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Abstract In this paper, a meshless method based on the
kernel particle approximation is employed for the simu-
lation of the human proximal femur. The proposed for-
mulation considers treatments of nonconvex boundaries
and material discontinuities in the bone structure. A pre-
processor is developed for the generation of the discretized
scatter particles model. Application examples were em-
ployed to explore certain stress distribution phenomena in
the human proximal femur with consideration for the
detrimental effects of infarction as well as aging. The
effects of stress variations were also examined exposing
some very interesting biomechanical features.
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1
Introduction
The use of numerical methods has become commonplace
in biomechanics over the past two decades. As compared
to experimental techniques, numerical methods often
prove to be the more economical choice, besides offering
the possibility of investigating locations not accessible to
experimental devices. Historically, the finite element
method (FEM) has been used, almost exclusively, for stress
analysis in biomechanics (Huiskes and Chao 1983). For
biomechanical problems in orthopaedic biomechanics,
bone remodeling, implantation and joint replacement, a
stress analysis is an absolute necessity, by which the data
of stress distribution and stress values at particular
locations of interest are obtained.

Several authors, including Hansen and Koeneman
(1987) and Weinans (1991), have employed three-dimen-
sional finite element models for orthopaedic biomechanics
analyses. The use of three-dimensional models is,

however, labor and computationally intensive, and sim-
plified two-dimensional analyses should always be con-
sidered first. In a number of cases, relevant information on
stress distributions in biomechanical structures can also
be obtained with less effort by a two-dimensional analysis
(Vander Sloten et al. 1993). Hedia et al. (1996) reviewed
the two-dimensional FEM models that have been used by
many researchers in the stress analysis of femoral com-
ponent in the context of total hip replacement. Generally, a
two-dimensional FEM model is much more economical in
terms of computational effort and is easier to incorporate
within an optimization algorithm than a three-dimen-
sional analysis (Yang et al. 1984). However, there are
various assumptions, which must be made in order to
reduce the actual three-dimensional geometry to an
equivalent two-dimensional model. Brown et al. (1982) use
two-dimensional (plane-strain) stress fields to evaluate
femoral head load transmission changes occurring with
infarction as well as normal growth. An equivalent
two-dimensional plane stress model was also employed by
Hedia et al. (1996), to examine the effects of FEM ideal-
ization, load conditions and interface assumptions, on the
stress distribution in the human femur with an
endoprosthesis. The validity of the two-dimensional FEM
model of a femur was discussed in detail by Hayes and
Snyder (1981).

The boundary element method (BEM) has also been
employed for bone remodeling analysis by Sadegh et al.
(1993). In the above mesh-based methods, great efforts
have to be made to deal with the complex geometries, with
problems associated with mesh distortion and mesh
refinement or remeshing becoming inevitable.

In recent time, meshless methods have attracted sig-
nificant attention in computational mechanics research.
The element-free Galerkin method (EFG) and reproducing
kernel particle method (RKPM) are the most popular
meshless techniques suitable for structural analysis. The
EFG method based on the moving least-squares method is
advanced by Belytschko et al. (1994) and the RKPM using
integral transformation with a corrected kernel function
was presented by Liu et al. (1994, 1995). Li et al. (2000)
used the RKPM for the simulation of large deformation of
thin shell structures. The RKPM was also employed for
modeling of large deformation analysis by Liew et al.
(2002a). A meshfree solution method which has integrated
the RKPM with parametric quadratic programming was
formulated by Liew et al. (2002b) for elasto-plasticity
analysis. In order to investigate the dynamic behaviour of
rotating shells, Liew et al. (2002c) has proposed the

Computational Mechanics 28 (2002) 390–400 � Springer-Verlag 2002

DOI 10.1007/s00466-002-0303-5

390

Received 20 January 2001 / Accepted 30 May 2001

K. M. Liew (&), H. Y. Wu
Nanyang Centre for Supercomputing and Visualisation,
School of Mechanical and Production Engineering,
Nanyang Technological University,
Nanyang Avenue, Singapore 639798
e-mail: mkmliew@ntu.edu.sg

T. Y. Ng
Institute of High Performance Computing,
89 C Science Park Drive, #02, 11/12,
The Rutherford, Singapore 118261



harmonic reproducing kernel particle (HRKP) method.
They showed that this HRKP method has produced ex-
cellent results for this problem.

In this study, a meshless method based on the kernel
particle method for the human proximal femur stress
analysis is presented. Nonconvex boundary problems and
bimaterial interface discontinuities are considered. By
using the meshless approach, domains of interest are
discretized only by a scattered set of particles, uncumbered
by elements and elemental connectivity. This avoids
problems associated with mesh distortion and does away
with the possible need for remeshing. Numerical examples
are considered for the human proximal femur, femur with
infarct and various age effects. Comparisons with FEM
(ANSYS) results show that the present meshless method is
an effective numerical tool for the simulation of the
present biomechanics application.

2
Review of reproducing kernel particle method
In the smooth particle hydrodynamics or SPH approach,
an approximation ukðxÞ to uðxÞ in a domain X is generated
by a kernel approximation given by

ukðxÞ ¼
Z
X

/aðx � yÞuðyÞdy ð1Þ

Liu et al. (1995a, b) proposed a reproducing kernel
approximation by introducing a correction function to
the SPH kernel estimate of Eq. (1) as

uRðxÞ ¼
Z
X

Cðx; x � yÞ/aðx � yÞuðyÞdy ð2Þ

where uRðxÞ is the ‘‘reproduced function’’ of u(x). Equa-
tion (2) is called the reproducing equation, and Cðx; x � yÞ
is the correction function defined by

Cðx; x � yÞ ¼
XN

i¼0

biðxÞðx � yÞi ¼ bTðxÞHðx � yÞ ð3Þ

where HTðx � yÞ ¼ ½1; x � y; . . . ; ðx � yÞN � and
bTðxÞ ¼ ½b0ðxÞ; b1ðxÞ; . . . ; bNðxÞ� are determined by im-
posing the N-th order polynomial. The reproducing kernel
approximation is

uRðxÞ ¼
Z
X

Cðx; x � yÞ/aðx � yÞuðyÞdy

¼ HTð0ÞM�1ðxÞ
Z
X

Hðx � yÞ/aðx � yÞuðyÞdy

ð4Þ
Equation (4) can be recast into the following form

uRðxÞ ¼
Z
X

�//aðx; x � yÞuðyÞdy ð5Þ

where �//aðx; x � yÞ ¼ Cðx; x � yÞ/aðx � yÞ is the repro-
duced kernel. Since Eq. (4) exactly reproduces an N-th
order polynomial, this method fulfills the N-th order
consistency conditions, i.e.,

Z
X

�//aðx; x � yÞyndy ¼ xn for n ¼ 0; . . . ;N ð6Þ

The kernel estimate (KE) used in the SPH and the repro-
ducing kernel (RK) approximation employed in the RKPM
can be combined into the following generalized approxi-
mation equation

uhðxÞ ¼
Z
X

Cðx; x � yÞ/aðx; x � yÞuðyÞdy ð7Þ

Cðx; x � yÞ ¼ 1 KE
HTð0ÞM�1ðxÞHðx � yÞ RK

�
ð8Þ

where uhðxÞ is the approximation of uðxÞ. For the purpose
of utilizing the shape function for discrete approximation,
discretization of Eq. (7) is required. Suppose the domain
X is discretized by a set of particles x1; . . . ; xNPf g, where xI

is the location of the particle I, and NP is the total number
of particles, then by the use of a simple trapezoidal rule,
Eq. (7) can be discretized into

uhðxÞ ¼
XNP

I¼1

Cðx; x � xIÞ/aðx � xIÞdIDxI ð9Þ

MðxÞbðxÞ ¼ Hð0Þ ð10Þ

The correction function Cðx; x � xIÞ was determined
previously from the completeness requirement of the
continuous reproducing equation. With the discretization
of the reproducing equation, we re-impose the complete-
ness requirement on Eq. (10) to obtain

Cðx; x � xIÞ ¼ HTð0ÞM�1ðxÞHðx � xIÞ ð11Þ

MðxÞ ¼
XNP

I¼1

Hðx � xIÞHTðx � xIÞ/aðx � xIÞ ð12Þ

HTðx � xIÞ ¼ ½1; x � xI; . . . ; ðx � xIÞN � ð13Þ
Equation (9) can thus be expressed in the following form

uhðxÞ ¼
XNP

I¼1

/IðxÞdI ð14Þ

/IðxÞ ¼ Cðx; x � xIÞ/aðx � xIÞ ð15Þ

3
Treatments of nonconvex boundaries
Biomechanical problems are essentially very geometry-
based, viz., have very complicated geometries and many
nonconvex boundaries. Treatment of nonconvex bound-
aries is one of the vital aspects for the application of
meshless methods to the field of biomechanics. Organ
et al. (1996) introduced the diffraction method to con-
struct continuous and smooth approximations near
nonconvex boundaries in the element-free Galerkin
method (EFG). In this paper, a diffraction method ac-
cording to the angle-change is used to construct contin-
uous approximation with the presence of the nonconvex
boundaries or discontinuities. In this approach, one
employs a rectangular support and the determination
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variable is angle change. Consider an evaluation point A,
which may fall into the range of the particle I’s rectan-
gular support, but cannot be seen from particle I for the
influence of the discontinuity line. The discontinuity may
be the crack line or the other non-convex boundary, as
shown in Figs. 1, 2 and 3, respectively. A coefficient is
defined by

} ¼ 1 if x is visible from xI

1= cosðhÞ if x isinvisible from xI

�
ð16Þ

It can be proven that (see Figs. 1 and 2) if the following
equation holds,

cosðhÞ ¼ s2
0 � ðs2

1 þ s2
2Þ

2s1s2
ð17Þ

then the kernel function parameter dxI and dyI are defined
as

dxI ¼ x � xIj j � }; dyI ¼ y � yIj j � } ð18Þ
when h is very small and } approaches unity. These points
will still lie within the support of particle I. However when
h is near 90�, } becomes very large and reaches maximum
value. Therefore a upper bound is needed. For example, an
upper bound value of 0.1 is set for cosðhÞ. In case of that
cosðhÞ is greater than 0.1, } will not be computed, i.e.,
points outside the support of particle I will not be con-
sidered. The domain of influence of particle I is shown in
Fig. 2.

4
Treatment of material discontinuity
For problems with multiple materials, the derivatives of
the displacements may be, by the very nature of the
problem, discontinuous across the material interfaces
although the displacement continuity may exist in a piece-
wise manner. It is intended to consider different material
regions in the modeling of proximal femur in connection
with simulation of infarction. Hence, treatment of material
discontinuity becomes an important modeling aspect
discussed in this section. Cordes and Moran (1996) have
treated discontinuous derivatives in EFG by a Lagrange
multiplier technique. In this study, the Lagrange multiplier
technique is taken to treat the material discontinuity in
kernel particle method.

4.1
Governing equations
To demonstrate the treatment of material discontinuity in
the meshless method, we consider small displacement
linear elastostatics. For simplicity, the explanation will
focus on two distinguishable materials separated by a
single interface, Cs, as shown in Fig. 4. This interface is
defined by n�

j , the unit outward normal of X�, along the
material boundary. The governing equilibrium equation is
given by

Fig. 1. Scheme of the angle-change method for determining the
domain of influence

Fig. 2. The domains of influence for particle I near a line of
discontinuity using the angle-change criterion

Fig. 3. Nonconvex boundaries near a concave curve

Fig. 4. A general three-dimensional inhomogeneous body
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rji;j þ bi ¼ 0 in X ð19Þ
where rij is the Cauchy stress tensor and bi is a body force.
The associated boundary conditions are given as follows:

rijnj ¼ �titi on Ct ð20Þ
ui ¼ �uiui on Cu ð21Þ
where ti is defined as the traction on a surface, and ui is the
displacement field. The superposed bar denotes the pre-
scribed traction and displacement values, respectively, and
nj is the unit outward normal to the domain X. Due to
Cauchy’s relation,

ti ¼ rijnj on C ; ð22Þ

Eq. (20) may be rewritten as

ti ¼ �titi on Ct ð23Þ

On the interface, Cs, continuity of tractions and displace-
ments requires

tij j½ � ¼ 0 ð24Þ
uij j½ � ¼ 0 ð25Þ

where j j½ � denotes a jump. Equations (24) and (25) may
also be interpreted as

tþi � t�i ¼ 0 ð26Þ
uþ

i � u�
i ¼ 0 ð27Þ

Using the relationship presented in Eq. (22), the tractions
in Eq. (26) are therefore defined as

tþi ¼ þrþ
ij n�

j ð28Þ
t�i ¼ þr�

ij n�
j ð29Þ

The linear elastic constitutive relationship is given by

rij ¼ Cijklekl ð30Þ
where Cijkl is the elastic modulus, and the strain tensor, ekl,
is defined as

ekl ¼ 1
2 ðuk;l þ ul;kÞ ð31Þ

4.2
Modifications for material discontinuity
For material discontinuities, the interface constraint
given by Eq. (25) must be enforced explicitly along the
interface Cs,Z
Cs

uþ
i � u�

i

� �
dC ¼ 0 ð32Þ

where uþ
i and u�

i correspond to the displacement fields in
Xþ and X�, respectively. By imposing this constraint on
the variational level, the traction continuity constraint,
Eq. (24), will be weakly satisfied. To illustrate this, con-
sider the following weak form associated with Eq. (19),
where uðxÞ 2 H1 are trial functions

Z
X

dui;jrij dX �
Z
X

duibi dX �
Z
Ct

dui�titi dC

�
Z
Cs

dci uþ
i � u�

i

� �
dC �

Z
Cs

duþ
i � du�

i

� �
ci dC ¼ 0

ð33Þ
The Lagrange multipliers, ci, enforce the displacement
continuity constraint on Cs. The associated Euler equa-
tions are thus

rji;j þ bi ¼ 0; in Xþ and X� ; ð34Þ
ti � �titi ¼ 0; on Ctþ and Ct� ; ð35Þ
uþ

i � u�
i ¼ 0; on Cs ; ð36Þ

ci þ t�i ¼ 0; on Cs ; ð37Þ
ci þ tþi ¼ 0; on Cs ; ð38Þ

which corresponds to satisfying the equilibrium equation,
Eq. (19), in both Xþ and X�; and the traction equation,
Eq. (20), on both Cþ and C�; with the corresponding
physical interpretation of the Lagrange multipliers,
ci ¼ �t�i ¼ �tþi , where positive and negative superscripts
refer to variables belonging to Xþ and X�, respectively.
Note that t�i and tþi are defined according to Eqs. (28) and
(29). Therefore, traction continuity at the interface
(Eq. (24)) is satisfied by eliminating ci from Eqs. (37) and
(38). The displacement continuity constraint, Eq. (25),
explicitly enforced, also appears as an Euler equation given
by Eq. (36). Substituting Eq. (37) into Eq. (33) yields the
following modified variational form

Z
X

dui;jrij dX �
Z
X

duibi dX �
Z
Ct

dui�titi dC

�
Z
Cs

dt�i uþ
i � u�

i

� �
dC þ

Z
Cs

duþ
i � du�

i

� �
t�i dC ¼ 0

ð39Þ
Discretizing the above equation leads to the following
system of equations

Ku ¼ f ð40Þ
where the matrices K and f are defined as

KIJ ¼
Z
X

BT
I DBJ dX þ

Z
Cs

/þ
I � /�

I

� �
N�D�B�

J dC

þ
Z
Cs

B�
I

� �T
D�ð ÞT N�ð Þ

T
/þ

J � /�
J

� �
dC ð41Þ

fI ¼
Z
Ct

/I
�tt dC þ

Z
X

/Ib dX þ
Z
Cs

/þ
I � /�

I

� �
N�D� dC

ð42Þ
and
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D ¼ D0

1 m0 0
m0 1 0
0 0 1�m0

2

2
4

3
5 ð43Þ

where D0 ¼ E0=ð1 � m2
0Þ, and

BI ¼
/I;x 0

0 /I;y

/I;Y /I;x

2
4

3
5 ð44Þ

N ¼ nx 0 ny

0 ny nx


 �
ð45Þ

where nx and ny are the component of the surface normal
and the matrices B�, D�, and N� in the integrals on Cs

arise from the substitution of ci ¼ �t�i , or the traction at
the interface of X� and the unit normal, N , of Cs. For plane
stress, E0 ¼ E, m0 ¼ m; and for plane strain,
E0 ¼ E=ð1 � m2Þ, m0 ¼ m=ð1 � mÞ.

5
Applications of meshless method for human proximal
femur stress analysis
To handle the geometrical complexities, a preprocessor is
developed by integrating the well-developed geometric
modeler software with the meshless solver. Using this
preprocessor, the meshless modeling which includes the
modeling of the geometry domain, the discretization of
the interest by particles, the generation of the integration
grids and the predefinition of the loads, namely the
displacement constraints and forces, becomes quite
convenient.

5.1
Femur (assuming homogeneous material) stress analysis
A two-dimensional plane stress meshless method is em-
ployed for the simulation of a coronal midsection of the

adult proximal femur. The loading conditions are char-
acterized as a single-legged stance, which consist of the
concentrated articular contact force (the resultant force of
the weight loading transferred though the articular joint),
abductor muscle (gluteus medius) traction at the greater
trochanter and zero displacement across a horizontal
section just distal to the lesser trochanter as shown in Fig.
5. Most previous studies predicted resultant joint forces in
the range of zero to four times the body weight. The
geometrical data for the proximal femur is taken from
open literature (Brown et al. 1982).

The idealized elastic, homogeneous, isotopic femur is
studied here using three different particle models, as
shown in Fig. 6a, b and c. The stress values and distribu-
tions along the sections of interest, i.e., the load resultant
line (L1–L2) and line L3–L4 near the femur neck, shown in
Fig. 7, are examined in detail. The convergence for the line
L1–L2 is given in Fig. 9 and the contour stress distribution
is shown in Fig. 10. The stress magnitudes and distribu-
tions in lines L1–L2 and L3–L4 are given in Figs. 11 and

Fig. 5. Geometry, boundary condition and loading conditions for
a human proximal femur model

Fig. 6. Meshless analysis models – particle display: a particle
model I, 101 particles; b particle model II, 180 particles; c particle
model III, 316 particles
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12, respectively. Comparison of the stress results between
meshless methods and FEM (ANSYS) are also displayed in
Figs. 11 and 12. They are obviously in very good agree-
ment and we can reasonably conclude that the present
meshless methodology is an effective tool for orthopaedic
biomechanics simulation.

5.2
Stress analysis of femur with infarct
To evaluate the infarct effects on the proximal femur, a
standard infarct femur model, seen as two separate

Fig. 7. Positions of line L1–L2 (the load resultant line) and line
L3–L4

Fig. 8. Proximal femur with infarct region

Fig. 9. Displacement values (in line L1–L2) given by three
meshless models: a X direction displacement; b Y direction
displacement

c

Fig. 10. Stress ry, distribution contours for human proximal
femur

c
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material regions, see Fig. 8, is used. The above-men-
tioned approach to deal with the material discontinuity
and interface is employed. To study the effects of
infarction, modulus values for all particles within the
infarct segment are reduced to a specified fraction, CN ,
of the value of the normal healthy case. In this study,
CN values ranging from 1.0 (normal healthy case) to 0.1
(very severe deficit) are considered. The longitudinal
and principal stress distributions are given in Fig. 13a
and b, respectively. From Fig. 13, we can see that the
salient load transfer mechanisms remain operative while
general reductions in stress levels within the infarct
region were observed. The load transmission aberra-
tions associated with progressively increasing infarct
stiffness deficits are also shown in Fig. 13a and b.
Along the line of joint load resultant, longitudinal

stresses in the healthy femoral head progressively in-
crease from the medial to under the articular surface.
Progressively increasing stiffness deficits, (i.e., reduc-
tions in CN) in the infarct, cause progressive reductions
in the stress magnitude, their effect being most pro-
nounced (for this particular lesion geometry) at about
probe position 2, see Fig. 13. Examination of the
principal stress along the load resultant line reveals that
stiffness deficit-related stress relief experienced by the
infarct’s core is rapidly diminished toward the infarct
periphery. The computational results nevertheless indi-
cate a clear tendency for stress transfer from necrotic
to neighboring viable regions. In general, infracted
bone in the superior weight-bearing region must
continue to carry near-physiological stress even though
load is progressively transferred out through the distal

Fig. 11. Stress distribution along the load resultant line: a
normal stress rx; b normal stress ry; c shear stress sxy; d principal
stress r1
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lesion periphery. Hence, vulnerability to mechanical
overload would appear to be more pronounced supe-
riorly than inferiorly. It would thus make very good
sense to the surgeon planning an osteotomy to provide
stress relief for necrotic regions to place greater em-
phasis on repositioning all or most of the superior
aspect of the lesion to a new location outside the
weight-bearing tract.

5.3
Stress changes with growth in the normal juvenile
proximal femur
Mechanical stress is widely recognized as a major stimulus
in the development and growth of bone. Biomechanical
changes at the human proximal femur during growth do
not result simply from increases in bone stiffness, stature
and body weight, rather, profound morphological changes
are at work as well. The femoral neck undergoes large
relative lengthening, and the neck-shaft angle progres-
sively decreases from nearly 180� in infancy to about

130–160� at maturity. Here we have attempted to quantify
the salient load transmission changes accompanying the
complex morphological alterations of growth, cases of ages
one, three, seven and 18 (adult), were examined. The
meshless plane-stress particle model described in Sect. 5.1
was considered a good representative model of the geo-
metrical characteristics and the applied external loading
and support conditions of the juvenile and adult proximal
femur. Geometrical data for ages one, three, seven and 18
were taken from Brown et al. (1982). To introduce the
effects of increase of bone stiffness during bone growth,
elastic modulus values for bones of different ages were
reduced to a specified age-attention fraction, CA, of the
value of adult bone. For ages one, three and seven, CA is
taken to be 0.07, 0.37 and 0.79, respectively.

Age-related variations of principal stress field for ages
one, three, seven and 18 in the overall load transmission
pattern are given in Fig. 14. From Fig. 14 the following
major qualitative features in the stress distribution can be
seen for all of these ages:

Fig. 12. Stress distribution along line L3–L4: a normal stress rx;
b normal stress ry; c shear stress sxy; d principal stress r1
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1. Preferential load transmission through the center of the
femoral head and progressive concentration of the
compressive stress along the joint load resultant line,
through the medial cortex, to surface of the femoral head;

2. Strong longitudinal compressive stress along the medial
cortex;

3. Low stress level in the medullary cavity;
4. Strong longitudinal compression in the left low lateral

cortex and strong longitudinal tensile stress in the right
lateral cortex;

5. Moderately strong tensile stress in the greater tro-
chanter, roughly aligned with abductor traction;

6. Moderate transverse compression in the neck-tro-
chanter junction.

Further, we can see that those principal stress patterns
correlate well with bony architecture. Detailed age-wise

parametric variations of stress levels across the positions
of interest, i.e., the load resultant line, are presented in
Fig. 15. Longitudinal stresses and shear stresses along the
line of the resultant joint force generally increased with
age, see Fig. 15b and c. The increments of the values of the
transverse stresses and the principal stresses with age
across those positions are also observed, whilst a strong
tendency toward distal concentration (between Positions 2
and 4) in these two kinds of stresses is observed, beginning
after age seven. Part of this trend towards distal concen-
tration is of course due to the fact that the load resultant
line changes with age as femur neck-shaft angles
progressively decrease.

6
Conclusions
In this study, a meshless methodology has been employed
for the simulation of bone mechanics. The advantages of
the meshless method over the finite element method are
that it overcomes the difficulties associated with various
element distortions such as the effects of skews and solid
angle distortion and it also avoids the need for reme-
shing. Also, through treatment methods for nonconvex
problems and material discontinuities, the bimaterial in-
terface characteristics and complex geometries can be
computed accurately. Numerical experiments of stress
analysis for the proximal femur considering infarct and
natural age effects were carried out. Results show that the
present meshless method is an effective tool for the
modeling the biomechanics. Some qualitative biome-

Fig. 13. The effects of infarct on longitudinal stress and
principal stress along the load resultant line: a longitudinal stress;
b principal stress r1

Fig. 14. Principal stress fields in the femur for: a age one;
b age three; c age seven and d age 18
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chanical conclusions have been drawn from this analysis,
which are in good general agreement with those reported
by the previous studies. Since meshless methods are more
appealing for dealing with large deformation problems,
moving discontinuities, complex mesh and adaptivity
problems, due to their unique meshless or gridless
characteristic, a characteristic that traditional FEM in-
herently lacks, there holds greater promise for this tool,
especially in the more complex biomechanics
applications.
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