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Abstract The scaled-boundary finite element method is a
novel semi-analytical technique, combining the advantages
of the finite element and the boundary element methods
with unique properties of its own. This paper develops a
new virtual work formulation and modal interpretation of
the method for elastostatics. This formulation follows a
similar procedure to the traditional virtual work deriva-
tion of the standard finite element method. As well as
making the method more accessible, this approach leads to
new techniques for the treatment of body loads, side-face
loads and axisymmetry that simplify implementation. The
paper fully develops the new formulation, and provides
four examples illustrating the versatility, accuracy and
efficiency of the scaled boundary finite-element method.
Both bounded and unbounded domains are treated,
together with problems involving stress singularities.
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1
Introduction
The scaled boundary finite-element method is a novel
semi-analytical approach to continuum analysis developed
by Wolf and Song. The method was originally derived to
compute the dynamic stiffness of an unbounded domain
(Wolf and Song, 1996a), and was based on a ‘cloning’
technique in which the analytical limit was taken as the
width of the cloned cell (the infinitesimal finite-element
cell) tended to zero. This derivation is referred to as the
mechanically-based derivation. The method has proved to
be more general than initially envisaged, with later
developments allowing analysis of incompressible material
and bounded domains (Wolf and Song, 1996b), and the
inclusion of body loads (Song and Wolf, 1999). The

complexity of the original derivation of the technique led
to the development of a weighted residual formulation
(Song and Wolf, 1997; Wolf and Song, 2001). However,
this formulation is still significantly more complex than
comparable derivations of the finite element method.

This paper attempts to increase the penetration of the
method into the general field of computational mechanics,
and in particular structural mechanics. To do this it pro-
vides a new virtual work formulation and modal inter-
pretation of the scaled boundary finite-element method for
elastostatics, developed along similar lines to the classical
virtual work formulation of the finite element method.
This formulation not only makes the method more
approachable to the wider engineering science community,
but also leads to new techniques for the treatment of body
loads, side-face loads and axisymmetry which simplify
implementation. Unlike the weighted residual formulation,
the virtual work approach does not require the introduc-
tion of identities established by observation, and the
equivalent nodal boundary forces are obtained directly
from the virtual work statement.

Although it may be noted that the virtual work principle
can be expressed as an equivalent weighted residual
statement (Zienkiewicz, 1977), not every weighted residual
statement may be interpreted as a virtual work equation.
The virtual work derivation presented in this paper is not
equivalent to the existing weighted residual formulation of
the scaled boundary finite-element method, although the
final scaled boundary finite-element equations in dis-
placement are identical to those obtained by the weighted
residual and the mechanically-based formulations.

The paper also discusses the unique advantages of the
scaled boundary finite-element method for elastostatic
problems, and presents examples demonstrating excellent
performance of the technique in comparison with finite
element analysis.

This paper commences with a virtual work development
of the standard finite element method for two-dimensional
problems of elastostatics. This section is included to
introduce notation and to provide a point of reference for
readers unfamiliar with the scaled boundary finite-element
method. A virtual work derivation of the scaled boundary
finite-element method for the same types of problems is
developed in full, and the inclusion of body loads and side-
face loads is addressed. The derivation is then extended to
axisymmetric situations. The advantages of the scaled
boundary finite-element method for problems of elasto-
statics are detailed, and the use of sub-structuring tech-
niques to maximise these advantages is discussed. Four
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examples are then provided demonstrating the versatility,
accuracy and efficiency of the scaled boundary finite-ele-
ment method. The examples are also solved using standard
finite element techniques, and the results compared.

2
Finite element approximation
In the following two sections the analysis of a two-di-
mensional elastostatic problem is considered for simplic-
ity. The equations and arguments can be extended easily to
three dimensions. Enforcing internal equilibrium leads to
the differential equation

½L�Tfrðx; yÞg ¼ fpðx; yÞg ð1Þ
which must be satisfied at every point within the domain
(‘‘volume’’ V). Here fpðx; yÞg is the body load and [L] is
the linear operator relating the strains feðx; yÞg and the
displacements fuðx; yÞg
feðx; yÞg ¼ ½L�fuðx; yÞg ð2Þ
The stresses and strains are related by the elasticity matrix
[D]

frðx; yÞg ¼ ½D�feðx; yÞg ð3Þ
The boundary S can be represented by a set of points
ðx0 þ xsðsÞ; y0 þ ysðsÞÞ, where s is the boundary coordi-
nate, measuring the distance around the boundary to the
point, and (x0; y0) is a point introduced to simplify con-
struction of xsðsÞ and ysðsÞ. Boundary conditions must be
specified at all points on either displacements or surface
tractions. Boundary conditions are formulated on dis-
placements as

fuðsÞg ¼ f�uuðsÞg on Su ð4Þ
and on surface tractions as

ftðsÞg ¼ f�ttðsÞg on St ð5Þ
Definitions of the vector components, the linear operator
and the elasticity matrices for problems of plane stress,
plane strain and axisymmetry are given in Appendix A.

The task is to find a displacement field fuðx; yÞg which
satisfies Eqs. (1), (2) and (3) everywhere within domain V ,
and satisfies Eqs. (4) and (5) on the boundary S. For most
problems this is not possible, and an approximate solution
must be found.

An alternative formulation of the equilibrium require-
ment is the virtual work statement. Using fduðx; yÞg to
represent a virtual displacement field, and

fdeðx; yÞg ¼ ½L�fduðx; yÞg ð6Þ
to represent the corresponding virtual strains, the virtual
work equation states thatZ
V

fdeðx; yÞgTfrðx; yÞgdV 	
Z
S

fduðsÞgTftðsÞgds

	
Z
V

fduðx; yÞgTfpðx; yÞgdV ¼ 0 ð7Þ

The first term is the internal virtual work, the second term
is the external virtual work done by the boundary tractions
evaluated over the entire boundary, and the third term is
the external virtual work done by the body loads. If this

equation is satisfied for all virtual displacement fields,
equilibrium is satisfied in the strong sense. If it is satisfied
for a subset of virtual displacement fields, equilibrium is
only satisfied in a weak sense.

The finite element method seeks an approximate solu-
tion for fuðx; yÞg as a linear combination of n predeter-
mined shape functions Niðx; yÞ, where n is a finite number.

fuhðx; yÞg ¼
Xn

i¼1

Niðx; yÞuhi ¼ ½Nðx; yÞ�fuhg ð8Þ

In the standard finite element approach, the shape func-
tions have unit value at a particular node and zero value at
all other nodes. In this case fuhg can be identified as the
nodal displacements.

The strains associated with the approximate displace-
ment field will be

fehðx; yÞg ¼ ½L�fuhðx; yÞg ¼ ½L�½Nðx; yÞ�fuhg
¼ ½Bðx; yÞ�fuhg ð9Þ

where, for convenience, the strain-nodal displacement
matrix is introduced as

½Bðx; yÞ� ¼ ½L�½Nðx; yÞ� ð10Þ
The approximate stresses are then

frhðx; yÞg ¼ ½D�fehðx; yÞg ¼ ½D�½Bðx; yÞ�fuhg ð11Þ
Since, in general, the shape functions do not satisfy the
governing differential equation, these stresses will not
normally satisfy internal equilibrium at any point. The
virtual work statement can be used to require that equi-
librium is at least satisfied in a weak sense. An approxi-
mate solution consisting of a linear combination of n
shape functions can be made to satisfy the virtual work
equation for a virtual displacement space spanned by n
independent virtual displacement fields. The Galerkin
approach uses the same shape functions used to construct
fuhðx; yÞg to provide the n independent virtual displace-
ment fields. In this case the virtual work equation must be
satisfied for any linear combination of the shape functions.
Denoting the virtual nodal displacements by fdug, this
means that the virtual work equation must be satisfied for
all virtual displacement fields represented by

fduðx; yÞg ¼ ½Nðx; yÞ�fdug ð12Þ
and the corresponding virtual strain fields

fdeðx; yÞg ¼ ½L�½Nðx; yÞ�fdug ¼ ½Bðx; yÞ�fdug ð13Þ
Substituting Eqs. (11), (12) and (13) into (7), the virtual
work equation becomes

fdugT
Z
V

½Bðx; yÞ�T½D�½Bðx; yÞ�fuhgdV

2
4

	
Z
S

½NðsÞ�TftðsÞgds

	
Z
V

½Nðx; yÞ�Tfpðx; yÞgdV

3
5 ¼ 0 ð14Þ
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In order that the equation be satisfied for any choice of
fdug
½Ks�fuhg 	 fPg ¼ f0g ð15Þ
must apply, where the stiffness matrix

½Ks� ¼
Z
V

½Bðx; yÞ�T½D�½Bðx; yÞ�dV ð16Þ

and the equivalent nodal forces are

fPg ¼
Z
S

½NðsÞ�TftðsÞgds þ
Z
V

½Nðx; yÞ�Tfpðx; yÞgdV

ð17Þ
Prescribed boundary displacement conditions constrain
some fuhg terms, while prescribed boundary tractions
constrain some fPg terms. The number of constrained fuhg
terms and unknown fPg terms are equal. Equation (15) is
thus a set of n linear equations in n unknowns, which can be
solved for the unknown nodal displacements and the
unknown integrated boundary tractions (equivalent nodal
reaction forces). The entire approximate displacement field
is obtained from Eq. (8). The strain and stress fields are
then given by Eqs. (9) and (11) respectively.

Note that the finite element method only satisfies equi-
librium in a weak sense. The correct solution to a problem
will only be found if that solution lies within the solution
space spanned by the shape functions. If this is not the case,
the computed stress field will violate equilibrium at every
point. As the number of elements in the model is increased,
the solution space spanned by the shape functions
increases, and the degree to which equilibrium is violated is
reduced. Typically the shape functions are polynomials. If
the exact solution to a problem is smooth and continuous, a
good approximation to the solution may be found using the
finite element method. However, many problems of struc-
tural mechanics involve domains with sharp corners, and
with supports and loads applied over small portions of the
boundary. In general, the stress field in a finite element
model of a continuum with a point load or point support
will not converge at these points. The standard finite
element method does not deal well with problems involving
stress singularities or unbounded domains. Never-the-less,
‘work-around’ techniques employing shape functions
selected with a priori knowledge of the expected form of the
solution, such as singularity elements (Benzley, 1974) and
infinite elements (Bettess, 1977), allow such problems to be
tackled in a finite element context.

A major strength of the finite element method is the
ease with which complex geometries, anisotropic materials
and boundary conditions can be handled.

3
Scaled boundary finite-element approximation

3.1
Formulation
The scaled boundary finite-element method is formulated
to take advantage of analytical techniques available to
solve ordinary differential equations. (Many one-dimen-

sional problems of elastostatics can be solved analytically
using the governing equations, without introducing the
errors implicit in the use of finite elements. One example is
the bending of a uniform beam under a distributed load.)

Instead of using virtual work to reduce the non-ho-
mogeneous set of governing partial differential equations
to a set of linear equations (as in the finite element
method), the scaled boundary finite-element method
reduces the governing partial differential equations to a set
of ordinary linear differential equations, which can be
solved analytically. The resulting equations represent a
stronger equilibrium requirement than the linear finite
element equations. The reduction is accomplished by
introducing shape functions in one coordinate direction,
while working analytically in the other direction. To allow
simple incorporation of arbitrary boundary geometries
and discontinuous boundary conditions, it is advanta-
geous to discretise the boundary. The two goals are
achieved simultaneously by using a coordinate system in
which one coordinate runs around the boundary.

The scaled boundary finite-element method introduces
such a coordinate system by scaling the domain boundary
relative to a scaling centre ðx0; y0Þ selected within the
domain (Fig. 1). The normalised radial coordinate n runs
from the scaling centre towards the boundary, and has
values of zero at the scaling centre and unity at the
boundary. The other circumferential coordinate s specifies
a distance around the boundary from an origin on the
boundary. The scaled boundary and Cartesian coordinate
systems are related by the scaling equations

x ¼ x0 þ nxsðsÞ ð18aÞ
y ¼ y0 þ nysðsÞ ð18bÞ
Displacement and stress components are retained in the
original Cartesian coordinate directions, while position is
specified in terms of the scaled boundary coordinates. An
approximate solution is sought in the form

fuhðn; sÞg ¼
Xn

i¼1

½NiðsÞ�uhiðnÞ ¼ ½NðsÞ�fuhðnÞg ð19Þ

This represents a discretisation of the boundary n ¼ 1 with
the shape functions ½NðsÞ�. The unknown vector fuhðnÞg is
a set of n functions analytical in n. The same shape
functions apply for all lines with a constant n.

Mapping the linear operator to the scaled boundary co-
ordinate system using standard methods (see Appendix B)

½L� ¼ ½L1� o
ox

þ ½L2� o
oy

¼ ½b1ðsÞ� o
on

þ 1

n
½b2ðsÞ� o

os

ð20Þ
where ½b1ðsÞ� and ½b2ðsÞ� are dependent only on the
boundary definition (see Eqs. (B9) and (B10)).

Combining Eqs. (2) and (3) and substituting Eq. (20),
the approximate stresses are

frhðn; sÞg ¼ ½D�fehðn; sÞg

¼ ½D�½B1ðsÞ�fuhðnÞg;n þ
1

n
½D�½B2ðsÞ�fuhðnÞg

ð21Þ
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where, for convenience

½B1ðsÞ� ¼ ½b1ðsÞ�½NðsÞ� ð22Þ
½B2ðsÞ� ¼ ½b2ðsÞ�½NðsÞ�;s ð23Þ
As in the finite element method, the virtual work statement
is applied to introduce the equilibrium requirement. A vir-
tual displacement field is formed using the shape functions
½NðsÞ� to interpolate between the nodes in the circumfer-
ential direction (the Galerkin approach). This virtual
displacement field is of the form (analogous to Eq. (19))

fduðn; sÞg ¼ ½NðsÞ�fduðnÞg ð24Þ
where fduðnÞg contains n functions describing the varia-
tion of the virtual displacements in the radial direction,
and fduðn ¼ 1Þg contains the virtual nodal displacements.
The corresponding virtual strain field is of the form
(analogous to Eq. (21))

fdeðn; sÞg ¼ ½B1ðsÞ�fduðnÞg;n þ
1

n
½B2ðsÞ�fduðnÞg ð25Þ

Note from equation (B6) that

dV ¼ jJjn dn ds ð26Þ
where jJj is the Jacobian at the boundary (n ¼ 1).

The case where there is no body load present will be
considered first. In this case the virtual work statement
(Eq. (7)) becomesZ
V

fdeðn; sÞgTfrhðn; sÞgdV 	
Z
S

fduðsÞgTftðsÞgds ¼ 0

ð27Þ
where the first term represents the internal work and the
second term the external work.

Substituting Eqs. (21), (25) and (26), the internal virtual
work term is expanded as follows:Z
V

fdeðn; sÞgTfrhðn; sÞgdV

¼
Z
V

½B1ðsÞ�fduðnÞg;n þ
1

n
½B2ðsÞ�fduðnÞg

� �T

� ½D�½B1ðsÞ�fuhðnÞg;n þ
1

n
½D�½B2ðsÞ�fuhðnÞg

� �
dV

¼
Z
S

Z1

0

fduðnÞgT
;n½B1ðsÞ�T½D�½B1ðsÞ�nfuhðnÞg;njJjdn ds

þ
Z
S

Z1

0

fduðnÞgT
;n½B1ðsÞ�T½D�½B2ðsÞ�fuhðnÞgjJjdn ds

þ
Z
S

Z1

0

fduðnÞgT½B2ðsÞ�T½D�½B1ðsÞ�fuhðnÞg;njJjdn ds

þ
Z
S

Z1

0

fduðnÞgT½B2ðsÞ�T½D�½B2ðsÞ� 1

n
fuhðnÞgjJjdn ds

ð28Þ
The area integrals containing fduðnÞg;n are integrated with
respect to n using Green’s Theorem, introducing line
integrals evaluated around the boundary and leading toZ
V

fdeðn;sÞgTfrhðn;sÞgdV

¼
Z
S

fduðnÞgT½B1ðsÞ�T½D�½B1ðsÞ�nfuhðnÞg;njJjds

					
n¼1

	
Z
S

Z1

0

fduðnÞgT½B1ðsÞ�T½D�½B1ðsÞ�

�ffuhðnÞg;nþnfuhðnÞg;nngjJjdnds

þ
Z
S

fduðnÞgT½B1ðsÞ�T½D�½B2ðsÞ�fuhðnÞgjJjds

					
n¼1

	
Z
S

Z1

0

fduðnÞgT½B1ðsÞ�T½D�½B2ðsÞ�fuhðnÞg;njJjdnds

þ
Z
S

Z1

0

fduðnÞgT½B2ðsÞ�T½D�½B1ðsÞ�fuhðnÞg;njJjdnds

þ
Z
S

Z1

0

fduðnÞgT½B2ðsÞ�T½D�½B2ðsÞ�1
n
fuhðnÞgjJjdnds

ð29Þ
For convenience the following coefficient matrices are
introduced

½E0� ¼
Z
S

½B1ðsÞ�T½D�½B1ðsÞ�jJjds ð30aÞ

½E1� ¼
Z
S

½B2ðsÞ�T½D�½B1ðsÞ�jJjds ð30bÞ

½E2� ¼
Z
S

½B2ðsÞ�T½D�½B2ðsÞ�jJjds ð30cÞ

Fig. 1. Definition of the scaled boundary coordinate system
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These integrals can be computed element by element over
the boundary, and assembled together for the entire
boundary in the same manner as the stiffness matrix is
determined for the entire domain in the standard finite
element method.

Using fuhg to represent fuhðn ¼ 1Þg and so forth,
Eq. (29) is expressed succinctly asZ
V

fdeðn; sÞgTfrhðn; sÞgdV

¼ fdugTf½E0�fuhg;n þ ½E1�Tfuhgg

	
Z1

0

fduðnÞgT



½E0�nfuhðnÞg;nn þ ½½E0� þ ½E1�T

	 ½E1��fuhðnÞg;n 	 ½E2� 1

n
fuhðnÞg

�
dn ð31Þ

On substitution of Eq. (24), the external virtual work term
in Eq. (27) becomesZ
S

fduðsÞgTftðsÞgds ¼ fdugT

Z
S

fNðsÞgTftðsÞgds ð32Þ

By comparison with Eq. (17), the integral on the
right-hand side of Eq. (32) can be identified as
the equivalent nodal forces due to the boundary
tractions, fPg. The complete virtual work equation
becomes

fdugTf½E0�fuhg;n þ ½E1�Tfuhgg 	 fdugTfPg

	
Z1

0

fduðnÞgT



½E0�nfuhðnÞg;nn þ ½½E0� þ ½E1�T

	 ½E1��fuhðnÞg;n 	 ½E2� 1

n
fuhðnÞg

�
dn ¼ f0g ð33Þ

In order for Eq. (33) to be satisfied for all fduðnÞg (im-
plying that equilibrium is closely satisfied in the radial
direction and in the finite element sense in the circum-
ferential direction), both of the following conditions must
be satisfied.

fPg ¼ ½E0�fuhg;n þ ½E1�Tfuhg ð34Þ

½E0�n2fuhðnÞg;nn þ ½½E0� þ ½E1�T

	 ½E1��nfuhðnÞg;n 	 ½E2�fuhðnÞg ¼ f0g ð35Þ

Equation (35) is the scaled boundary finite-element
equation in displacement, which is derived in earlier
work, both by a mechanically-based method (Wolf and
Song, 1996b) and by a weighted residual method (Song
and Wolf, 1997). Effectively the governing equations have
been weakened in the circumferential direction in a
finite element manner, but remain strong in the radial
direction.

3.2
Solution procedure
By inspection, solutions to the homogeneous set of Euler–
Cauchy differential equations represented by Eq. (35)
must be of the form

fuhðnÞg ¼ c1n
	kif/1g þ c2n

	k2f/2g þ � � � ð36Þ
where the exponents 	ki and corresponding vectors f/ig
may be interpreted as independent modes of deformation
which closely satisfy internal equilibrium in the n direc-
tion. (The negative sign is adopted for consistency with
earlier work (Wolf and Song, 1996b), in which the method
is derived for unbounded domains.) The integration con-
stants ci represent the contribution of each mode to the
solution, and are dependent on the boundary conditions.

The displacements for each mode take the form
(omitting the subscript)

fuðnÞg ¼ n	kf/g ð37Þ
The vector f/g can be identified as the modal displace-
ments at the boundary nodes, while k can be identified as a
modal scaling factor for the ‘radial’ direction. Substituting
this solution into Eq. (35) yields the quadratic eigen-
problem

½k2½E0� 	 k½½E1�T 	 ½E1�� 	 ½E2��f/g ¼ f0g ð38Þ
The equivalent nodal forces required at the boundary to
equilibrate each displacement mode are obtained by sub-
stituting Eq. (37) into Eq. (34) (which is evaluated at
n ¼ 1) as

fqg ¼ ½½E1�T 	 k½E0��f/g ð39Þ
The quadratic eigenproblem can be converted to a stan-
dard linear eigenproblem at the expense of doubling the
number of degrees of freedom. First, Eq. (39) is rearranged
as follows:

kf/g ¼ ½E0�	1½½E1�Tf/g 	 fqg� ð40Þ
Then, selectively substituting Eq. (40) into Eq. (38)

k½E0�½E0�	1½½E1�Tf/g 	 fqg� 	 k½E1�Tf/g

þ ½E1�½E0�	1½½E1�Tf/g 	 fqg� 	 ½E2�f/g ¼ f0g
ð41Þ

or

kfqg ¼ ½E1�½E0�	1½½E1�Tf/g 	 fqg� 	 ½E2�f/g ð42Þ
Assembling together the two sets of equations represented
by Eqs. (40) and (42) the problem is now in linear form

½E0�	1½E1�T 	½E0�	1

½E1�½E0�	1½E1�T 	 ½E2� 	½E1�½E0�	1

" #
/

q


 �
¼ k

/

q


 �

ð43Þ

Solution of this standard eigenproblem yields 2n modes.
The eigenvectors contain the modal displacements and the
equivalent modal node forces. For a bounded domain only
the modes with non-positive real components of k lead to
finite displacements at the scaling centre (Eq. (37) with
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n ¼ 0). This subset of n modal displacements is designated
by ½U1�, where the vectors in the set form the columns
of the matrix. The subset of modal force vectors corre-
sponding to the n modes in ½U1� is denoted as [Q1].

For any set of boundary node displacements fuhg, the
integration constants required to satisfy Eq. (36) on the
boundary (n ¼ 1) are

fcg ¼ ½U1�	1fuhg ð44Þ
The equivalent nodal forces required to cause these dis-
placements are

fPg ¼ ½Q1�fcg ¼ ½Q1�½U1�	1fuhg ð45Þ
The stiffness matrix of the domain is therefore

½K� ¼ ½Q1�½U1�	1 ð46Þ
and the equilibrium requirement is reduced to

½K�fuhg 	 fPg ¼ f0g ð47Þ
Boundary conditions place constraints on subsets of fuhg
and fPg, and the solution proceeds in the same manner as
in standard finite element analysis. However, unlike that
method, only boundary degrees of freedom are present.

The integration constants are then obtained using
Eq. (44) and the displacement field is recovered by
combining Eqs. (19) and (36) as

fuhðn; sÞg ¼ ½NðsÞ�
Xn

i¼1

cin
	kif/ig ð48Þ

The stress field is obtained by substituting Eq. (48) into
(21) as

frhðn; sÞg ¼ ½D�
Xn

i¼1

cin
	ki	1½	ki½B1ðsÞ� þ ½B2ðsÞ��f/ig

ð49Þ

3.3
Side-faces
The above development assumes that the scaling centre is
contained within a bounded solution domain. However,
the formulation can also be applied when the scaling
centre is selected to be on the boundary, provided the
boundary is straight for a finite distance either side of the
centre. (There can be a change in direction at the centre.)
This is illustrated in Fig. 2. The two straight sections are
termed side-faces.

The side-faces are described by constant values of s; s0

and s1. Since discretisation is only performed in the s

direction, no discretisation is required on the side-faces.
The boundary S in the equations in the preceeding sections
is now used to represent the discretised boundary only. If
necessary, zero displacement boundary conditions are
applied over a side-face as a whole through the use of
compatible shape functions [NðsÞ]. Zero surface traction
side-face conditions are taken into account automatically,
since they do not contribute work terms to Eq. (7). Non-
zero surface tractions are discussed in Sect. 4. Constant
displacement boundary conditions on the side-faces are
satisfied exactly, while the traction boundary conditions
are closely satisfied, without discretisation.

3.4
Unbounded domains
An infinite domain containing a cavity can be represented
by taking the range of n as from 1 to 1 (Fig. 3a), and a
semi-infinite domain can be modelled by including side-
faces (Fig. 3b). In these cases, when the integration of the
virtual work equation with respect to n is performed using
Green’s Theorem, the boundary is traversed in the oppo-
site direction, changing the sign of the surface integral.

The virtual work statement then becomes

fdugTf	½E0�fuhg;n 	 ½E1�Tfuhgg 	 fdugTfPg

	
Z1
1

fduðnÞgT



½E0�nfuhðnÞg;nn þ ½½E0� þ ½E1�T

	 ½E1��fuhðnÞg;n 	 ½E2� 1

n
fuhðnÞg

�
dn ¼ f0g ð50Þ

which is satisfied for all fduðnÞg when both

fPg ¼ 	½E0�fuhg;n 	 ½E1�Tfuhg ð51Þ
and

Fig. 2. Bounded domain with side-faces

Fig. 3. Unbounded domains:
a without side-faces; b with
side-faces
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½E0�n2fuhðnÞg;nn þ ½½E0� þ ½E1�T 	 ½E1��nfuhðnÞg;n
	 ½E2�fuhðnÞg ¼ f0g ð52Þ

Note that the scaled boundary finite-element equation in
displacement (Eqs. (35) and (52)) is unchanged, while the
sign of the equivalent nodal forces is reversed (Eqs. (34)
and (51)). Solution of the quadratic eigenproblem
(Eq. (38)) is therefore seen to yield a set of modes that
span the solution spaces of both the bounded and un-
bounded domains simultaneously.

Consequently, the only difference in the solution pro-
cedure for unbounded domains arises after the modes are
computed. For unbounded cases those modes with non-
negative real components of k are chosen as [U2] to en-
force finite displacements at infinity (Eq. (37) with
n ! 1). The corresponding nodal forces are 	½Q2�, where
the negative sign is introduced due to the sign difference
between Eqs. (34) and (51), and the stiffness matrix of the
unbounded domain is

½K1� ¼ 	½Q2�½U2�	1 ð53Þ
The rest of the solution proceeds as for the bounded
domain.

4
Body loads and side-face loads
A non-zero body load creates an additional external virtual
work term. For a bounded domain, this term may be
expressed asZ
V

fduðn; sÞgTfpðn; sÞgdV

¼
Z1

0

fduðnÞgT
Z
S

½NðsÞ�Tfpðn; sÞgjJjnds dn

¼
Z1

0

fduðnÞgTnfFbðnÞgdn ð54Þ

where the equivalent nodal loads for the body loads are

fFbðnÞg ¼
Z
S

½NðsÞ�Tfpðn; sÞgjJjds ð55Þ

Similarly, non-zero tractions on the side-faces create
additional external virtual work terms. It is possible to
specify non-zero external line loads along each radial
line corresponding to a boundary node, but this will not
normally be realistic. The variation of the line loads in
the n direction (specified in nodal degree of freedom
directions) along all node lines may be represented by
fFtðnÞg. Usually only the terms corresponding to the
degrees of freedom of the side-face nodes will be
non-zero. The line load magnitudes must be mapped
from the dimensional radial coordinate to the dimen-
sionless radial coordinate n in the usual way. The
external virtual work done by the tractions on all the
side-faces is then

Z1

0

fduðnÞgTfFtðnÞgdn ð56Þ

Including Eqs. (54) and (56) in the expanded virtual work
equation (33) expands the scaled boundary finite-element
equation in displacement to

½E0�n2fuhðnÞg;nn þ ½½E0� þ ½E1�T 	 ½E1��nfuhðnÞg;n
	 ½E2�fuhðnÞg þ n2fFbðnÞg þ nfFtðnÞg ¼ f0g ð57Þ

A general solution to this non-homogeneous differential
equation may be sought as a linear combination of the
general solution of the homogeneous version (Eq. (35))
and particular solutions of the same form as the terms
n2fFbðnÞg and nfFtðnÞg. Since the general solution of
Eq. (35) is interpreted above as the combination of
deformation modes, each of which closely satisfies internal
equilibrium in the n direction, the additional solutions can
also be interpreted as modes of deformation which almost
satisfy internal equilibrium with the body loads and side-
face loads respectively. The modes representing the gen-
eral solution of Eq. (35) will be referred to as the ‘homo-
geneous’ modes, allowing differentiation between the
mode types.

Many practical loads can be modelled as varying as a
power function of the radial coordinate (such as constant
or linearly varying distributed loads).

If the body load can be represented as

fFbðnÞg ¼ nbfFbg ð58Þ
the body load mode displacements are of the form

fubðnÞg ¼ nbþ2f/bg ð59Þ
Substitution of Eq. (59) into Eq. (57) (in the absence of
side-face loads) yields

½ðb þ 2Þ2½E0� þ ðb þ 2Þ½½E1�T

	 ½E1�� 	 ½E2��f/bg þ fFbg ¼ f0g ð60Þ
and the nodal displacements for the body load mode are
obtained as

f/bg ¼ ½ðb þ 2Þ2½E0� þ ðb þ 2Þ½½E1�T 	 ½E1��
	 ½E2��	1f	Fbg ð61Þ

[If 	ðb þ 2Þ corresponds to one of the eigenvalues
of Eq. (38), the coefficient matrix will be singular.
For practical implementation a small shift of the
power will remove the singularity with negligible loss
in accuracy.] The equivalent nodal forces on the
discretised boundary in equilibrium with these
displacements are obtained by substitution of Eq. (59)
into Eq. (34) as

fqbg ¼ ½ðb þ 2Þ½E0� þ ½E1�T�f/bg ð62Þ
If the side-face loads can also be represented as power
functions of n such that

fFtðnÞg ¼ ntfFtg ð63Þ
the side-face load mode displacements are of the form
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futðnÞg ¼ ntþ1f/tg ð64Þ
Substitution of Eq. (64) into Eq. (57) (in the absence of
body loads) yields

½ðt þ 1Þ2½E0� þ ðt þ 1Þ½½E1�T

	 ½E1�� 	 ½E2��f/tg þ fFtg ¼ f0g ð65Þ
The nodal displacements for the side-face load mode can
be obtained by rearrangement as

f/tg ¼ ½ðt þ 1Þ2½E0� þ ðt þ 1Þ½½E1�T 	 ½E1��
	 ½E2��	1f	Ftg ð66Þ

and the equivalent nodal boundary forces in equilibrium
with these displacements by substitution of Eq. (64) into
Eq. (34) as

fqtg ¼ ½ðt þ 1Þ½E0� þ ½E1�T�f/tg ð67Þ
The complete solution (in the presence of body loads, side-
face loads and boundary conditions applied along the
discretised boundary) is now sought in the form

fuhðn; sÞg ¼ ½NðsÞ�
 

nbþ2f/bg þ ntþ1f/tg

þ
Xn

i¼1

cin
	kif/ig

!
ð68Þ

For a given set of integration constants, the displacements
at the boundary nodes are

fuhg ¼ f/bg þ f/tg þ ½U1�fcg ð69Þ
The equivalent nodal boundary forces in equilibrium with
this displacement field are

fPg ¼ fqbg þ fqtg þ ½Q1�fcg ð70Þ
Rearranging Eq. (69), the integration constants can be
found in terms of the nodal displacements

fcg ¼ ½U1�	1ffuhg 	 f/bg 	 f/tgg ð71Þ
Substituting this equation into Eq. (69) and rearranging,
the equilibrium requirement is reduced to

½Q1�½U1�	1ffuhg 	 f/bg 	 f/tgg ¼ fPg 	 fqbg 	 fqtg
ð72Þ

or

½K�fuhg ¼ fPg 	 fqbg 	 fqtg þ ½K�ff/bg þ f/tgg
ð73Þ

where

½K� ¼ ½Q1�½U1�	1 ð74Þ
as before (Eq. (46)). Boundary conditions on the discre-
tised boundaries place constraints on subsets of fuhg and
fPg as before, and solution proceeds in the usual manner.
Once the complete set of boundary displacements is found,
Eq. (71) is used to obtain the integration constants. The
displacement field is then recovered using Eq. (68), and
the stress field is then obtained by substitution of this
equation into Eq. (21) as

frhðn; sÞg ¼ ½D�ðnbþ1½ðb þ 2Þ½B1ðsÞ� þ ½B2ðsÞ��f/bg

þ nt½ðt þ 1Þ½B1ðsÞ� þ ½B2ðsÞ��f/tgÞ

þ ½D�
Xn

i¼1

cin
	ki	1½	ki½B1ðsÞ� þ ½B2ðsÞ��f/ig

ð75Þ
This modal treatment of body and side-face loads con-
siderably simplifies implementation of the method, since
during post-processing the body and side-face load modes
can be treated in the same way as the homogeneous
modes, with integration constants taken as unity during
the computation of displacements and stresses.

5
Axisymmetry
The above derivations are limited to plane problems.
Extension to axisymmetric situations is straightforward.
Here the scaling centre is assumed to lie on the vertical
axis of a cylindrical coordinate system (the z-axis) and the
loading is assumed to be axisymmetric. The radial axis is
taken to be r. This is illustrated in Fig. 4.

Equations (18)–(25) are unchanged, with the exception
of the components of the stress and strain matrices, the
linear operator and material matrices (which are provided
in Appendix A), and the definition of ½B2ðsÞ�, which
becomes

½B2ðsÞ� ¼ ½b2ðsÞ�½NðsÞ�;s þ ½b3ðsÞ�½NðsÞ� ð76Þ
with ½b3ðsÞ� defined in Eq. (B18). The infinitesimal volume
is now

dV ¼ 2prsjJjn2 dn ds ð77Þ
where rs is the radial coordinate of the boundary point
ðn ¼ 1; sÞ.

The internal virtual work term in Eq. (27) now becomesZ
V

fd�ðn;sÞgTfrhðn;sÞgdV

¼
Z
S

Z1

0

fduðnÞgT
;n½B1ðsÞ�T½D�½B1ðsÞ�n2fuhðnÞg;n2prsjJjdnds

þ
Z
S

Z1

0

fduðnÞgT
;n½B1ðsÞ�T½D�½B2ðsÞ�nfuhðnÞg2prsjJjdnds

þ
Z
S

Z1

0

fduðnÞgT½B2ðsÞ�T½D�½B1ðsÞ�nfuhðnÞg;n2prsjJjdnds

þ
Z
S

Z1

0

fduðnÞgT½B2ðsÞ�T½D�½B2ðsÞ�fuhðnÞg2prsjJjdnds

ð78Þ
Integrating the terms containing fduðnÞg;n with respect to
n using Green’s theorem as before
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Z
V

fdeðn;sÞgTfrhðn;sÞgdV

¼
Z
S

fduðnÞgT½B1ðsÞ�T½D�½B1ðsÞ�n2fuhðnÞg;n2prsjJjds

					
n¼1

	
Z
S

Z1

0

fduðnÞgT½B1ðsÞ�T½D�½B1ðsÞ�f2nfuhðnÞg;n

þn2fuhðnÞg;nng2prsjJjdnds

þ
Z
S

fduðnÞgT½B1ðsÞ�T½D�½B2ðsÞ�nfuhðnÞg2prsjJjds

					
n¼1

	
Z
S

Z1

0

fduðnÞgT½B1ðsÞ�T½D�½B2ðsÞ�ffuhðnÞg

þnfuhðnÞg;ng2prsjJjdnds

þ
Z
S

Z1

0

fduðnÞgT½B2ðsÞ�T½D�½B1ðsÞ�nfuhðnÞg;n2prsjJjdnds

þ
Z
S

Z1

0

fduðnÞgT½B2ðsÞ�T½D�½B2ðsÞ�fuhðnÞg2prsjJjdnds

ð79Þ
The coefficient matrices now become

½E0� ¼
Z
S

½B1ðsÞ�T½D�½B1ðsÞ�2prsjJjds ð80aÞ

½E1� ¼
Z
S

½B2ðsÞ�T½D�½B1ðsÞ�2prsjJjds ð80bÞ

½E2� ¼
Z
S

½B2ðsÞ�T½D�½B2ðsÞ�2prsjJjds ð80cÞ

The external virtual work term in Eq. (27) becomesZ
S

fduðsÞgTftðsÞgds ¼ fdugT

Z
S

fNðsÞgTftðsÞg2prs ds

ð81Þ
The integral on the right hand side of Eq. (81) can again be
identified as the equivalent nodal forces due to the
boundary tractions, fPg. The complete virtual work
equation becomes

fdugTf½E0�fuhg;n þ ½E1�Tfuhgg 	 fdugTfPg

	
Z1

0

fduðnÞgTf½E0�n2fuhðnÞg;nn

þ ½2½E0� þ ½E1�T 	 ½E1��nfuhðnÞg;n
	 ½½E2� 	 ½E1�T�fuhðnÞggdn ¼ f0g : ð82Þ

Consequently, for axisymmetry, the equivalent nodal
forces are still

fPg ¼ ½E0�fuhg;n þ ½E1�Tfuhg ð83Þ
while the scaled boundary finite-element equation in
displacement becomes

½E0�n2fuhðnÞg;nn þ ½2½E0� þ ½E1�T 	 ½E1��nfuhðnÞg;n
	 ½½E2� 	 ½E1�T�fuhðnÞg ¼ f0g ð84Þ

Since only the coefficient matrices have changed, solutions
to this equation are still of the form of Eq. (36). On
substitution into Eq. (84), the quadratic eigenproblem
becomes

½k2½E0� 	 k½½E0� þ ½E1�T 	 ½E1��
	 ½½E2� 	 ½E1�T��f/g ¼ f0g ð85Þ

Since Eq. (83) still holds

kf/g ¼ ½E0�	1½½E1�Tf/g 	 fqg� ð86Þ
Selectively substituting Eq. (86) into Eq. (85)

k½E0�½E0�	1½½E1�Tf/g 	 fqg� 	 k½E1�Tf/g
þ ½½E1� 	 ½E0��½E0�	1½½E1�Tf/g 	 fqg�
	 ½½E2� 	 ½E1�T�f/g ¼ f0g ð87Þ

or, using [I] to represent the identity matrix

kfqg ¼ ½½E1�½E0�	1½E1�T 	 ½E2��f/g
þ ½½I� 	 ½E1�½E0�	1�fqg ð88Þ

Assembling together the two sets of equations represented
by Eqs. (86) and (88)

½E0�	1½E1�T 	½E0�	1

½E1�½E0�	1½E1�T 	½E2� ½I�	 ½E1�½E0�	1

" #
/

q


 �
¼ k

/

q


 �

ð89Þ
The solution proceeds in the same manner as for plane
stress and plane strain.

Fig. 4. Axisymmetric domain discretised with two linear
elements
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If body or side-face loads are present, the scaled
boundary equation in displacement is

½E0�n2fuhðnÞg;nn þ ½2½E0� þ ½E1�T 	 ½E1��nfuhðnÞg;n
	 ½½E2� 	 ½E1�T�fuhðnÞg þ n2fFbðnÞg þ nfFtðnÞg ¼ f0g

ð90Þ
For body loads with a variation in the n direction pro-
portional to nb, as in Eq. (58), the body load mode is

f/bg ¼ ½ðb þ 2Þ2½E0� þ ðb þ 2Þ½½E0� þ ½E1�T 	 ½E1��
	 ½½E2� 	 ½E1�T��	1f	Fbg ð91Þ

while for side-face loads with a variation in the n direction
proportional to nt (Eq. (63)), the side-load deformation
mode is

f/tg ¼ ½ðt þ 1Þ2½E0� þ ðt þ 1Þ½½E0� þ ½E1�T 	 ½E1��
	 ½½E2� 	 ½E1�T��	1f	Ftg ð92Þ

Apart from these minor changes to the coefficient matri-
ces, all other equations remain the same, and computer
implementation remains simple.

6
Discussion
In contrast to the finite element method, the scaled
boundary finite-element method is a semi-analytical
technique. The solution is analytical in the radial direction,
but is based on shape functions in the circumferential
direction. Equilibrium in the radial direction and bound-
ary conditions along the side-faces are closely satisfied,
while equilibrium in the circumferential direction is sat-
isfied in the finite element sense. If side-faces are present,
the two side-faces intersect at the scaling centre, and since
the boundary conditions on the two side-faces may be
distinct, there may be a singularity or discontinuity in the
stress field at this centre. The scaled boundary finite-ele-
ment method is able to reproduce this feature exactly.

The finite element method generally only satisfies
internal equilibrium and traction boundary conditions in
the limit as the element size becomes zero. The boundary
element method satisfies internal equilibrium, but only
satisfies boundary conditions in the limit. However,
although the scaled boundary finite-element method tends
to the correct solution in the limit (like the finite element
method), side-face boundary conditions and equilibrium
requirements in the radial direction are closely satisfied
due to the application of analytical solution techniques.
Consequently, to take full advantage of the method the
scaling centre and side-faces should be strategically
located. A sub-structuring approach can be employed to
achieve this.

Since the scaled boundary finite-element method finds
the stiffness of a domain relative to nodes located along its
boundary, such domains can be assembled together as
‘super-elements’ before the nodal displacements are
computed. This is illustrated in Fig. 5. Once the boundary
displacements have been found, internal displacements
and stresses for each domain can be computed. Each
domain has its own scaling centre and (possibly) two

side-faces. Since any number of super-elements can be
assembled together, they can be positioned to optimise the
unique properties of these features. Scaling centres should
be located at discontinuities in boundary geometry or
boundary conditions, while the true boundary of the
structure should be modelled as far as possible with side-
faces. The scaled boundary finite-elements can be posi-
tioned within the structure to connect the various
domains.

These features are illustrated with examples in the next
section. Consistent with the goal of the paper outlined in
the Introduction, simple examples demonstrating the
salient features and high accuracy are addressed.

7
Examples

7.1
Example 1 – flexible circular footing on a half-space
The first example is a flexible circular footing on a half-
space, illustrated in Fig. 6a. Due to the semi-infinite na-
ture of the problem, sensible comparisons with finite
element analysis are difficult, since the accuracy of such
calculations depends on the treatment of the unbounded
domain. The scaled boundary finite-element method, on
the other hand, handles unbounded domains without any
special treatment. Fortunately, an exact solution for this
problem is available, and so the accuracy of the scaled
boundary finite-element analysis is shown through com-
parison with this solution, rather than with another nu-
merical solution.

The axisymmetric domain is analysed as two separate
subdomains, one bounded and one unbounded. The line
separating the two subdomains is discretised by scaled
boundary finite-elements. The scaling centre for both the
bounded and unbounded domains is selected at the centre
of the footing. As the surface of the half-space is a side-
face, no spatial discretisation applies to this line. Likewise,
the footing lies on a side-face of the bounded domain, and
again no spatial discretisation applies. The footing load is
prescribed as a traction on this side-face.

Three meshes of increasing accuracy are used. The
elements are three-noded quadratic line elements. The
mesh designated as ‘coarse’ consists of just two of these
elements, and is illustrated in Fig. 6b. The mesh desig-
nated as ‘medium’ consists of four of these elements,
and is formed by a binary subdivision of the coarse
mesh, while the mesh designated as ‘fine’ consists of

Fig. 5. A domain which must be sub-structured. a Regions of
boundary not visible from potential scaling centre. b Discretisa-
tion with two sub-domains, heavy lines represent discretised
boundaries

498



eight elements, and is formed by binary subdivision of
the medium mesh.

The results of the analyses are shown in Table 1. The
dimensionless displacement at the centre of the footing d�

is related to the footing displacement d, the shear modulus
G, Poisson’s ratio m, the pressure on the footing p and the
footing radius R by

d� ¼ G

pRð1 	 mÞ d ð93Þ

The indicative timings are recorded in seconds on a
450 MHz Pentium III PC. Note that general purpose rou-
tines are used for solution of the eigenproblem, as no
attempt has been made at this stage to optimise the
performance of the program. Also, as the program has
been written for the general assembly of sub-domains, no
advantage is taken of the fact that the eigenproblems for
the bounded and unbounded sub-domains are identical.
Since most of the time is taken up in the solution of the
eigenproblem, the computational times for this example
(and for the second example) could be reduced by about
50% by solving the eigenproblem just once.

The error estimator g� shown in the table is of the
Zienkiewicz-Zhu (1987) energy norm type. The value of this
estimator may be interpreted as an approximate weighted

root-mean-square of the error in the stress field. The error is
computed over the entire unbounded domain semi-analy-
tically. The procedure used to evaluate this error estimator is
described in detail by Deeks and Wolf (2002).

The table shows that excellent accuracy of displacements
and stresses are obtained with the medium mesh. The
contour plots of vertical stress (Fig. 7) demonstrate the
accuracy of the computed stress distributions, and indicate
that even the coarse mesh gives reasonable results. The
accuracy of the fine mesh is quite remarkable, and is
achieved in less than two seconds. The stress is rendered
dimensionless by division by the pressure on the footing, p.

7.2
Example 2 – rigid circular footing on a half-space
The second example is virtually identical to the first. The
only difference lies in the stiffness of the footing, which is
taken to be perfectly rigid in this case. The footing is also
assumed to be rough, implying the soil does not slip
horizontally relative to the footing.

The numerical solution of this problem is much more
challenging than the first example. Not only is the domain
unbounded, but the exact stress field has a stress singularity
at the edge of the footing. Fortunately, an analytical solution
is available for comparison purposes. Accurate analysis
using the finite element method is difficult to achieve.

Since the stress singularity does not occur on the axis of
symmetry, it is not possible to locate the scaling centre at the
singularity in this case. However, the results of the example
are of interest as they demonstrate the rate of convergence of
the scaled boundary finite-element method around points of
stress singularity located away from the scaling centre,
which is selected in the same location as in Example 1.

The same meshes are used as for the first example,
except an additional ‘very fine’ mesh is formed by binary

Fig. 6. a Layout for Examples 1 and 2;
b coarse mesh for Example 1

Table 1. Results for Example 1, flexible circular footing on half-
space

Mesh DOF Time Displacement
d�

Error estimation
g� (%)

Coarse 9 0.06 0.992 10.2
Medium 17 0.30 0.998 5.1
Fine 33 1.71 0.999 2.0
Exact 1.000

Fig. 7. Contours of vertical
stress under the flexible cir-
cular footing of Example 1
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subdivision of the fine mesh. As with the first example,
only the boundary between the bounded and unbounded
domains is discretised. The computed displacement fields
for the first three meshes are illustrated in Fig. 8. A sharp
discontinuity in slope at the edge of the footing is evident.

The recorded results are presented in Table 2, where the
number of degrees of freedom, the computational time, the
dimensionless displacement and the value of the error
estimator are tabulated for each mesh. Convergence is not
so rapid for this example, particularly for the displace-
ment. However, the stress field converges relatively quickly
(particularly when compared with the finite element
analysis of a rigid bearing plate presented in Example 4).
The convergence of the vertical stress under the footing is
illustrated in Fig. 9. The stress is again rendered dimen-
sionless by division by p.

7.3
Example 3 – Flexible plate on a bearing block
Examples 3 and 4 illustrate the benefits that can be achieved
by taking advantage of the properties of the scaling centre

and the side-faces. In Example 3 a flexible bearing plate
exerts a uniform vertical load on a rectangular bearing
block, which is rigidly supported at its base (Fig. 10). The
problem is treated as one of plane stress, and advantage
taken of the vertical axis of symmetry. An analytical solution
is not available for this example, but since the domain is
bounded, finite element analysis can be performed readily.

To fully exploit the special features of the scaled
boundary finite-element method, the domain is broken
into three subdomains, as illustrated in Fig. 10. This
permits a scaling centre to be positioned at the point at
which the vertical stress is discontinuous, that is at the
edge of the flexible bearing plate, along with two of the
boundary points at which sharp corners are present. The
flexible bearing plate is modelled as a side-face with
prescribed traction boundary conditions. Other side-
faces are used to allow traction free boundaries to be
modelled with minimal error. The coarse mesh of
elements making up the model is also shown in Fig. 10.
Medium and fine meshes are generated by binary

Fig. 8. Displacements of the half-space under the rigid circular
footing of Example 2

Table 2. Results for Example 2, rigid circular footing on half-
space

Mesh DOF Time Displacement
d�

Error estimator
g� (%)

Coarse 8 0.05 1.080 15.3
Medium 16 0.27 0.978 10.8
Fine 32 1.62 0.913 7.8
Very fine 64 11.98 0.874 4.8
Exact 0.785

Fig. 9. Vertical stress under the rigid circular footing of
Example 2

Fig. 10. a Layout for Examples 3 and 4; b coarse scaled boundary
finite-element mesh with scaling centres of three subdomains;
c coarse finite element mesh
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subdivision of this initial mesh. Three-noded quadratic
line elements are used.

The finite element models are formed using eight-noded
quadratic elements. The rigid bearing plate is modelled by
prescribing the vertical displacements of the nodes that fall
beneath the plate. The initial coarse mesh is shown in
Fig. 10. Medium, fine and very fine meshes are generated
by binary subdivision. Poisson’s ratio is taken as 0.3, and
the dimensionless vertical displacement of the centre of
the plate d� is related to the actual displacement d, the
Young’s modulus of the block E, the pressure on the plate
p and the dimension a indicated in Fig. 10 by

d� ¼ E

pa
d ð94Þ

The relative performance of the methods with the set of
meshes described above is presented in Table 3. Although
the time required by the scaled boundary finite-element
method is larger for a given number of degrees of freedom,
the accuracy (measured by the Zienkiewicz and Zhu (1987)
style stress error estimator g�) achieved even with very few
degrees of freedom is quite remarkable. Even the fine mesh
of the finite element method fails to achieve results as
accurate as the coarse mesh of the scaled boundary finite-
element method, although the analysis takes almost twice
as long. The very fine mesh of the finite element method
achieves results comparable to the medium mesh of the

scaled boundary finite-element method, but takes about
500 times as long. This huge increase in time is attribut-
able to the stiffness matrix for the 55 680 degree of free-
dom model expanding out of physical memory and into
virtual memory, and a machine with more physical
memory may not suffer so heavy a penalty.

The accuracy of the scaled boundary finite-element
method can be understood when the stress contour plots
of the medium scaled boundary finite-element model (44
degrees of freedom, 0.8% error estimate) are compared
with those of the corresponding finite element model (240
degrees of freedom, 8.8% error estimate). The contours of
vertical stress are shown in Fig. 11. (All stress components
are rendered dimensionless by division by the pressure on
the footing.) The scaled boundary finite-element method is
able to accurately model the stress discontinuity at the
edge of the flexible bearing plate, allowing the prescribed
surface tractions to be attained both under the bearing
plate and along the free surfaces of the block. In contrast,
the finite element method is unable to represent this dis-
continuity, and equilibrium is violated dramatically in the
vicinity of the edge plate. This effect is shown graphically
by the distortion of the stress bulbs illustrated in Fig. 11.

Figure 12 shows the shear stress contours for the same
pair of models. While the scaled boundary finite-element
model is able to accurately represent the discontinuity in
shear stress at the edge of the footing, the finite element

Table 3. Results for
Example 3, flexible plate on a
bearing block

Mesh Finite element method Scaled boundary finite-element method

DOF Time d� g� (%) DOF Time d� g� (%)

Coarse 66 0.038 )2.284 17.36 22 0.416 )2.294 3.71
Medium 240 0.155 )2.289 8.85 44 2.595 )2.294 0.80
Fine 912 0.740 )2.293 4.39 88 17.770 )2.294 0.19
Very fine 55680 1369.146 )2.294 0.55

Fig. 11. Vertical stress contours for Ex-
ample 3 obtained with the medium
meshes: left – scaled boundary finite-ele-
ment method; right – finite element
method

Fig. 12. Shear stress contours for Exam-
ple 3 obtained with the medium meshes:
left – scaled boundary finite-element
method; right – finite element method
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model does not, and in fact indicates the maximum shear
stress to occur some way below the top of the block.

7.4
Example 4 – Rigid plate on a bearing block
The final example is similar to Example 3, except that the
bearing plate is now considered to be rigid. This change is
implemented by placing a prescribed displacement
boundary condition on the side-face under the plate in the
scaled boundary finite-element models, and on the nodes
under the plate in the finite element models, in contrast
with the prescribed traction boundary conditions used in
Example 3.

This causes the exact stress field to become singular
under the edge of the bearing plate. The results of the
analyses are presented in Table 4. The effect of the sin-
gularity on the accuracy of the scaled boundary finite-
element method is minor. However, the accuracy of the
finite element method suffers considerably. For this ex-
ample even the very fine mesh of the finite element method
is less accurate than the coarse mesh of the scaled
boundary finite-element method.

The energy norm of the error (as evaluated by the error
estimator) is a weighted average of the error over the en-
tire domain. When the vertical stress immediately beneath
the bearing plate is examined in detail, the performance of
the scaled boundary finite-element method is seen to be
greatly superior. Figure 13 (in which the vertical stress is
rendered dimensionless by division by the pressure on the
footing) indicates that the three scaled boundary finite-
element meshes give virtually the same result, showing
there is negligible error in even the coarsest scaled

boundary finite-element mesh in this region of high in-
terest. In contrast, Fig. 14 indicates that even the very fine
finite element mesh yields a poor approximation, while an
inexperienced analyst might miss the singularity all to-
gether on observing the results for the first three finite
element meshes.

8
Conclusions
This paper presents a new virtual work derivation of the
scaled boundary finite-element method. The formulation
establishes all the equations necessary for solution directly
from the virtual work statement, and leads to a modal
interpretation of the solution process, where the solution
is found as a combination of displacement modes, each of
which closely satisfies equilibrium in the radial direction.
The participation of each mode in the solution is deter-
mined by the application of boundary conditions. The
formulation also permits side-face loads and body loads to
be included in a simple manner. A new version of the
scaled boundary finite-element equation in displacement
is established for axisymmetric situations. This treatment
of axisymmetry allows simpler implementation within a
general scaled boundary finite-element computer program
than existing methods.

The significance of the scaling centre and its use in
allowing accurate analysis of stress discontinuities and
singularities is discussed, together with the use of side-
faces to allow accurate analysis of boundary tractions. The
paper illustrates how the geometric limitation of the scaled
boundary finite-element method (namely that the com-
plete boundary be visible from a single point) may be
overcome by the use of sub-structuring.

Table 4. Results for Example
4, rigid place on a bearing
block

Mesh Finite element method Scaled boundary finite-element method

DOF Time d� g� (%) DOF Time d� g� (%)

Coarse 63 0.04 1.838 29.78 21 0.40 1.939 5.03
Medium 235 0.16 1.888 21.85 43 2.60 1.941 1.17
Fine 903 0.72 1.914 15.33 87 17.91 1.941 0.25
Very fine 55615 1386.72 1.938 5.38

Fig. 13. Vertical stress computed under the rigid bearing plate
of Example 4 (scaled boundary finite-element method)

Fig. 14. Vertical stress computed under the rigid bearing plate
of Example 4 (finite element method
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Four examples are presented to show how well the
scaled boundary finite-element method performs in
practice. The first two employ a combination of bounded
and unbounded subdomains to solve an unbounded
problem, and demonstrate the capability of the method
to deal with unbounded problems. The second example
includes a stress singularity not located at the scaling
centre, and indicates that the scaled boundary finite-ele-
ment method converges rapidly in the finite element
sense around such points. The third and fourth examples
illustrate how advantage can be taken of the ability of the
scaling centre and the side-boundaries to accurately
model prescribed boundary tractions and displacements.
The third example contains a discontinuity in the
boundary traction, which is accurately modelled by lo-
cating a scaling centre at this point. Similarly, the fourth
example demonstrates the ability of the scaled boundary
finite-element method to model stress singularities lo-
cated at the scaling centre.

The performance of the scaled boundary finite-element
method is compared with the standard finite element
method for the third and fourth examples (since these
are bounded). Despite the use of rather primitive general
purpose eigensolution routines in the implementation of
the scaled boundary finite-element method, the scaled
boundary finite-element method outperforms the stan-
dard finite element method for comparable computa-
tional time in terms of overall accuracy, number of
degrees of freedom, and qualitative accuracy in the re-
gions of high interest (the points of stress singularity and
discontinuity).

Overall the paper shows that the novel semi-analytical
scaled boundary finite-element method can be derived in a
similar manner to the standard finite element method, and
has the potential to be used to great advantage in problems
of elastostatics.

Appendix A – Vector and matrix definitions for plane stress,
plane strain and axisymmetry
In the case of plane stress and plane strain, the displace-
ment field has two components, displacement in the
x-direction ðuxÞ and displacement in the y-direction ðuyÞ.

fug ¼ ux

uy


 �
ðA1Þ

Stress and strain have three independent components.

frg ¼
rx

ry

sxy

8<
:

9=
; ðA2Þ

feg ¼
ex

ey

cxy

8<
:

9=
; ðA3Þ

The linear operator relating strain and displacement is

½L� ¼

o
ox 0

0 o
oy

o
oy

o
ox

2
64

3
75 ðA4Þ

The elasticity matrix for plane stress is

½D� ¼ E

1 	 m2

1 m 0
m 1 0
0 0 1	m

2

2
4

3
5 ðA5aÞ

and for plane strain

½D� ¼ E

ð1 þ mÞð1 	 2mÞ

1 	 m m 0
m 1 	 m 0
0 0 ð1	2mÞ

2

2
4

3
5 ðA5bÞ

where E and m are Young’s modulus and Poisson’s ratio
respectively.

In the case of axisymmetry (when both load and dis-
placement are axisymmetric) the displacement field still
has two components (in the r and z directions), but stress
and strain have an additional component in the circum-
ferential h direction.

frg ¼

rr

rz

rh

srz

8>><
>>:

9>>=
>>; ðA6Þ

feg ¼

er

ez

eh

crz

8>><
>>:

9>>=
>>; ðA7Þ

The linear operator is

½L� ¼

o
or 0

0 o
oz

1
r 0
o
oz

o
or

2
664

3
775 ðA8Þ

and the elasticity matrix is

½D� ¼ E

ð1 þ mÞð1 	 2mÞ

1 	 m m m 0
m 1 	 m m 0
m m 1 	 m 0
0 0 0 ð1	2mÞ

2

2
664

3
775

ðA9Þ

Appendix B – Transformation to the scaled boundary
coordinate system
The scaling equations relating the Cartesian coordinate
system to the scaled boundary coordinate system are

x ¼ x0 þ nxsðsÞ ðB1aÞ
y ¼ y0 þ nysðsÞ ðB1bÞ
Derivatives in the scaled boundary coordinate system can
be related to derivatives in the Cartesian coordinate sys-
tem using the Jacobian matrix.

o
on
o
os

( )
¼

ox
on

oy
on

ox
os

oy
os

" #
o
ox
o
oy

( )
ðB2Þ

Taking derivatives of Eqs. (B1) with respect to n and
moving the n term to the left-hand side

503



o
on

1
n
o
os

( )
¼

xsðsÞ ysðsÞ
xsðsÞ;s ysðsÞ;s

" #
o
ox

o
oy

( )
ðB3Þ

Inverting yields

o
ox

o
oy

( )
¼ 1

jJj
ysðsÞ;s 	ysðsÞ
	xsðsÞ;s xsðsÞ

" #
o
on

1
n
o
os

( )
ðB4Þ

where the Jacobian at the boundary ðn ¼ 1Þ is

jJj ¼ xsðsÞysðsÞ;s 	 ysðsÞxsðsÞ;s ðB5Þ
For plane stress and plane strain problems the incremental
‘‘volume’’ is

dV ¼ jJjn dn ds ðB6Þ
If the linear operator is decomposed as

½L� ¼ ½L1� o
ox

þ ½L2� o
oy

ðB7Þ

using Eq. (B4) yields

½L� ¼ 1

jJj ½L1� ysðsÞ;s
o

on
	 ysðsÞ

1

n
o

os

� ��

þ ½L2� 	xsðsÞ;s
o

on
þ xsðsÞ

1

n
o

os

� ��

¼ ½b1ðsÞ� o
on

þ ½b2ðsÞ� 1

n
o

os
ðB8Þ

where

½b1ðsÞ� ¼ 1

jJj ½L1�ysðsÞ;s 	 ½L2�xsðsÞ;s
h i

ðB9Þ

½b2ðsÞ� ¼ 1

jJj 	½L1�ysðsÞ þ ½L2�xsðsÞ
�  

ðB10Þ

In the same way, for axisymmetric problems the scaling
centre is limited to being on the axis of symmetry, and the
scaling equations relating the cylindrical coordinate sys-
tem to the scaled boundary coordinate system are

r ¼ nrsðsÞ ðB11aÞ
z ¼ z0 þ nzsðsÞ ðB11bÞ
In this case

jJj ¼ rsðsÞzsðsÞ;s 	 zsðsÞrsðsÞ;s ðB12Þ
and

dV ¼ 2prsjJjn2 dn ds ðB13Þ
If the linear operator is decomposed as

½L� ¼ ½L1� o
or

þ ½L2� o
oz

þ ½L3� 1

r
ðB14Þ

then

½L� ¼ ½b1ðsÞ� o
on

þ ½b2ðsÞ� 1

n
o

os
þ ½b3ðsÞ� 1

n
ðB15Þ

where

½b1ðsÞ� ¼ 1

jJj ½L1�zsðsÞ;s 	 ½L2�rsðsÞ;s
h i

ðB16Þ

½b2ðsÞ� ¼ 1

jJj 	½L1�zsðsÞ þ ½L2�rsðsÞ
�  

ðB17Þ

½b3ðsÞ� ¼ 1

rsðsÞ
½L3� ðB18Þ
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