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Abstract Linear diffusion problems defined within ir-
regular multidimensional regions are analytically solved
through integral transforms, requiring numerical rou-
tines only for integration purposes, when a general
functional boundary representation is considered. Aux-
iliary one-dimensional eigenvalue problems mapping the
irregular region are applied with an integral transfor-
mation procedure so that the original differential Sturm–
Liouville system gives place to an algebraic eigenvalue
problem. The exact analytical inversion formula is then
employed to yield the desired potential, explicitly, at any
point within the domain. To allow for improved flexi-
bility and further applicability, the related integration is
simplified through an approximate boundary represen-
tation using lines connecting user provided points in-
stead of the former exact representation of the irregular
bounds, which is particularly advantageous when a
functional description of the boundaries is not available.
A cylindrical region test case with known exact solution
is considered, and treated as an irregular region in the
Cartesian coordinates system. Convergence behavior and
error analysis are carefully undertaken and illustrated.
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List of symbols
Ah;l, Bh;l, Ch;l, C�

h;l, matrix coefficients
Dh;l, Gh;l, Mh;l

b maximum radius in test case
B boundary differential operator
d, k, w, P general diffusion problem

parameters
�ffi transformed initial condition
�ff �j;m integral coefficient of transformed

initial condition

�ggi transformed non-homogeneous
terms

I identity matrix
n boundary surface normal vector
Ni norms of original eigenfunctions
N truncation order
r, t, x, y, z independent variables: radius, time,

and Cartesian coordinates
R, X, Y dimensionless independent variables
T dependent variable: temperature
T0 initial temperature
�TTi transformed potentials
w�, wx, wy, wz weighting functions
x position vector
~XXj, ~YYm, ~ZZp normalized one-dimensional

auxiliary eigenfunctions
x0, x1, y0, y1, z0, z1 domain bounds for Cartesian

coordinate system
x�

v approximate boundary-representa-
tion x-points

yv
0, yv

1 approximate boundary-representa-
tion y-limits

vmax number of x-divisions required for
approximate boundary description

umax number of x-divisions in each 45�

segment of test case circular bound

Greek symbols
a thermal diffusivity
as, bs original eigenproblem boundary

condition parameters
av

0, av
1, bv

0, bv
1 linear approximate boundary-repre-

sentation coefficients
cm, kj eigenvalues of auxiliary one-dimen-

sional eigenproblems
H dimensionless temperature
l or li eigenvalues of original Sturm-Liou-

ville problem
m Bessel function order in exact solu-

tion of test case
/ independent variable: angle in the

cylindrical coordinate system
/0 maximum angle in test case
W or Wi original eigenfunctions
�WWj;m;p or �WWh transformed original eigenfunctions,

from Sturm-Liouville problem
~XXj;m;p or ~XXh auxiliary eigenfunctions
s dimensionless time
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Subscripts
i original eigenproblem index
j, k, m, n, p multiple eigenseries indices
h, l single summation indices

1
Introduction
The last two decades were particularly fruitful in the ad-
vancement of numerical methods for diffusion and con-
vection-diffusion problems, especially in their
flexibilization towards the treatment of general multidi-
mensional domain representations. While a lot is yet to be
accomplished in terms of algorithm optimization and au-
tomatic stability and error control, it can be declared that
the classical discrete approaches are nowadays capable of
handling almost any complex geometric configuration,
either through direct domain decomposition and discret-
ization and/or physical domain transformation into com-
putationally simpler representations. A rather complete
compilation of such developments is presented in [1].

At the same time that the numerical methods and their
commercial implementations evolve into more flexible and
general tools, the requirements on validation and error
analysis become more severe. Benchmarks on irregular
geometries are somehow rare, due to inherent difficulties
in the exact solution of such class of problems through the
traditional analytical approaches. In this sense, and mainly
towards this purpose, there is an open avenue for devel-
opments on hybrid methodologies, which may bring some
diversity in terms of reference results for co-validation
exercises. Besides, although eventually not with the same
flexibility as in comparison with purely discrete schemes,
hybrid paths may lead to more robust and accurate solu-
tion strategies in certain classes of problems.

Within this context, there has been a number of contri-
butions on the analytical or semi-analytical treatment of
diffusion and/or convection-diffusion within irregular ge-
ometries, in different physical areas [2–9], to mention a few.

One such alternative for the solution of partial differential
equations within irregular regions has been progressively
advanced through the so-called generalized integral trans-
form technique, (GITT) [10–13]. Since 1989, a number of
contributions have appeared in the integral transform
solution of elliptic and parabolic diffusion problems within
irregularly shaped domains [14–20]. All these contributions
have in common the procedure of directly integral trans-
forming the original partial differential system, starting
from chosen one-dimensional eigenvalue problems which
carry the information on the irregular shape through their
own domain bounds, written as functions of the coordinate
variables. These solutions have extended the available
database on error controlled solutions of diffusion and
convection-diffusion within more general domains, due to
inherent capabilities of the integral transform approach in
working within user prescribed accuracy targets.

More recently, in [21], this solution path was extended to
directly handle multidimensional eigenvalue problems, and
offer reliable estimates of eigenvalues and related quantities
for certain classes of irregular domains. The extension of
this analysis to the computation of the potential field itself, is

now a straightforward task and particularly computation-
ally effective for linear problems, when the integral trans-
formation procedure yields decoupled ordinary differential
equations for the transformed potentials, and the inversion
formula provides a fully analytical solution for the original
potential in all independent variables. Nevertheless, the
approach is similarly applicable to nonlinear situations, as
previously considered [19, 20].

The present contribution is thus intended to demon-
strate this capability of exact solution of linear diffusion
problems within irregular domains. But most important,
we here introduce an approximate boundary-representa-
tion strategy for the cases when the boundary limits are
provided only as points in space, which may also be used
as a computational effort reduction alternative even for
those cases when an exact closed form boundary func-
tional description is offered. Such aspect has not been
considered in previous contributions on this type of ap-
proach, and significantly adds to improve flexibility and
applicability of the proposed method.

The analysis was performed using mixed symbolic-nu-
merical computation [22], developing a computer code that
includes the analytic derivations, numerical evaluations and
graphics. Symbolical computation indeed facilitates the
analysis and derivation tasks, and other software packages
could also have been employed; nevertheless, such class of
problems could still be handled by hand derivation at the
cost of an increased developer effort.

A test case of known exact solution, related to heat con-
duction in a portion of a cylindrical region, is then employed
to verify and validate the solution methodology and the
symbolic-numerical computational implementation.

2
Solution methodology
One considers linear diffusion of the potential Tðx; tÞ
within an arbitrarily shaped region V with boundary sur-
face S, formulated as:

wðxÞ oT

ot
¼ r 	 ðkðxÞrTÞ 
 dðxÞT

þ Pðx; tÞ; for x 2 V and t > 0 ; ð1aÞ
with the initial and boundary conditions:

Tðx; 0Þ ¼ f ðxÞ; for x 2 V ð1bÞ
and

BTðx; tÞ ¼ /ðx; tÞ; for x 2 S ; ð1cÞ
where the boundary operator is defined by

B ¼ asðxÞ þ bsðxÞkðxÞ o

on
; with x 2 S ð1dÞ

and n is the outward drawn normal vector to surface S.
The integral transform method in its classical sense [23]

can be readily invoked to produce a formal exact solution
to problem(1) above, based on the appropriate eigen-
function expansion in the following form:

Tðx; tÞ ¼
X1
i¼1

1

Ni
WiðxÞ �TTiðtÞ ; ð2aÞ
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which is the corresponding inversion formula that recon-
structs the original potential Tðx; tÞ from the eigenfunctions
WiðxÞ, the corresponding norms Ni and transformed po-
tentials �TTiðtÞ, which are defined from the transformation

�TTiðtÞ ¼
Z
V

wðxÞWiðxÞTðx; tÞdv : ð2bÞ

The integral transformation of system (1a–c) results in a
decoupled ODE system for the transformed potentials,
solved as

�TTiðtÞ ¼ �ffie

l2

i t þ
Z t

0

�ggiðt0Þe
l2
i ðt
t0Þdt0 ; ð3Þ

where li’s are the associated eigenvalues. The transformed
initial condition, the norm and the transformed non-ho-
mogeneous terms are given respectively by

�ffi ¼
Z
V

wðxÞWiðxÞf ðxÞdv;

Ni ¼
Z
V

wðxÞW2
i ðxÞdv ;

ð4a, bÞ

�ggiðtÞ ¼
Z
V

Pðx; tÞWiðxÞdv

þ
Z
S

/ðx; tÞ
WiðxÞ 
 kðxÞ oWiðxÞ

on

asðxÞ þ bsðxÞ

 !
ds : ð4cÞ

Thus, to employ the above formal exact solution for a
general arbitrarily shaped domain V in the realm of
computation, one is left with the task of computationally
solving the associated eigenvalue problem, given by

r 	 ðkðxÞrWðxÞÞ þ ðl2wðxÞ 
 dðxÞÞWðxÞ ¼ 0; x 2 V
ð5aÞ

and

BWðxÞ ¼ 0; x 2 S ; ð5bÞ
to obtain the desired set of eigenfunctions WiðxÞ’s and the
associated eigenvalues.

2.1
Expansion of the associated problem in terms
of one-dimensional problems
In ref. [21], the same authors have proposed an integral
transform solution to eigenvalue problems such as system
(5a, b), defined in a certain class of irregular domains for
which the bounding surfaces can be written as functions of
the coordinate variables in an appropriate order. For in-
stance, in the Cartesian coordinate system, domains de-
fined by the following bounds:

x0 � x � x1;

y0ðxÞ � y � y1ðxÞ;

z0ðx; yÞ � z � z1ðx; yÞ ;

ð6a–cÞ

where the limits on coordinate x are fixed, while the
bounds on y are variable with coordinate x, and on the z
variable may depend on both remaining coordinates.
Under this representation, the integral transformation of
problem (5a, b) into an algebraic eigensystem is as simple
as in the case of regular domains [24].

According to the domain description introduced by
Eqs. (6a–c), a normalized auxiliary eigenfunction, ob-
tained by the solution of one-dimensional problems in
each direction is constructed:

~XXhðxÞ ¼ ~XXjðxÞ ~YYmð y; xÞ~ZZpðz; x; yÞ ; ð7aÞ
where, x and y are just parameters in the one-dimen-
sional eigenvalue problem for ~ZZp, while x plays the
role of a parameter in the solution of ~YYm. These one-
dimensional problems, recalling from [21], are special
cases of the Sturm-Liouville problem that furnish a
suitable eigenfunction basis for representing the original
problem (5a, b). Thus, the following orthogonality rela-
tions are valid:

Zz1ðx;yÞ

z0ðx;yÞ

wzðzÞ~ZZpðz; x; yÞ~ZZqðz; x; yÞdz ¼ dp;q ; ð8aÞ

Zy1ðxÞ

y0ðxÞ

wyð yÞ ~YYmð y; xÞ ~YYnð y; xÞdy ¼ dm;n ; ð8bÞ

Zx1

x0

wxðxÞ ~XXjðxÞ ~XXkðxÞdx ¼ dj;k ; ð8cÞ

where wx, wy and wz are the individual weighting functions
related to each problem and the d’s are Kroneker Delta
functions, i.e.

di;j ¼
1; for i ¼ j
0; for i 6¼ j

�
: ð9Þ

Based on the relations (8a–c), and provided the integration
regarding the transformation process follows the appro-
priate order, initiating with the integration in the z-di-
rection, followed by the y and finally the x coordinate, the
global orthogonality property is readily satisfied:Z
V

w�ðxÞ~XXhðxÞ~XXlðxÞdv ¼ dh;l ; ð10Þ

where the volume integral needs to be conveniently
written as a triple integral, with the following integration
order

Z
V

� dv ¼
Zx1

x0

Zy1ðxÞ

y0ðxÞ

Zz1ðx;yÞ

z0ðx;yÞ

� dz dy dx ð11Þ

and the global weighting function must be the product of
the individual weighting functions in the one-dimensional
problems:

w�ðx; y; zÞ ¼ wxðxÞwyðyÞwzðzÞ : ð12Þ
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The index l is introduced in (10) to indicate different
multidimensional eigenfunctions, just as the one-dimen-
sional indices in (8a–c). Furthermore, the index h is re-
lated to the one-dimensional indices j, m and p through an
appropriate computational combination and similarly is l,
as outlined by the following relations:

j;m; p ! h;

k; n; q ! l :
ð13Þ

Once the global orthogonality property is provided, an
adequate integral transform pair can be established:

inverse ¼) WðxÞ ¼
X1
h¼1

~XXhðxÞ �WWh ; ð14aÞ

transform ¼) �WWh ¼
Z
V

w�ðxÞ~XXhðxÞWðxÞdv : ð14bÞ

Or, using the multiple series representation, through the
relations (13):

WðxÞ ¼ Wðx; y; zÞ

¼
X1
j¼1

X1
m¼1

X1
p¼1

~XXjðxÞ ~YYmðy; xÞ~ZZpðz; x; yÞ �WWj;m;p

ð15aÞ
and

�WWj;m;p ¼
Zx1

x0

Zy1ðxÞ

y0ðxÞ

Zz1ðx;yÞ

z0ðx;yÞ

ðw�ðx; y; zÞ ~XXjðxÞ

� ~YYmð y; xÞ~ZZpðz; x; yÞWðx; y; zÞÞdz dy dx : ð15bÞ

2.2
Integral transform of the associated problem
The integral transformation of problem (5a, b), is started
by applying the integral operator

R
V �~XXhðxÞdv to Eq. (5a).

The inversion formula (14a) is then substituted to produce
the following system of coupled algebraic equations:

X1
l¼1

Z
V

~XXhðxÞr 	 ðkðxÞr~XXlðxÞÞdv

8<
:

þ l2

Z
V

wðxÞ~XXhðxÞ~XXlðxÞdv



Z
V

dðxÞ~XXhðxÞ~XXlðxÞdv

9=
; �WWl ¼ 0 ; ð16Þ

for h ¼ 1; 2; . . . ;1. Again, when the inversion formula is
employed, l is used to distinguish from the index h, al-
ready present in the transformed system.

Now, one can write the algebraic system (16) in matrix
form:

½A� þ l2½B� 
 ½D�
 �

f �WWg ¼ 0 ; ð17Þ
where the involved quantities are given by

½A� ¼ Ah;l ¼
Z
V

~XXhðxÞr 	 ðkðxÞr~XXlðxÞÞdv ; ð18aÞ

½B� ¼ Bh;l ¼
Z
V

wðxÞ~XXhðxÞ~XXlðxÞdv ; ð18bÞ

½D� ¼ Dh;l ¼
Z
V

dðxÞ~XXhðxÞ~XXlðxÞdv ; ð18cÞ

f �WWg ¼ �WWl ¼ f �WW1; �WW2; . . .gT : ð18dÞ
The eigenvalues li’s are obtained by the computation of
the square root of each eigenvalue of matrix ½M�, defined
as:

½M� ¼ Mh;l ¼ ½B�
1 ½D� 
 ½A�ð Þ : ð19Þ
And the sets of coefficients �WWh associated with the eigen-
values li’s are given by the eigenvectors of ½M�. By sub-
stituting (14a) in (4a, b) one can easily derive an
expression for the norms Ni in terms of the matrix and
vector quantities available after the solution of (17):

Ni ¼ ½B�f �WWg
 �

	 f �WWg : ð20Þ
The reader should notice that once the orthogonality
property of the auxiliary eigenfunctions ~XXhðxÞ is satisfied,
if w� ¼ w holds, ½B� is reduced to the identity matrix and
therefore,

Mh;l ¼ Dh;l 
 Ah;l and Ni ¼ f �WWg 	 f �WWg : ð21a, bÞ
Now an important consideration regarding the transfor-
mation process described in the previous steps must be
analyzed, related to the employment of Green’s formulas,
for the substitution of the diffusive term in transformed
associated eigenvalue problem. We recall Green’s first
identity:Z
V

~XXhðxÞr 	 ðkðxÞrWðxÞÞdv

þ
Z
V

kðxÞðr~XXhðxÞÞ 	 ðrWðxÞÞdv

�
Z
S

kðxÞ~XXhðxÞ rWðxÞð Þ 	 n ds ð22Þ

The inversion formula (14a) is then substituted in (22)
yielding

ð½A� þ ½G�Þf �WWg ¼ ½C�f �WWg ð23aÞ
In a similar fashion, Green’s second identity gives:

ð½A� 
 ½A�TÞf �WWg ¼ ð½C� 
 ½C�TÞf �WWg ¼ ½C��f �WWg ;

ð23bÞ
where ½A�T and ½C�T are the transposes of ½A� and ½C�, re-
spectively. The matrices ½G�, ½C� and ½C�� are given by:

½G� ¼ Gh;l ¼
Z
V

ðr~XXhðxÞÞ 	 ðkðxÞr~XXlðxÞÞdv ; ð24aÞ
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½C� ¼ Ch;l ¼
Z
S

kðxÞ ~XXhðxÞr~XXlðxÞ
 �

	 n ds ; ð24bÞ

½C�� ¼ C�
h;l ¼

Z
S

kðxÞð~XXhðxÞr~XXlðxÞ


 ~XXlðxÞr~XXhðxÞÞ 	 n ds : ð24cÞ
Based on an analysis of the former matrices, it can be
easily shown that if ½C�� is a null matrix and fWg is a non-
null vector, ½A� is symmetric. This remark is very useful
while implementing the computational solution, because a
considerable amount of computational effort can be
spared by calculating only half of the off-diagonal coeffi-
cients when generating this matrix. Thus, for the sake of
this simplification, it is necessary that C�

h;l ¼ 0, i.e. the
surface integrals in (24c) vanish. As demonstrated in [25],
if the global multidimensional auxiliary eigenfunctions
satisfy B~XXhðxÞ ¼ 0 for x 2 S, then this requirement is
fulfilled. It can also be inferred for the cases with Ch;l ¼ 0,
i.e. when the integrals in (24b) are null, if fWg is a non-
null vector, then ½A� ¼ 
½G�.

The interested reader is referred to the contributions
[21] and [25], which provide further details on the analysis
and computational implementation of these integral
transform solutions of eigenvalue problems within irreg-
ular domains.

3
Test case
As a test case of the proposed methodology, the heat or
mass diffusion problem in a portion of a circular region is
considered (Fig. 1), which yields the following transient
problem in the cylindrical coordinate system:

1

a
oT

ot
¼ 1

r

o

or
r
oT

or

� �
þ 1

r2

o2T

o/2 ;

in 0 � r � b; 0 � / � /0

and t > 0 ; ð25aÞ
T ¼ 0; at r ¼ b; / ¼ 0; and / ¼ /0 ;

ð25bÞ
T ¼ T0; for t ¼ 0; in 0 � r � b

and 0 � / � /0 ; ð25cÞ
which is solved through separation of variables [26] to
yield

Tðr;/; tÞ ¼ 8T0

b2/0

X1
p¼1

X
m

e
ab2
pt

JmðbprÞ
J 0m

2ðbprÞ
sinðm/Þ

m

�
Zb

r0¼0

Jmðbpr0Þdr0 ; ð26aÞ

where the bp’s are the roots of

JmðbpbÞ ¼ 0 ð26bÞ

and the m’s are given by

m ¼ ð2n 
 1Þp
/0

; for n ¼ 1; 2; 3; . . . ð26cÞ

This problem will provide a test case once one considers
its representation in the Cartesian coordinate system, in-
terpreting the portion of the circular region as an irregular
domain, bounded by:

x0 � x � x1 and y0ðxÞ � y � y1ðxÞ ; ð27a, bÞ
where from the situation exhibited in Fig. 1:

x0 ¼ b� ¼ b cosð/0Þ; x1 ¼ b ;

y0ðxÞ ¼
x tanð/0Þ if x < 0

0 if x � 0

(
;

y1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 
 x2

p
:

ð27c, dÞ

The transient heat conduction problem is then rewritten as

1

a
oT

ot
¼ o2T

ox2
þ o2T

oy2
; in y0ðxÞ � y � y1ðxÞ;

for x0 � x � x1 and t > 0 ; ð28aÞ
T ¼ 0; at x ¼ x0 and x ¼ x1 ; ð28bÞ
T ¼ 0; at y ¼ y0ðxÞ and y ¼ y1ðxÞ;

for x0 � x � x1 ; ð28cÞ
T ¼ T0; for t ¼ 0; in y0ðxÞ � y � y1ðxÞ;

for x0 � x � x1 : ð28dÞ
The exact solution of problem (28a–d) is given by:

Tðx; y; tÞ ¼
X1
i¼1

e
al2
i t Wiðx; yÞ �ffi

Ni
; ð29Þ

where the related eigenvalue problem is

o2Wðx; yÞ
ox2

þ o2Wðx; yÞ
oy2

þ l2Wðx; yÞ ¼ 0;

in y0ðxÞ � y � y1ðxÞ; for x0 � x � x1 ; ð30aÞ

Fig. 1. Geometry and coordinate system for test case
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Wðx; yÞ ¼ 0; at y ¼ y0ðxÞ and y ¼ y1ðxÞ;

for x0 � x � x1 ; ð30bÞ
Wðx; yÞ ¼ 0; at x ¼ x0 and x ¼ x1 : ð30cÞ
The next task is to obtain the solution of the
eigenvalue problem (30a–b) from the irregular domain
representation proposed for the circular region portion.
The auxiliary one-dimensional eigenvalue problems are
given by:

d2 ~XXj

dx2
þ k2

j
~XXj ¼ 0; in x0 � x � x1 ; ð31aÞ

~XXjðx0Þ ¼ ~XXjðx1Þ ¼ 0 ; ð31bÞ
and

d2 ~YYm

dy2
þ c2

m
~YYm ¼ 0; in y0ðxÞ � y � y1ðxÞ;

for x0 � x � x1 ; ð32aÞ
~YYmðy0ðxÞÞ ¼ ~YYmðy1ðxÞÞ ¼ 0; for x0 � x � x1 ;

ð32bÞ
which upon using the normalization integrals

Zx1

x0

~XX2
j ðxÞdx ¼ 1 and

Zy1ðxÞ

y0ðxÞ

~YY2
mðy;xÞdy ¼ 1 ; ð33a, bÞ

are readily solved to yield

~XXjðxÞ ¼
ffiffiffi
2

p
sinðkjðx 
 x0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 
 x0
p and

~YYmðy; xÞ ¼
ffiffiffi
2

p
sinðcmðy 
 y0ðxÞÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y1ðxÞ 
 y0ðxÞ
p ; ð34a, bÞ

and the associated equations for the eigenvalues:

sinðkjðx1 
 x0ÞÞ ¼ 0; or kj ¼
jp

x1 
 x0

with j ¼ 1; 2; 3; . . . ð35aÞ

sinðcmðy1ðxÞ 
 y0ðxÞÞÞ ¼ 0; or cm ¼ mp
y1ðxÞ 
 y0ðxÞ

with m ¼ 1; 2; 3; . . . ð35bÞ
Note that for the presented test case, ½D� is null matrix due to
the value of dðxÞ. Besides, the Dirichlet boundary conditions
considered in the one-dimensional eigenproblems not only
readily satisfy the relation B~XXhðxÞ ¼ 0, but also lead to
Ch;l ¼ 0. In addition, as wðxÞ ¼ 1 and wxðxÞ ¼ wyðyÞ ¼ 1,
the relations (21 a, b) also hold. Thus, the expressions for
the matrix coefficients are simplified, with Mh;l given by
Mh;l ¼ 
Ah;l ¼ Gh;l and evaluated from Eq. (24a).

3.1
Computational solution procedure
To initiate the computational solution process, one starts
by evaluating the matrix coefficients, for this test case
given by:

Mh;l Ð Mj;m;k;n ¼
Zx1

x0

Zy1ðxÞ

y0ðxÞ

rð ~XXjðxÞ ~YYmðy; xÞÞ

	 rð ~XXkðxÞ ~YYnðy; xÞÞdy dx ; ð36Þ

where the gradient operator is defined in the Cartesian
coordinate system. Note also that for the matrix assembly
a proper index combination is required, as shown by (13).
Index grouping procedures, denominated reordering
schemes, are discussed in [27]. The reordering scheme
adopted in this work is explained with details in [21].

Once the matrix assembly is completed, the trans-
formed coefficients �WWh ¼ �WWj;m are obtained through the
solution of the algebraic system (17). Note that (17) will
provide eigenvectors f �WWg, each one associated with an
eigenvalue li, to be employed in the reconstruction of the
respective eigenfunction Wiðx; yÞ, by means of the inver-
sion formula:

Wiðx; yÞ ¼ Wðx; yÞ ¼
X1
j¼1

X1
m¼1

~XXjðxÞ ~YYmðy; xÞ �WWj;m :

ð37aÞ

Finally, the solution for the desired temperature field is
carried-out through Eq. (29), where the norm is evaluated
from Eqs. (21a, b) and the transformed initial condition is
calculated by:

�ffi ¼ T0

X1
j¼1

X1
m¼1

�ff �j;m
�WWj;m ; ð37bÞ

with

�ff �j;m ¼
Zb

b�

~XXjðxÞ
Zy1ðxÞ

y0ðxÞ

~YYmðy; xÞdy

0
B@

1
CAdx : ð37cÞ

Note that the same index combination rules employed in
the evaluation of ½M� must be used throughout the com-
putational process.

One must realize that the employment of a computa-
tional solution requires all infinite series formerly con-
sidered to be approximated by finite summations. This
hence gives rise to a truncation error that diminishes as
the number of summed terms increases. By these means,
an effective user error-controlled solution can be
achieved.

4
Approximate boundary-representation
Although elegant and exact, the previous solution strategy
is somehow limited to domain descriptions in terms of
functions as considered in (6a–c). Besides, the numerical
integration task for a general functional boundary-des-
cription, as required in the evaluation of the matrix coef-
ficients Mh;l, may eventually become prohibitive for most
practical purposes. The major difficulty lies on the attempt
of analytically integrating in the x-direction. While the in-
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tegration in the y-direction is straightforward, it introduces
the functions y0ðxÞ and y1ðxÞ, and their derivatives, in the
integrand of the following integral along the fixed bounds of
the x-direction. For instance, for a general two-dimensional
problem with Dirichlet boundary conditions, i.e. allowing
any boundary functional representation (y0ðxÞ � y � y1ðxÞ
for x0 � x � x1), the matrix coefficients Mh;l Ð Mj;m;k;n,
after integration in the y direction are given by:

Mj;m;k;n ¼ mn

ðx1 
 x0Þ2ðm þ nÞ2ðm 
 nÞ2

�
Zx1

x0

y00ðxÞ 
 ð
1Þmþny01ðxÞ
ðy1ðxÞ 
 y0ðxÞÞ2

� 2pðm þ nÞðm 
 nÞ½ðj þ kÞð
� sinððkj 
 kkÞðx 
 x0ÞÞ
þ ðk 
 jÞ sinððkj þ kkÞðx 
 x0ÞÞ�ðy1ðxÞ 
 y0ðxÞÞ
þ 8ðm2 þ n2Þðx1 
 x0Þ sinðkjðx 
 x0ÞÞ
� sinðkkðx 
 x0ÞÞ y00ðxÞ 
 y01ðxÞ

 ��
dx ;

ð38aÞ
for m 6¼ n, and

Mj;m;k;m ¼k2
j dj;kþ

1

6ðx1
x0Þ

�
Zx�o

x�o
1

sinðkjðx
x0ÞÞsinðkkðx
x0ÞÞ
ðy1ðxÞ
y0ðxÞÞ2

� 12p2m2þð4p2m2þ3Þ y00ðxÞ
 �2þ y01ðxÞ

 �2
�� �

þ2ð2p2m2
3Þy00ðxÞy01ðxÞ
�
dx ; ð38bÞ

for n ¼ m, as directly obtained from symbolic manipula-
tion with the Mathematica system. The above integral
formulas must be adapted for the cases where y0ðxÞ and/or
y1ðxÞ demand a definition in steps, i.e. requiring different
functional forms for different x-intervals. This is accom-
plished by permitting these integrals to be written as a sum
of integrals over each of these x-intervals.

For certain simple functional forms y0ðxÞ and y1ðxÞ, the
integrals in the x-direction may also be analytically ob-
tained, as discussed in [21]. Otherwise, the integrals (38a, b)
are to be performed numerically, which could result in a
substantial computational effort if a fully error controlled
solution is being requested. To overcome this obstacle, the
ideas already presented are further extended, allowing more
general purpose and flexible integral transform solutions of
diffusion problems within arbitrarily shaped domains.

One sufficiently simple and efficient alternative is to
replace the functional representations, y0ðxÞ and y1ðxÞ, by
first order polynomials connecting user provided bound-
ary points, or:

y0ðxÞ � yv
0ðxÞ ¼ av

0x þ bv
0;

y1ðxÞ � yv
1ðxÞ ¼ av

1x þ bv
1

for x�
v
1 < x < x�v; with v ¼ 1; 2; . . . ; vmax

ð39a, bÞ

and the x-integrals are replaced by

Zx1

x0

�dx !
Xvmax

v¼1

Zx�v

x�v
1

�dx ; ð39cÞ

where vmax is the required number of divisions in the
x-domain, according to the provided boundary points.
The parameters av

0, bv
0, av

1 and bv
1 are constants com-

prising the linear interpolation. At the extremes of the x
variable, one should obtain the relations x�

0 ¼ x0 and
x�

vmax
¼ x1.

The resulting integrals of (38a, b) are then analytically
evaluated through the Mathematica system, but not pre-
sented here due to space limitations. This approximate
representation of the boundary functions can be made
increasingly more accurate by including further boundary
points and/or increasing the interpolation order (in gen-
eral second or third order polynomials). It should also be
clear that this strategy does not represent a discretization
of the solution domain, and the final solution remains
analytical and explicitly achievable at any domain position
ðx; yÞ. Essentially, only the functional representation of the
boundaries are being approximated for flexibility and
computational performance improvement. Moreover, in
practice, many domain configurations are not even avail-
able in a global functional form, and are in fact provided as
a set of points in space.

5
Results and discussion
In this section the results are screened in tabular and
graphical forms, allowing a concise convergence analysis
to be carried out. Before presenting the results, the fol-
lowing non-dimensional variables should be introduced:

R ¼ r

b
; X ¼ x

b
; Y ¼ y

b
; H ¼ T

T0
; s ¼ at

b2
:

ð40Þ
The numerical results for the test case are hence exhibited
as the non-dimensional temperature H for different times
s and positions ðR;/Þ, within different domain configu-
rations described by the geometric parameter /0.

To analyze the convergence behavior of H with the
truncation order N, one starts by observing Table 1, where
numerical results are presented for different geometric
configurations. Four different points within the irregular
domain are taken for each case, two of these at half the
radius (R ¼ 1=2) for / ¼ /0=4 and / ¼ 3/0=4. Similarly,
the other two are taken at half the total angle (/ ¼ /0=2)
for R ¼ 1=4 and R ¼ 3=4.

Analyzing the results in Table 1 we note that the cases
where single functions are used for describing the bounds
y0ðxÞ and y1ðxÞ, i.e. /0 ¼ 90� and /0 ¼ 180�, present
better convergence rates, having an average of four or
more converged significant figures with N ¼ 500 and
slightly less for N as low as N ¼ 100. For the case of
/0 ¼ 45� the solution presents an average of three con-
verged significant figures for a truncation order N ¼ 500.
This worsening is most likely due to the sharp edges en-
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Table 1. Convergence analysis of temperature field for exact boundary-representation

N s ¼ 10
2 s ¼ 10
1:5 s ¼ 10
1 N s ¼ 10
2 s ¼ 10
1:5 s ¼ 10
1

/0 ¼ 45�

/ ¼ 11:25�, R ¼ 1=2 / ¼ 22:5�, R ¼ 1=4

20 0.458130 0.121747 0.002135 20 0.150806 0.021302 0.000357
40 0.462669 0.119793 0.002195 40 0.146935 0.020568 0.000358
60 0.468494 0.120884 0.002241 60 0.148340 0.021176 0.000373
80 0.464720 0.120636 0.002258 80 0.144920 0.020236 0.000358

100 0.461695 0.120274 0.002259 100 0.146014 0.020297 0.000361
150 0.463051 0.120431 0.002274 150 0.145807 0.020450 0.000365
200 0.463243 0.120508 0.002281 200 0.144814 0.020256 0.000362
250 0.463048 0.120500 0.002284 250 0.145274 0.020283 0.000363
300 0.463197 0.120495 0.002286 300 0.145451 0.020325 0.000364
350 0.463221 0.120551 0.002288 350 0.145288 0.020295 0.000364
400 0.463187 0.120554 0.002290 400 0.145288 0.020295 0.000364
450 0.463359 0.120607 0.002292 450 0.145416 0.020325 0.000365
500 0.463326 0.120593 0.002292 500 0.145437 0.020336 0.000365
exact 0.463283 0.120644 0.002302 exact 0.145344 0.020317 0.000366

/ ¼ 22:5�, R ¼ 3=4 / ¼ 33:75�, R ¼ 1=2

20 0.814555 0.237871 0.004250 20 0.484384 0.124348 0.002179
40 0.828233 0.249496 0.004696 40 0.465609 0.120284 0.002205
60 0.832825 0.251672 0.004791 60 0.466434 0.120878 0.002241
80 0.829325 0.253123 0.004869 80 0.463234 0.120532 0.002256

100 0.828759 0.253957 0.004905 100 0.462315 0.120072 0.002255
150 0.830538 0.255603 0.004963 150 0.462468 0.120197 0.002269
200 0.829534 0.255801 0.004979 200 0.463643 0.120546 0.002281
250 0.829366 0.256070 0.004992 250 0.463550 0.120557 0.002285
300 0.828849 0.256137 0.004998 300 0.463235 0.120501 0.002286
350 0.828384 0.256151 0.005002 350 0.463024 0.120478 0.002287
400 0.828349 0.256206 0.005006 400 0.463178 0.120527 0.002289
450 0.828263 0.256245 0.005009 450 0.463314 0.120565 0.002291
500 0.828006 0.256233 0.005010 500 0.463404 0.120580 0.002292
exact 0.828653 0.256891 0.005043 exact 0.463283 0.120644 0.002302

/0 ¼ 90�

/ ¼ 22:5�, R ¼ 1=2 / ¼ 45�, R ¼ 1=4

20 0.826410 0.467917 0.077092 20 0.619791 0.264787 0.043132
40 0.822662 0.467114 0.077127 40 0.622127 0.263828 0.042912
60 0.823553 0.467492 0.077187 60 0.622110 0.263720 0.042909
80 0.821810 0.467015 0.077140 80 0.622360 0.263955 0.042948

100 0.822716 0.467283 0.077183 100 0.622108 0.263829 0.042929
150 0.822122 0.467144 0.077173 150 0.622060 0.263830 0.042933
200 0.822500 0.467267 0.077191 200 0.622070 0.263843 0.042936
250 0.822584 0.467293 0.077197 250 0.621980 0.263818 0.042933
300 0.822594 0.467313 0.077202 300 0.622092 0.263854 0.042940
350 0.822553 0.467295 0.077199 350 0.622061 0.263843 0.042938
400 0.822519 0.467291 0.077199 400 0.622098 0.263858 0.042941
450 0.822453 0.467274 0.077197 450 0.622071 0.263854 0.042941
500 0.822462 0.467279 0.077198 500 0.622033 0.263839 0.042938
exact 0.822494 0.467296 0.077202 exact 0.622048 0.263844 0.042940

/ ¼ 45�, R ¼ 3=4 / ¼ 67:5�, R ¼ 1=2

20 0.911644 0.564892 0.095289 20 0.817741 0.469434 0.077304
40 0.909336 0.564142 0.095528 40 0.820751 0.466911 0.077110
60 0.910030 0.564482 0.095600 60 0.823013 0.467389 0.077189
80 0.910949 0.564741 0.095638 80 0.822266 0.467155 0.077158

100 0.910214 0.564629 0.095637 100 0.822643 0.467371 0.077204
150 0.910379 0.564640 0.095650 150 0.822541 0.467291 0.077192
200 0.910326 0.564644 0.095656 200 0.822375 0.467258 0.077191
250 0.910236 0.564623 0.095655 250 0.822536 0.467314 0.077201
300 0.910313 0.564646 0.095660 300 0.822506 0.467294 0.077198
350 0.910337 0.564647 0.095661 350 0.822473 0.467295 0.077200
400 0.910416 0.564671 0.095665 400 0.822465 0.467286 0.077198
450 0.910449 0.564686 0.095667 450 0.822520 0.467309 0.077203
500 0.910356 0.564656 0.095664 500 0.822504 0.467297 0.077201
exact 0.910395 0.564673 0.095668 exact 0.822494 0.467296 0.077202
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countered at the boundaries within x0 < x < x1, which
result in a discontinuity on the derivatives of y0ðxÞ and
y1ðxÞ. Besides, the vector n cannot be defined for these
points. Therefore, this result might be improved by
making use of unit-step functions to define the y-limits at
these points.

For an illustration of the graphical convergence, the case
with /0 ¼ 225� and s ¼ 0:03 is chosen. The graphics are
presented in Fig. 2 for different truncation orders. The
contours are lines of constant temperature, having the val-
ues H ¼ 0:1; 0:3; 0:6; 0:8 and 0:9. For the other values of /0

outlined in Table 1, a similar behavior is observed, with even
better convergence rates (when considering the same value
for s). For smaller values of time the convergence rate also
diminishes, due to the smaller damping factor in the time
exponential, as observed in similar eigenseries solutions.

Again, confirming the observation on the effect of the
sharp edges, it can be easily noted that the solution always
worsens for points in the vicinity of those sharp edges or
which have their x-coordinate near that of the described
geometric singularity point.

To carry out a quantitative analysis of convergence rates
for the approximate boundary-representation, one starts
by increasing the number of boundary points for a fixed
truncation order and comparing the results with the
equivalent exact boundary-representation case. The points
are scattered throughout the circular portion of the
boundaries, preserving a constant angular spacing. One

should remember that for these cases the solution is
fully-analytical, and even the matrix coefficient integrals
can be carried out by analytical means leading to expres-
sions in terms of the well known cosine-integral and sine-
integral functions.

The results are presented in Table 2 for two different
non-dimensional times, s ¼ 10
2 and s ¼ 10
1:5, for the
geometric configuration with /0 ¼ 90� (vmax ¼ 1 refers to
the exact, or continuous, boundary representation). Al-
though only a limited set of results is presented, due to
space limitations, it can be declared that a similar behavior
is observed among all cases. We chose to present the re-
sults for a fixed angle at different radii, since the variation
of the convergence rate while one approaches the
approximated boundary can be analyzed. However, even
for this few number of points along the radial direction,
one can easily infer that the convergence rate (with respect
to the number of boundary points/divisions) worsens as
the approximated boundary is approached, which could be
expected.

As mentioned for the exact boundary-representation,
the described sharp edges occur in every point within the x
limits for the approximate boundary-representation.
Therefore, by employing higher order polynomials to
interpolate the boundary points, ensuring the continuity
of the first derivatives of the interpolated boundary
functions, one would also manage to circumvent this
clear cause of computational difficulty besides

Table 1. (Contd.)

N s ¼ 10
2 s ¼ 10
1:5 s ¼ 10
1 N s ¼ 10
2 s ¼ 10
1:5 s ¼ 10
1

/0 ¼ 180�

/ ¼ 45�, R ¼ 1=2 / ¼ 90�, R ¼ 1=4

20 0.983827 0.771779 0.270128 20 0.938984 0.668987 0.270744
40 0.990550 0.774497 0.270795 40 0.926255 0.671740 0.271693
60 0.988709 0.775870 0.271187 60 0.920694 0.672939 0.271959
80 0.985024 0.774672 0.271041 80 0.921199 0.673207 0.272012

100 0.988210 0.775399 0.271176 100 0.924347 0.674505 0.272326
150 0.987510 0.775182 0.271181 150 0.922976 0.673958 0.272217
200 0.987379 0.775181 0.271195 200 0.922779 0.673945 0.272228
250 0.987152 0.775082 0.271190 250 0.922718 0.673947 0.272245
300 0.986995 0.775039 0.271176 300 0.922921 0.673976 0.272248
350 0.986828 0.775005 0.271181 350 0.923044 0.674011 0.272257
400 0.987112 0.775070 0.271193 400 0.923014 0.674010 0.272253
450 0.987007 0.775055 0.271189 450 0.923021 0.674012 0.272261
500 0.986908 0.775023 0.271186 500 0.922983 0.674002 0.272257
exact 0.987003 0.775059 0.271199 exact 0.922900 0.673974 0.272256

/ ¼ 90�, R ¼ 3=4 / ¼ 135�, R ¼ 1=2

20 0.919546 0.619626 0.241925 20 0.983827 0.771779 0.270128
40 0.912565 0.623380 0.242406 40 0.990550 0.774497 0.270795
60 0.910628 0.625339 0.242992 60 0.988709 0.775870 0.271187
80 0.911339 0.625268 0.242959 80 0.985024 0.774672 0.271041

100 0.911620 0.625224 0.243028 100 0.988210 0.775399 0.271176
150 0.911476 0.625302 0.242987 150 0.987510 0.775182 0.271181
200 0.910173 0.624797 0.242857 200 0.987379 0.775181 0.271195
250 0.910717 0.625045 0.242915 250 0.987152 0.775082 0.271190
300 0.911011 0.625137 0.242951 300 0.986995 0.775039 0.271176
350 0.910806 0.625081 0.242946 350 0.986828 0.775005 0.271181
400 0.910768 0.625052 0.242937 400 0.987112 0.775070 0.271193
450 0.910713 0.625027 0.242928 450 0.987007 0.775055 0.271189
500 0.910704 0.625020 0.242923 500 0.986908 0.775023 0.271186
exact 0.910748 0.625046 0.242936 exact 0.987003 0.775059 0.271199
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improving the level of interpolation in the domain
approximation.

6
Conclusions
A general analytical solution to linear diffusion problems
defined within a class of arbitrarily shaped domains was
formally derived, by employing ideas from the generalized
integral transform technique (GITT). To validate the
proposed approach, a solution of a test case problem was
undertaken and a comparison of the obtained results with
the known exact solution carried out. The current ap-
proach is also applicable to the solution of non-linear
systems as well, by offering an adequate basis of eigen-
functions.

Moreover, an effort was done towards the flexibilization
and performance improvement of the computational
solution, by admitting sets of points instead of closed
functional forms for the boundary description. These
ideas were also validated through a comparison of the test
case problem solution in boundary-approximated do-
mains against the equivalent exact boundary-representa-
tion.

The present contribution focused on the solution of the
associated eigenvalue problem in the arbitrary region via
integral transforms. Nevertheless, one must bear in mind
that the original diffusion problem presented may also be
directly transformed without the requirement of an in-
termediate stage of eigenquantities computation. In this
sense, coupled ordinary differential systems for the

Fig. 2. Graphical convergence of tem-
perature field for /0 ¼ 225�, with s ¼ 0:03
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Table 2. Convergence analysis of temperature field for approximate boundary-representation

umax N ¼ 25 N ¼ 50 N ¼ 75 N ¼ 100 N ¼ 200 N ¼ 300 N ¼ 400 N ¼ 500

/0 ¼ 90�, s ¼ 10
2, / ¼ 45�, R ¼ 1=2 (Exact solution ¼ 0:974738)
1 0.965168 0.976061 0.973615 0.972817 0.973387 0.973417 0.973414 0.973307
2 0.976121 0.976773 0.974390 0.974537 0.974247 0.974355 0.974355 0.974573
3 0.977051 0.972537 0.974214 0.974908 0.974882 0.974353 0.974862 0.974592
4 0.974773 0.973919 0.974641 0.975586 0.974923 0.974416 0.974674 0.974691
5 0.972851 0.974361 0.974846 0.974278 0.974492 0.974604 0.974772 0.974568
6 0.972481 0.973947 0.974688 0.974711 0.974970 0.974479 0.974764 0.974594
7 0.972367 0.973931 0.974745 0.974279 0.974930 0.974773 0.974611 0.974816
8 0.976182 0.974072 0.974869 0.974515 0.974686 0.974661 0.974674 0.974698
9 0.975905 0.973819 0.974492 0.974560 0.974912 0.974696 0.974825 0.974700

10 0.976108 0.974087 0.974757 0.974811 0.974747 0.974618 0.974753 0.974772
15 0.975827 0.975504 0.974574 0.974615 0.974520 0.974734 0.974778 0.974693
20 0.975852 0.975560 0.974654 0.974700 0.974582 0.974803 0.974695 0.974724
25 0.975860 0.975582 0.974690 0.974732 0.974616 0.974822 0.974738 0.974743
1 0.975795 0.975540 0.974677 0.974711 0.974738 0.974768 0.974759 0.974772

/0 ¼ 90�, s ¼ 10
1:5, / ¼ 45�, R ¼ 1=2 (Exact solution ¼ 0:642729)

1 0.606929 0.606437 0.605353 0.605597 0.605890 0.605933 0.605997 0.605946
2 0.633490 0.635119 0.634856 0.634997 0.634871 0.634744 0.634746 0.634869
3 0.640851 0.638487 0.639026 0.639256 0.639437 0.639218 0.639393 0.639337
4 0.640332 0.640283 0.640837 0.641096 0.640938 0.640753 0.640788 0.640806
5 0.641877 0.641437 0.641630 0.641345 0.641415 0.641375 0.641537 0.641462
6 0.642006 0.641508 0.641842 0.641971 0.642021 0.641753 0.641886 0.641808
7 0.642206 0.641721 0.642097 0.641850 0.642188 0.642148 0.642048 0.642137
8 0.641832 0.642006 0.642381 0.642176 0.642186 0.642230 0.642211 0.642223
9 0.641692 0.641876 0.642147 0.642142 0.642374 0.642344 0.642403 0.642342

10 0.642008 0.642200 0.642470 0.642459 0.642439 0.642357 0.642404 0.642416
15 0.641985 0.642641 0.642473 0.642446 0.642465 0.642526 0.642592 0.642573
20 0.642112 0.642773 0.642609 0.642579 0.642597 0.642656 0.642633 0.642641
25 0.642168 0.642832 0.642671 0.642639 0.642656 0.642707 0.642694 0.642695
1 0.642194 0.642865 0.642708 0.642672 0.642724 0.642728 0.642728 0.642738

/0 ¼ 90�, s ¼ 10
2, / ¼ 45�, R ¼ 3=4 (Exact solution ¼ 0:910395)

1 0.849161 0.841066 0.838781 0.839967 0.841618 0.841806 0.841755 0.842230
2 0.891619 0.894875 0.890755 0.891174 0.892615 0.891795 0.891918 0.891982
3 0.903727 0.898388 0.899692 0.902729 0.902261 0.902524 0.902111 0.901991
4 0.908144 0.906868 0.904420 0.905062 0.906361 0.905735 0.906030 0.905815
5 0.914558 0.908126 0.908533 0.908493 0.906584 0.907780 0.907633 0.907495
6 0.915376 0.909193 0.908567 0.908435 0.908135 0.908405 0.908498 0.908248
7 0.915895 0.909823 0.909314 0.908859 0.908558 0.909076 0.908500 0.908882
8 0.913677 0.910105 0.909639 0.908543 0.909325 0.909134 0.909359 0.909515
9 0.913838 0.910335 0.909994 0.909165 0.909745 0.909239 0.909386 0.909627

10 0.913946 0.910529 0.910199 0.909370 0.909611 0.909590 0.909754 0.909612
15 0.914183 0.911370 0.910613 0.909773 0.910179 0.910070 0.910113 0.910078
20 0.914254 0.911504 0.910766 0.910024 0.910329 0.910219 0.910158 0.910206
25 0.914284 0.911564 0.910836 0.910093 0.910399 0.910286 0.910244 0.910280
1 0.914326 0.911667 0.910961 0.910214 0.910326 0.910313 0.910416 0.910356

/0 ¼ 90�, s ¼ 10
1:5, / ¼ 45�, R ¼ 3=4 (Exact solution ¼ 0:564673)

1 0.461827 0.458491 0.457741 0.458416 0.459542 0.459608 0.459677 0.459930
2 0.534931 0.537789 0.536135 0.536822 0.537342 0.537195 0.537301 0.537363
3 0.550810 0.549928 0.550489 0.552115 0.552376 0.552638 0.552544 0.552469
4 0.557099 0.557641 0.556586 0.557182 0.557772 0.557789 0.557899 0.557863
5 0.561244 0.559454 0.560144 0.560511 0.559828 0.560298 0.560318 0.560302
6 0.562982 0.561245 0.561061 0.561325 0.561383 0.561604 0.561653 0.561584
7 0.564355 0.562626 0.562568 0.562503 0.562324 0.562571 0.562296 0.562469
8 0.564732 0.562734 0.562677 0.562468 0.562845 0.562829 0.562931 0.563050
9 0.565087 0.563095 0.563124 0.562971 0.563295 0.563179 0.563247 0.563365

10 0.565557 0.563568 0.563600 0.563446 0.563449 0.563473 0.563561 0.563518
15 0.566106 0.564251 0.564170 0.564007 0.564129 0.564111 0.564161 0.564151
20 0.566358 0.564511 0.564431 0.564320 0.564385 0.564370 0.564354 0.564365
25 0.566468 0.564626 0.564547 0.564434 0.564499 0.564480 0.564471 0.564478
1 0.566654 0.564821 0.564743 0.564629 0.564644 0.564646 0.564671 0.564656
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transformed potentials would arise from the integral
transformation. These systems are analytically solved for
linear transformable problems, and the transformed co-
efficients given by expressions similar to those presented
in this work and therefore the computational procedure
may require numerical integration. The integral transform
pairs and all transformation process is analogous to the
one here presented. It is expected that this path turns out
to be competitive against the present one, with respect to
the computational effort, in the case of non-linear prob-
lems, once coupled ordinary differential systems will arise
anyway with both approaches.

Although symbolic computation facilitates the imple-
mentation of the presented methodology, the reader
should keep in mind that for an optimal scheme, both
symbolic manipulation and traditional algorithmic lan-
guages (i.e. Fortran, C) can be employed in conjunction.
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