ten-
sor and Sij ¼ rij � rkkdij=3 and re is the Misses effective
stress defined by re ¼ ðð3=2ÞSijSijÞ1=2.

From the inspection of Eqs. (8) and (9) it could be
noted that if there is a singular crack tip field at time t ¼ 0
the elastic singularity fields prevail at the crack tip. In
subsequent time step and at distances sufficient close to
the crack tip the creep strain part of the total strain rate is
much larger than the elastic strain rates and it seems to
control the crack tip fields ðm > 1Þ. Thus, the constitutive
equations (8) and (9) become power law creep relation-
ships. Using the Hoff analogy (1954) to contrast the
power-law creep relation with the power-law hardening
relation, Riedel and Rice (1980) and Ohji et al. (1979)
presented the HRR-type singularity fields for power-law
creep material described by the equations

rij ¼ r0
CðtÞ
_ee0r0Inr

� � 1
nþ1

~rrijðhÞ

_eeij ¼ _ee0
CðtÞ
_ee0r0Inr

� � n
nþ1

~eeijðhÞ

_uui ¼ _ee0r
CðtÞ
_ee0r0Inr

� � n
nþ1

~uuijðhÞ

ð10Þ

where the radial distance r from the crack tip and the angle
h in relation to the x-axis are also shown in Fig. 1. The
dimensionless constants In and the h-variation functions
of the suitably normalized functions ~rrij; ~eeij and ~uuij depend
on the creep exponent m and have been tabulated in Shih
(1983).

The amplitude factor CðtÞ of Eqs. (10) depends upon
application time, magnitude of the remote loading, crack
configuration and material properties. It is known from
the finite element work of Bassani and McClintock (1981)
that, on any closed path S surrounding a crack tip that lies
within a region where the creep strain rates given by
Eqs. (8) greatly exceed the elastic ones one can obtain the
energy rate contour integral

CðtÞ ¼
Z
S

m

m þ 1
rij _eeij � r11

o _uu1

ox1
� r21

o _uu2

ox1

� �
dx2

�

þ r12
o _uu1

ox1
þ r22

o _uu2

ox1

� �
dx1

	
ð11Þ

where S is a vanishingly small clockwise contour sur-
rounding the crack tip and u1, u2, eij and rij are dis-
placements, stresses and strains, respectively, evaluated
along contour S. It is clear that CðtÞ integral characterizes

the intensity of the near tip fields in elastic-nonlinear
viscous materials in precisely the same manner as the
J-integral does the near tip fields in rate-independent
elastic–plastic materials.

Analogous to the plastic analysis, a creep zone can also
be defined by assuming the stress field outside the zone is
essentially the same as elastic stress field and its size can be
estimated as

rcðh; tÞ ¼ bcðm; hÞ K2

2p

� �mþ1
m�1 In

BCðtÞ

� 	 2
m�1

ð12Þ

where rc is the creep zone size, K is the known elastic
stress concentration factor and bcðm; hÞ a non-dimen-
sional angular function. The factor In is accounting for
stress states while the constant B ¼ _ee0=rm

0 .
In the long time term, as the creep zone grows an ex-

tensive creep condition is achieved and the path and time
dependent energy rate contour integral approaches a
constant value C	. It has been shown that over the entire
transition regime CðtÞ can be approximated by the em-
pirical formula

CðtÞ ffi C	 1 þ tT

t


 �
ð13Þ

where tT is the transition time from small scale creep to
extensive creep which is given by

tT ¼ ð1 � m2ÞK2

ðm þ 1ÞEC	 ð14Þ

Special singular boundary element implementation
To produce a special element which presents the above
mentioned HRR-type singularity of Eqs. (10) at the crack
tip (Fig. 1), the standard quadratic shape function for
displacement rates should be manipulated. Thus, by
modifying properly (Maiti, 1992) the displacement rate
standard quadratic shape functions of (5), one can obtain
the following new set of shape functions Nu

a which depend
upon the creep exponent m

Nu
1 ¼ 2

1
1þm

r

l


 �1þ 1
1þm� r

l


 � 1
1þm

� 	
þ r

l


 �

Nu
2 ¼ 21þ 1

1þm
r

l


 � 1
1þm� r

l


 �1þ 1
1þm

� 	

Nu
3 ¼ 2

1
1þm

r

l


 �1þ 1
1þm� r

l


 � 1
1þm

� 	
� r

l


 �
þ 1

ð15Þ

where l is the length of the new special quadratic element,
the distance r ¼ l � x and the ratio can be defined in terms
of the intrinsic coordinate f as ðr=lÞ ¼ ð1 � fÞ=2. Then, by
taking the derivatives of the new shape functions (15) one
can obtain the following

oNu
1

ox
¼ � 1

l

� �
þ 2

1
1þm

1

1 þ m

� �
1

l

� �
l � x

l

� �� m
1þm

� 2
1

1þmþ1 1

1 þ m
þ 1

� �
1

l

� �
l � x

l

� � 1
1þm
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oNu
2

ox
¼ �2

1
1þmþ1 1

1 þ m

� �
1

l

� �
l � x

l

� �� m
1þm

þ 2
1

1þmþ1 1

1 þ m
þ 1

� �
1

l

� �
l � x

l

� � 1
1þm

oNu
3

ox
¼ 1

l

� �
� 2

1
1þm

1

1 þ m

� �
1

l

� �
l � x

l

� �� m
1þm

� 2
1

1þmþ1 1

1 þ m
þ 1

� �
1

l

� �
l � x

l

� � 1
1þm

ð16Þ

Now, it may be noted that the derivatives (16) display a
r�m=ðmþ1Þ singularity near the crack tip which is the actual
situation for the strain rate singularities according to (10).
It may also be easily proved as in Maiti (1992) that the new
set of displacement rate shape functions (15) fulfill the
convergence criteria of the rigid body mode and the
constant strain condition.

Since in boundary element methodology displacement
and tractions are independently represented, the above
derived singular element for the simulation of crack tip
behavior of displacement rates, fails to model the expected
from Eqs. (10) crack tip behavior of tractions which dis-
plays an order of �1=ðm þ 1Þ singularity. Thus, for the
proper simulation of the traction rate singularity, different
shape functions are derived by the use of the derivatives of
the shape functions (16) and finally modified to the fol-
lowing separate forms Nt

a in terms of creep exponent m

Nt
1 ¼ 2

m
1þm

l

r

� � 1
1þm

� r

l


 � m
1þm

" #
� 2 þ 2

r

l


 �

Nt
2 ¼ 2

m
1þm

l

r

� � 1
1þm

� r

l


 � m
1þm

" #

Nt
3 ¼ 2

m
1þm � l

r

� � 1
1þm

þ r

l


 � m
1þm

" #
þ 1

ð17Þ

where now r ¼ x and the ratio ðr=lÞ ¼ ð1 þ fÞ=2.
It is obvious, that the traction rate shape functions (17)

have the proper order of traction rate singularity since
have the dependence of r�1=ðmþ1Þ according to (10). It may
also be noted from a proper derivation of (17) that the
crack tip values of traction rate shape functions are given
as expected by the following limiting processes

Nt
1 ¼ lim

r!0

l

r

� � 1
1þm

; Nt
2 ¼ lim

r!0

l

r

� � 1
1þm

; Nt
3 ¼ lim

r!0

l

r

� � 1
1þm

as
r

l
¼ 0

Nt
1 ¼ 0; Nt

2 ¼ 1; Nt
3 ¼ 0 as

r

l
¼ 0:5

Nt
1 ¼ 0; Nt

2 ¼ 0; Nt
3 ¼ 1 as

r

l
¼ 1

A simultaneous simulation of displacement and traction
rate fields, by the use of the shape functions (15) and (17),
respectively, yields to the proposed, in the present BEM
approach, creep strain-traction singular element
(CR-STSE).

Interior surface elements adjacent to the crack tip
The modeling of the inelastic strain rate around the crack
tip (Fig. 1) is performed here by means of semi-discon-
tinuous 9-noded quadratic quadrilateral surface elements
(QQIE) generated by the use of the interpolation functions
(7) by just setting the appropriate values in parameters ai.
In this case two different meshes should be defined: the
geometric mesh which is defined by the nodes which lie on
the boundary of the surface elements and the functional
mesh (Fig. 2b) which is defined by the functional nodes
which lie within the element boundaries in such a way that
any functional node does not coincide with the crack tip
geometric node.

4
Matrix formulation
The isoparametric boundary element representation of the
integral equations (2) and (3) utilizing the function ex-
pansions (5), (7), (15) and (17) can be written as

ðdij � CijÞ _UUjðnÞ

¼
XL

l¼1

Z
Cl

NaðfÞU	
ijðn; ~XXðfÞÞdCð ~XXÞ

0
B@

1
CA _PPa

j

�
XL

l¼1

Z
Cl

NaðfÞT	
ijðn; ~XXðfÞÞdCð ~XXÞ

0
B@

1
CA _UUa

j

þ
XN

n¼1

Z
Xn

N 0
bðf1; f2ÞR	

jkiðn; ~xxðf1; f2ÞÞdXð~xxÞ

0
B@

1
CA _EEnb

jk

þ a
XN

n¼1

Z
Xn

N 0
bðf1; f2Þ�RR	

jkiðn; ~xxðf1; f2ÞÞdXð~xxÞ

0
B@

1
CA _TTb

ð18Þ
and

_rrjðnÞ¼
XL

l¼1

Z
Cl

NaðfÞ �UU	
ijðn; ~XXðfÞÞdCð ~XXÞ

0
B@

1
CA _PPa

j

�
XL

l¼1

Z
Cl

NaðfÞ �TT	
ijðn; ~XXðfÞÞdCð ~XXÞ

0
B@

1
CA _UUa

j

þ
XN

n¼1

Z
Xn

N 0
bðf1;f2Þ~RR	

jkiðn;~xxðf1;f2ÞÞdXð~xxÞ

0
B@

1
CA _EEnb

jk

þa
XN

n¼1

Z
Xn

N 0
bðf1;f2Þ~�RR�RR

	
jkiðn;~xxðf1;f2ÞÞdXð~xxÞ

0
B@

1
CA _TTb

ð19Þ
with L being the number of boundary elements and N the
number of interior surface elements; Cl is the lth boundary
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elements ðC ¼
P

ClÞ and Xn is the nth surface element
ðX ¼

P
XnÞ; U	

ij;T	
ij;R

	
jki and �RR	

jki and �UU	
ij;

�TT	
ij;
�RR	

jki and ~�RR�RR	
jki

are the corresponding tensors for the boundary integrals
and inelastic and thermal effect tensors for surface inte-
grals of Eqs. (18) and (19), respectively. The evaluation of
the coefficients of the matrices in these equations needs a
number of complicated integration procedures. Since an-
alytical integration of the integrals in these equations is
not possible in general, the Gaussian quadrature technique
was used. For the singular cases which occur when the
field and the source point are situated over the same ele-
ment, special approaches were employed as in the work of
Providakis (1996). The evaluation of the singular surface
inelastic and temperature rates profile integrals was done
by subdividing each 9-noded quadratic quadrilateral in-

terior element into a number of triangular subelements
with their appexes located at the origin point.

Then, by applying a boundary nodal point collocation
procedure to Eqs. (18) and (19) one can obtain the fol-
lowing system of equations in matrix form

A½ � _uuf g ¼ B½ � _ssf g þ E½ � _eenf g þ T½ �f _bbTg ð20Þ

_rrf g ¼ ~BB
� �

_ssf g þ ~EE
� �

_eenf g þ ~TT
� �

f _bbTg ð21Þ

where the coefficients of matrices ½A� and ½B� contain in-
tegrals with variables of the typeZ
DCq

T	
ij n; ~xxðfÞð ÞdCq;

Z
DCq

U	
ij n; ~xxðfÞð ÞdCq ð22Þ

and the matrices ½E�, ½~EE� and ½ ~TT� and ½T�, involve X	
jki and

�XX	
jki integral terms, respectively. However, the vector f_eeng

is known at any time through the constitutive equations

(9) and the stress rates of Eq. (21) while the vector f _bbT:g
through the assumed solution of the appropriate steady
state diffusion equation subject to slowly varying surface
temperatures. Half of the total number of components of
_uuf g and _ssf g are prescribed through the boundary condi-

tion while the other half are unknowns.

Time integration algorithm
The initial distribution of the state variables have to be
prescribed while the initial value of the nonelastic strain is
set to zero. Thus, the only existed strains at time step t ¼ 0
are elastic and then, the thermal and initial stresses and
displacements can be obtained from the solution of the
corresponding elastic problem. By the use of Eqs. (20) and
(21) the displacement and stress rates can be obtained at
time step t ¼ 0 while the rates of change of the state
variables can be computed from constitutive equations.
Thus, the initial rates of all the relevant variables are now
known and their values at a new time Dt can be obtained
by integrating forward in time. The rates are then obtained

at time Dt and so on, and finally the time histories of all
the variables can be computed. Another important task in
this approach is the choice of a suitable time integration
scheme. For the purposes of the present paper, an Euler
type algorithm with automatic time-step control is em-
ployed. The automatic time-step control procedure is
based on comparison of a suitable defined error e with
prescribed error limits emin and emax. The initial time-step
must be also prescribed. The m-th time step at time Dtm

can be derived on the basis of its estimate EDtm in terms of
the single differential equation

dy

dt
¼ Fð y; tÞ ð23Þ

Then the algorithm can be proceeded as follows

The energy rate contour integral CðtÞ is then evaluated
numerically as a function of time through the computed
values of stress, strain and displacement rates from the
above mention algorithm and the use of integral equation
(11) for different paths. Each path is decomposed into
sufficient number of straight segments and the integral
over each segment is obtained by Gaussian quadrature
(ten Gauss points).

5
Numerical results

Example 1
To validate the proposed approach a shallow-edge cracked
semicircular plate in plane strain deformation is consid-
ered. A similar example is also presented in the finite
element work of Bassani and McClintock (1981). This
semicircular plate is assumed to be subjected to a suddenly
applied Mode I remote tensile loading of a uniformly
distributed magnitude of value rN ¼ r0 ¼ E=2000. The
plate has a radius equal to 21a where a is the crack length.
All results are for Poisson ratio m ¼ 0:3 and creep expo-
nent m ¼ 3. A typical interior mesh for this example is
shown in Fig. 3a, b. The creep stress relaxation is plotted in
Fig. 4 as obtained by the present boundary element
methodology in association with the use of the CR-STSE
simulations and the FEM methodology of Bassani and
McClintock (1981). The agreement is good especially for
time t > tN where time tN ¼ ðrN=EÞ=_ee0ðrN=r0Þm. The
differences which are existed between the two solutions in
short time are coming, probably, from some errors arising
in the solution of Bassani and McClintock (1981) due to
the use of crack tip finite elements which exhibit strain
singularity of r�1 which do not effectively approximate the
actual strain singularity of r�m=ðmþ1Þ. The steady state
value of the ratio remax

=rN of the maximum effective stress
ðre ¼ ð3

2 SijSijÞ3=2Þ to the applied stress rN is equal to 4.2 in
contrast to the value 4.28 of Bassani and McClintock
(1981).

if emax < e : replace estimates EDtm by EDtm=2 and then recompute e
if emin < e < emax : compute estimate EDtmþ1 ¼ Dtm

if e � emin : compute estimate EDtmþ1 ¼ 2Dtm
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Example 2
Consider a typical single edge notched tension specimen
(SENT) under mode I plane strain conditions. The speci-
men has a shallow edge crack of a depth given by
a=w ¼ 0:125 and width w ¼ 101:6 cm. The material of the
specimen is described by the power law creep relations (8)
and have the values: E ¼ 153:717 GPa, r0 ¼ 417:057 MPa,
m ¼ 0:33, m ¼ 5 and the constant B ¼ 2:1 � 10�27�
ð6:895 � 10�3 MPaÞ�5=h. The specimen is assumed to be
subjected to a remote uniform load of 206.85 MPa which is

applied instantaneously and then hold constant until
steady-state creep conditions are reached. Initial applica-
tion of the load is assumed to occur so quickly that it
involves purely elastic response. Due to the symmetry
of the specimen a half of the specimen was modeled
(Fig. 5a, b).

As it is stated above the creep zone boundary is defined
as the region where the effective creep strain ec

e equals the

effective elastic strain ee
e, with ðee ¼ ðð2=3ÞeijeijÞ1=2Þ. Thus,

by taking the locus of the interior points which satisfy this
equality, the shape of the creep zone for the specimen
under investigation can be shown in Fig. 6 for time steps
t ¼ 0:1tT , t ¼ tT and t ¼ 2T with transmission time tT

equal to 225 h as obtained by using Eq. (14) and the value
of C	 ¼ 0:797 MPa-cm/h yielded from the equations
(Li et al. 1988)

Fig. 3. a Interior mesh for the semi-circular plate in plane strain.
b Further details of the interior mesh at the vicinity of the
crack-tip

Fig. 4. Creep stress redistribution as a function of time

Fig. 5. a Interior mesh for the typical SENT specimen. b Further
details of the interior mesh at the vicinity of the crack-tip

Fig. 6. Creep zone growth in SENT specimen
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C	 ¼ Bðw � aÞða=wÞh1ða=w; nÞðPr0=P0Þ~nnþ1

P0 ¼ 1:455~nnðw � aÞr0

~nn ¼ 1 þ a

w � a


 �2
� �1=2

� a

w � a


 � ð24Þ

where P is the applied load and h is a dimensionless
function given in terms of the creep exponent m and the
ratio a=w and is tabulated in Kumar et al. (1981).

The depicted in Fig. 6 creep zone agrees well in shape
with those presented in Ehlers and Riedel (1981). It can be
also observed that the creep strain dominates inside creep
zone, while, as expected, the elastic strain prevails outside
the creep zone.

The time dependence of the energy rate contour integral
CðtÞ is numerically evaluated by integration of Eq. (11)
along a path with radial distance r ¼ 0:018a from the crack
tip and shown in Fig. 7. It is found that for long time
ðt > 0:35tTÞ the contour integral CðtÞ as obtained by the
present BEM approach is in agreement with that obtained
by using the approximation formula (13) in association
with the values C	 ¼ 0:797 MPa-cm/h and tT ¼ 225 h. It is
also observed from Fig. 7 that at time about t ¼ 3:5tT the
integral CðtÞ approaches the steady state value C	 ¼ 0:797
MPa-cm/h as calculated from equations (Li et al., 1988).

The creep stress relaxation for the SENT specimen at
time t ¼ 0:1tT along the crack line is depicted in Fig. 8 as
obtained by the use of the present BEM and the finite
element methodology of commercial FEM software
MSC.Marc (2000). The MSC.Marc mesh was comprised of
150 8-node isoparametric finite elements. The solution
between the two methods compares well.

Example 3
Consider a typical compact tension (CT) fracture test
specimen with width w ¼ 26 mm and thickness
Bh ¼ 13 mm. The specimen contains a crack of length
a ¼ 13 mm and is assumed to be subjected to a external
load of P ¼ 7 kN. The material properties are E ¼ 181
GPa, m ¼ 0:34, B ¼ 2:65 � 10�56 (MPa�m)/h and creep
exponent m ¼ 18:27. The load of P ¼ 7 kN is assumed to
be applied to a rigid pin constructed to fit the hole as
shown in the mesh depicted in Fig. 9a, b. The normalized

values of energy rate contour integral CðtÞ are shown in
Fig. 10. The path dependence of the CðtÞ integral is proved
by its evaluation in different paths ðr=aÞ as presented in
Fig. 10. The accuracy of the present BEM approach is
verified by the good agreement of the present results using
Eq. (11) and the results obtained from the formula (13).
Here, the fully plastic J-integral values for power law
hardening plasticity (Kumar et al., 1981) can be directly
used as the C	 values for power law creep of the CT
specimen. A comparison of the steady-state value C	 as
computed by the present BEM approach and that derived
from the fully plastic J-integral results is shown in Fig. 11
as a function of the applied load P. A very good agreement
is obtained which again confirms the validity of the pro-
posed BEM in association with the use of the proposed
CR-STSE boundary element.

6
Conclusions
In this paper a new boundary element approach which is
based on the implementation of a special singular
boundary element is presented for the evaluation of the

Fig. 7. Time dependence of integral CðtÞ

Fig. 8. Creep relaxation in SENT specimen at t ¼ 0:1tT

Fig. 9. a Interior mesh for the typical CT specimen. b Further
details of the interior mesh at the vicinity of the crack-tip
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crack tip fields arising in creeping structural components
plates under the effect of remote loading condition. The
new singular element is easy to implement and do not pose
any problem in the resulted system of integral equation or
in solving them. This new BEM approach yields compa-
rable in accuracy results with those obtained by finite el-
ement methodologies and available empirical solutions for
this kind of time dependent fracture analysis problems.

The present results cannot be considered as conclusive,
since the proposed CR-STSE singular boundary element
approach needs to be applied to more complex creep
fracture problems containing unsymmetric or interacting
crack patterns which are immediate follow up steps for
this kind of BEM analysis.
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